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Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction
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The car-following model of traffic is extended to take into account the car interaction before the next car
ahead(the next-nearest-neighbor interactiohe traffic behavior of the extended car-following model is
investigated numerically and analytically. It is shown that the next-nearest-neighbor interaction stabilizes the
traffic flow. The jamming transition between the freely moving and jammed phases occurs at a higher density
than the threshold of the original car-following model. By increasing the maximal velocity, the traffic current
is enhanced without jam by the stabilization effect. The jamming transition is analyzed with the use of the
linear stability and nonlinear perturbation methods. The traffic jam is described by the kink solution of the
modified Korteweg—de Vries equation. The theoretical coexisting curve is in good agreement with the simu-
lation result.[S1063-651X%99)01512-3

PACS numbs(s): 05.70.Fh, 05.70.Jk, 89.46k

[. INTRODUCTION teraction affects effectively the traffic flow. If one can stabi-
lize the traffic flow and enhance the traffic current, the traffic
Recently, traffic problems have attracted considerable atsystem taking into account the next-nearest-neighbor interac-
tention[1—3], due to the fact that traffic behavior is impor- tion will be advantageous to us.
tant in our lives. When car density increases, traffic jams In this paper, we present the extended version of the car-
appear. Traffic jams have been studied by several traffifollowing models to take into account the next-nearest-
models: car-following model§4—9], cellular automaton neighbor interaction. We investigate the effect of the next-
models[10—15, gas kinetic model§16—19, and hydrody- nearest-neighbor interaction on the traffic current and the
namic mode|s[20_22‘ The jamming transitions between jamming transition by the use of the numerical and analytical
freely moving traffic and jammed traffic are very similar to methods. We would like to address whether or not the next-
the conventional phase transitions and critical phenomendearest-neighbor interaction enhances the traffic current and
the free|y moving traffic and jammed traffic Correspond tostabilizes the traffic flow. We calculate the fundamental dia-
the gas and liquid phases, respectii@d$,24). Furthermore, gram (the current-density relationand the phase diagram
it has been shown that the metastability occurs near the trafthe coexisting curve, the spinodal line, and the critical point
sition point and induces the hysteresis phenomdasr2g.  humerically. We apply the linear stability method and the
In the car-following models, the car velocity at tinhés nonlinear analysis to the extended car-following model. We
determined, through the optimal velocity function, by thefind the kink density wave solution for the traffic jam by
headway(the difference between the car position and thederiving the modified KdV equation from the extended
position of the next car ahepat timet — 7 with delay timer. model. We compare the analytical result with the simulation
The car interacts only with the next car ahead: the car affecteesult.
the other car through the so-called nearest-neighbor interac-
tion. Since the traffic flow is unidirectional the car is affected Il. MODEL
by the next car ahead and does not interact with the car ) ]
behind. In the cellular automaton models, the car position We present the extended version of the car-following
and velocity are also determined by the headway. Similarlymodels. We extend the car-following model to take into ac-
the car interacts with the other car through the nearestcount the next-nearest-neighbor interaction. Neyjland
neighbor interaction. Wh|tham [5] have analyzed t_he car-fol_lowmg _model de-
For public demand, it will be necessary to enhance thécribed by the following equation of motion of car
traffic current and prevent the traffic jam. In the intelligent
transportation systeriTS), several traffic control systems dx;(t+7) _
) . : . ——=V(Ax;(1)), 1)
are considered by accepting the information of the other cars. dt
We are interested in the enhancement and stabilization of
traffic flow with the help of more information about the other where x;(t) is the position of carj at time t, Ax;(t)
car positions. In particular, the information of the car posi-=X;. 1(t) —X;(t) is the headway of carat timet, and 7 is
tion before the next car ahead may have an important effed¢he delay time.
on the traffic flow. By the help of the information of the car ~ The idea is that a driver adjusts the car velocity(t)/dt
position before the next car ahead, it may be possible taccording to the observed headway;(t). The delay timer
prevent the traffic jam and enhance the traffic current. Thallows for the time lag that it takes the car velocity to reach
car-following models taking into account the next but onethe optimal velocityv(Ax;(t)) when the traffic flow is vary-
car ahead have been unknown until now. There is an opeimg. By Taylor-expanding Eq(1), one obtains the differen-
guestion as to whether or not the next-nearest-neighbor irtial equation model6]
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dzxj(t) dx;(t) whereh, is the safety distance.
gz & VX)) —— 2 WhenAx;— ¢, the optimal velocity reaches the maximal
velocity V() = v,/2{1+tanhf.)}. Furthermore, wheihn,
wherea is the sensitivity of a drivef6] and is given by the >0, V() =vm,,: the maximal value of the optimal velocity
inverse of the delay time. Furthermore, by transforming thdS Vmax for Ax;>h:>0. Equation(6) has a turning point
time derivative to the difference in El), one can obtain (inflection  poiny —at  Axj=h.: V’(h;)=d*V(Ax;)/

the difference equation modgd]: dijZ|AXj:hC:O. It is important that the optimal velocity
function has the turning point. Otherwise, one cannot have
Xj(t+27)=xX;(t+ 7)+ 7V(AX;(1)). (3 the kink-antikink density wave solution representing the traf-

The difference equation model is more suitable for compu]cIC jam.
tation since the time and space variables are discrete. These
models exhibit similar traffic behavior: when the car density
increases, the jamming transition occurs. In these models, the We apply the linear stability method to the extended
motion of a car is determined by the position of the next caimodel described by Ed4). We consider the stability of the
ahead. These models include only the nearest-neighbor inteliniform traffic flow. The uniform traffic flow is defined by
action. such a state that all cars move with constant headwaygd
We extend the difference equation model described byptimal velocityV(h). The solution of the uniformly steady
Eq. (3) to take into account the next-nearest-neighbor interstate in Eq(4) is given by
action. We assume that a driver can obtain the information of
the car position before the next car ahead: the driver of car Xjo(t)=hj+V(h)t with h=L/N, (7)
can know the positions of cajs-1 andj + 2. If the headway . . . .
Ax; 1 of the next cajj +1 ahead is larger thalx; of carj, whereN is th_e n_umb_er of carg, is the system size, ardis
a driver of carj may wish to proceed with larger velocity the car spacingidentical headwaly _ ,
than the optimal velocity/(AX;). When the headwasx, , ; Let_ yj(t) be;- small deviations from th(_a uniform sglunc_m
of the next cafj + 1 ahead is less thahx; of carj, a driver Xjo(t): X () =X o(t) +yj(t). Then the linear equation is
of carj may wish to proceed with less velocity than the OPtained from Eq(S),
optimal velocity V(Ax;) determined byAx;. We assume _ Ay o\ . Ay
that when the headwéy of the next qar 1 ahead is larger Ayj(t+2n) =4yt n) =V IIAY; (D)~ Ay (0]
than that of the caj, carj moves with the larger desired —1tyV' (N[Ay; (1) —2Ay; 4 (1) +Ay;(1)]=0,
velocity V(Ax;(t))+ y{V(AX;;1(t))— V(AX(t))}. Here pa- )
rameter y represents the strength of the next-nearest-
neighbor interaction and ©y<1. Then the extended car- whereV’(h) is the derivative of optimal velocity/(Ax) at
foIIo_wing model is described by the following equation of Ax=h andAy;(t) =y, 1(t) - y;(t).
motion of carj: By expandingAy;(t) =Y exp(kj+zt), one obtains

IIl. LINEAR STABILITY ANALYSIS

Xj(t+27)=x;(t+7)+ 7 V(Ax;(1)) e’ —e*"— 7V'(h)(e*—1)— ryV'(h)(e?k—2e*+ 1) =0.

PV (D) VA, @ ©
By solving Eq.(9) with z one finds that the leading term of
where Ax; . 1(t) =X 2(t) —Xj1(t) is the headway of the 7 is order ofik. Whenik—c, z—0. Let us derive the long
next carj+1 ahead at time. x;, denotes the position of wave expansion of, which is determined order by order
the next carj +2 but one car ahead. When=0, Eq.(4) of  aroundik~0. By expandingz=z(ik) +z,(ik)2+---, the
the extended car-following model reduces to E2). of the  first- and second-order terms i are obtained,
car-following model. It is convenient to rewrite E¢4) in
terms of the headway. One obtains the following equation: (1+27)
2

z,=V'(h) and z,=—37V'(h)%+ V' (h).

~ AV} 2(0) = 2VAX; (D)) +VAX(1))]=0. z, is a negative value, the uniformly steady-state flow
(5) becomes unstable for long-wavelength modes. Wheis a

) ~positive value, the uniform flow is stable. The neutral stabil-
The last term on the left side of E¢p) represents the addi- ity condition is given as

tional term of the next-nearest-neighbor interaction.

Generally, it is necessary that the optimal velocity func- (1+2y)
tion has the following properties: It is a monotonically in- = 3V'(h) 1D
creasing function and it has an upper bounximal veloc-
ity). We choose the same optimal velocity function as thafor small disturbances of long wavelengths, the uniformly
used by Bandet al. [6], traffic flow is unstable if

(1+27)
3V'(h) "’

max

V(Ax))= VT{tanr(ij—hc)+tanI‘(hc)}, ©6) >

(12



PRE 60 STABILIZATION AND ENHANCEMENT OF TRAFFIC . .. 6397
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5.0 FIG. 2. Plot of the critical point againsg for v,,,=2.0. The
(@) solid curve indicates the theoretical result obtained by the linear
stability analysis. The circular points indicate the simulation result.
50 v,..=30
h.=4.0 15:8'8(5) the next-nearest-neighbor interaction. The traffic current in-
/;/=o.'10 creases withy,4, but the traffic flow is unstable more than
y=0.15 that of smallv,5. Therefore, the simultaneous increase of
;:852 the next-nearest-neighbor interaction with,, is able to en-
2 ' hance the traffic current without traffic jams.
IV. SIMULATION
We carry out a computer simulation for the extended traf-
fic flow model described by Eq5). The boundary is peri-
Ny odic. First, we study the space-time evolution of the headway
5.0 for various values of next-nearest-neighbor interactjoAs

a result, three types of traffic flow are distinguished similarly
to the original optimal velocity model: (i) a freely moving
phase(ii) a coexisting phase in which jams appear, @nd

a uniformly congested phase. We focus our attention on the
coexisting phase. Figure 3 shows the steady-state patterns for
the coexisting phase obtained after10 000. For these pat-
terns, the initial conditions are chosen as followsax;(0)

The derivativeV’(h) of the optimal velocity has the maxi- =Axq=4.0 for j#50,51, Ax;(0)=Ax,=4.0-0.1 for |

mal value v,,/2 at turning pointh=h.. Therefore, ifr =50, and Ax;(0)=Axy=4.0+0.1 for j=51, where the

<7 7¢=(1+279)/3vmad, the uniform flow is always stable number of cars ifN=100 andh.=4.0. The patternsa), (b),
irrespective of car densittheadway. We find that there is a and(c) exhibit the time evolutions of the headway profile for
critical point ath(=Ax)=h, and r=7.. When y=0, the  y=0.0,0.1,0.2, wherev,,,,=2.0 and a(=1/7)=2.0. The
critical point and the neutral stability line agree with those oftraffic jams propagate backward as the kink-antikink density
the original car-following modef7,23). Figure 1 shows the wave. The patterifa) with y=0.0 corresponds to that with-
neutral stability lines in the spacéik,a) for (a) v,,=2.0 out the next-nearest-neighbor interaction. With increaging
and (b) vma=3.0, whereAx is the headway and is the the strength of the density waves is weakened by the next-
sensitivity. The solid curves indicate the neutral stabilitynearest-neighbor interaction. Figure 4 shows the headway
lines for various values of. The neutral stability lines de- profiles in the steady stat@btained att=20000) for vari-
crease with increasing. With the increase of the strength of ous values ofy and v,,,=2.0. When the value of is larger

the next-nearest-neighbor interaction, the traffic flow is morghan the critical value, the density waves do not appear and
stable than that without the next-nearest-neighbor interadhe traffic flow is uniform over spadeee Fig. 4c)]. In any
tion. The apex of each curve indicates the critical point. Thecase, considering long-time evolution only two distinct head-
traffic flow above each curve is stable and the traffic jamways survive for the coexisting phase: one is the headway
does not appear. Below each curve, the traffic flow is unwithin the jam and the other is the headway out of the jam
stable and the density waves appear. Figure 2 shows thleorresponding to that in the freely moving phase. These
critical line for v,,=2.0. The critical line is obtained by headways depend on the delay timgthe inverse of the
plotting the critical point againsy. The solid line indicates sensitivitya) and the strengtly of the next-nearest-neighbor
the critical line. The circular points indicate the simulation interaction. They are the headways of the jamming transition
result obtained in Sec. IV. The critical points decrease withpoints. By plotting the headways within and out of the den-
increasing y. This means that by introducing the next- sity wave, one obtains the coexisting curve in the phase
nearest-neighbor interaction into the original car-followingspace (x,a). Figure 5 shows the phase diagrams in the
model, the traffic flow becomes more stable than that withouspace Ax,a) for (8) vma=2.0 and(b) vy=3.0. In each

FIG. 1. Neutral stability lines in the headwayx-sensitivity a
space where the safety distantteis 4.0. The solid lines indicate
the neutral stability lines for various values ¢f where y is the
strength of the next-nearest-neighbor interaction(a)
Vmax=2.0.  (0) vma=3.0.
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FIG. 3. Steady-state patterns for the coexisting phase obtained 9'5 ! 7I5 o
aftert=10000. The pattern&@), (b), and(c) show the time evolu- © 0 25 50
tions of the headway profile foy=0.0,0.1,0.2, where/,,,=2.0
anda=2.0 FIG. 4. Headway profilega), (b), and(c) in the steady state for

y=0.0,0.2,0.3, where,,,=2.0 anda=2.0. For(a) y=0.0 and(b)
y=0.2, the kink-antikink density wave appears. Fory=0.3, the

phase diagram, the solid line for=0.0 represents the coex- kink density wave disappears.

isting curve in the original optimal velocity model without
the next-nearest-neighbor interaction. The dotted line indi harea=2.0 andh.=4.0. There is a gap in the traffic cur-
cates the neutral stability line obtained by Sec. lll. The Nn€Usent. The traffic cucrrent increases with density in the low-
tral stability line co_rresponds tp the spinodal line in the firSt'density region, reaches the maximal value, decreases discon-
order phase transition. The simulation data for0.1 and  inyously at the gap, and then decreases continuously with
0.2 are plotted by the circular points. The solid lines for  j,creasing density. The gap corresponds to the jamming tran-
=0.1 and 0.2 represent the theoretical curves obtained fromgition point. With increasing the maximal velocity, the traffic
the solution of the modified KdV equation. The theoretical o, rrent increases. With increasing the strengtf the next-
result agrees with the simulation result. The coexisting CUNV@earest-neighbor interaction, the jamming transition occurs
decreases with increasing This means that the jamming 4 5 higher density than that of=0.0. For the case of
transition occurs at a smaller headw@ayhigher densitythan vrm=1.8 and y=0.2, no jamming transition occurs and
that without the next-nearest-neighbor interaction. Above thenere is no gap in the current-density relation. The traffic jam
apex of each curve, the jamming transition does not oCCUfg yrevented by the next-nearest-neighbor interaction. Even if
Each apex corresponds to the critical point. The simulationne maximal velocity increases, it is possible to prevent the
result of the critical point is plotted by the circular points in jamming transition. We find that it is necessary to increase
Fig. 2. Thus, by introducing the next-nearest-neighbor interyye maximal velocity and the strength of the next-nearest-
action into the original car-following model, the jamming peighhor interaction simultaneously in order to enhance the
transition does not occur until the car density reaches high&faffic current without an occurring traffic jam. Thus, the

density than that without the next-nearest-neighbor interacyey; nearest-neighbor interaction has an important effect on
tion. Therefore, the next-nearest-neighbor interaction Stab‘t‘he traffic flow. Taking into account the next-nearest-

lizes the traffic flow. The stabilization effect is strengthenedm.ighbOr interaction will be useful to improve the transpor-

with the increase of the next-nearest-neighbor interaction. ;ation system.
We calculate the traffic current. We study the effect of the

next-nearest-neighbor interaction on the traffic current. Fig-

ure 6 shows the plots of the traffic currepagainst density

for the cases ofy5=3.2 and y=0.0, v;,;,=3.2 and y We analyze the extended car-following model by the use

=0.2, Vn=1.8 and y=0.0, and v,,,,=1.8 and y=0.2, of the nonlinear analysis method. We derive the modified

V. NONLINEAR ANALYSIS
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FIG. 5. Phase diagrams in the headway-sensitivity a space

for (a) vmax=2.0 and(b) v,,,=3.0. In each phase diagram, the solid

lines represent the coexisting curves for 0.0,0.1,0.2. The dotted
line indicates the neutral stability curyspinodal line for y=0.0.
The circular points indicate the simulation result.

FIG. 6. Plots of the traffic curreny against density for the
cases oW nma—=3.2 andy=0.0, v,=3.2 andy=0.2, v,,,=1.8 and
v=0.0, andv,,=1.8 andy=0.2, wherea=2.0 andh,=4.0. The
gap in each curve corresponds to the jamming transition point.

KdV equation describing the kink density wave. We find the
solution of the modified KdV equation for the kink jam. We
calculate the coexisting curve for the jamming transition
from the solution. We compare the analytical result with the
simulation result.

We now consider long-wavelength modes in the traffic
flow on coarse-grained scales. The simplest way to describe
the long-wavelength modes is the long-wave expansion. We
consider the slowly varying behavior at long wavelengths
near the critical pointlf;,a;). We extract slow scales for
space variablg and time variablet [7,8,23,24,27. For 0
<e<1, we therefore define slow variabl®sand T,

X=g(j+bt) and T=gd, (13

whereb is a constant determined later. We set the headway
as

Axj(t)=hc+eR(X,T). (14)
By expanding Eq(5) to the fifth order ofe with the use of

Egs.(13) and(14), one obtains the following nonlinear par-
tial differential equation:

3b%r (1+2
£2(b— V') xR+ 3 MRS AVIP ™
2 2
. 7b37’2 \VA , 5 " .
+e &TR"‘ 6 - F_ ’)/V &XR— ?&XR
o 3p R 5b*r V' TyV’ -
+e Tax(?'r + 8 24 12 8X
V!H ,yvl ) 3
—(E+T>aXR =0, (15)
where V' =dV(AX)/dAX| sx=n, and v

=d*V(AX)/dAX%s-p. Here we used the expansions
shown in the Appendix.

By takingh=V’, the second-order term efis eliminated
from Eq. (15). We consider the neighborhood of the critical
point 7 :

;
—=1+¢g?, (16)
Tc

where 7.=(1+2y)/3V'=2(1+2y)/3vma- Equation (16)
is rewritten as

(1+13y—14y°) &
84( 91R— ———=——V AIR— FaXR3
(1+27) (14 6y+39y°—46y°)
5[ 27 " T 77\ 492
+¢e 5 V' oxR+ 52
1+2
X V' IyR+ %v'"a&m) =0. (17)

In order to derive the regularized equation, we make the
following transformation for Eq(17):
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1+13y—14y%)V'’
T,:( y—14y7) -
27

and

2(1+13y— 14y V' |2
S - V) e, (18

where
1+13y—14y?*<0 for O<y<1. (19
One obtains the regularized equation
o R =3R' — 9yR'3— £(& C1 2R’
+3C,09R’ —3C305R"3), (20)
where

(1+27y)

=T 13,- 147

_(1+6y+39°-46y°)
2 (1+13y-14)

If we ignore theO(e) terms in Eq.(20), this is just the
modified KdV equation with a kink solution as the desired

solution,

RH(X,T")=\ctanh/c/2(X—cT"). (21)

The selected value of propagation velocityfor the kink

solution is determined from th@(e) term.
Next, assuming thaR’ (X, T')=R{(X,T') +eRy(X,T'),

we take into account th®(e) correction. In order to deter-
mine the selected value of the propagation velocifgr the
kink solution (21), it is necessary to satisfy the solvability

condition

(R MIRg)= | dX ROX T MIRYX,T)] =0,
22
where

M[Ry]= %4 C195R+ 3C,axRy— $C3d2R,>.

By performing the integration, one obtains the selected ve;

locity

135C,

€= 2c,+3Cy

(23

One finds the solution of the modified KdV equati@ty),

2(1+13y—14y*)V'c\?
R(XvT): - gvm
1+13y—14y%)V'c
xtanh\/clz(x—( y27 ) T).

(24
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If we adopt the explicit form(6) of the optimal velocity
(V' =vmal2 V"= — v, the amplitudeA of the kink solu-
tion is given by

1+13y—14y?)c | a 2
Azl 79 ) 5—1} with
3v
— -1 Z¥max
a.=1, 2(1+27) (25

The kink solution represents the coexisting phase, which
consists of the freely moving phase with low density and the
jammed(or congestedphase with high density. The head-
ways (the inverse of the densityf the freely moving phase
and the jammed phase are given, respectively Ay h,

+A and Ax=h.—A. Thus, we obtain the coexisting curve
in the (Ax,a) plane whereAx is the headway and is the
sensitivity (the inverse of delay time). Figure 5 shows the
coexisting curves together with the simulation result f@r
Vmax=2.0 and(b) v,5,=3.0. The solid lines indicate the co-
existing curves fory=0.0, 0.1, and 0.2. The case of
=0.0 represents the coexisting curve without the next-
nearest-neighbor interaction. The circular points indicate the
simulation result. The theoretical result is in good agreement
with the simulation result. It is shown that the solution of the
modified KdV equation gives the coexisting curve in the
jamming transition. With increasing, the coexisting curve
and the critical point decrease. The next-nearest-neighbor in-
teraction stabilizes the traffic flow. The occurrence of a traf-
fic jam is reduced to the low value of the sensitivity. There-
fore, the next-nearest-neighbor interaction has an important
effect on the stability of the traffic flow.

VI. SUMMARY

We have presented the extended car-following model to
take into account the next-nearest-neighbor interaction. We
have investigated the effect of the next-nearest-neighbor in-
teraction on the traffic flow by the use of numerical and
analytical methods. We have shown that the next-nearest-
neighbor interaction stabilizes the traffic flow. We have
found that the jamming transition occurs at a higher density
than that without the next-nearest-neighbor interaction. We
have analyzed the extended model by the use of linear sta-
bility and nonlinear methods. We have shown that the traffic
jam in the traffic flow with the next-nearest-neighbor inter-
action is described by the modified KdV equation. The ana-
lytical result of the coexisting curve is in good agreement
with that obtained by the simulation. We have shown that it
is possible to enhance the traffic current without jam by in-
creasing the maximal velocity and the strength of the next-
nearest-neighbor interaction.

To our knowledge, this paper is the first work showing
that the next-nearest-neighbor interaction has an important
effect on the traffic behavior. It will be expected that the help
of the information of the car position before the next car
ahead results in the enhancement of traffic current and the
prevention of the traffic jam.
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APPENDIX &3 o 5
_ 2 2 3 4
AXj11(t)=he+ eR+e29yR+ — 93R+ — IxR+ 5 IR,

In this appendix, we present the expansions of each term 2 6 24
in Eq. (5) to fifth order of¢, (A3)
(b7)? £%4 8
ij(t+T):hc+8R+82bT&XR+83 2 a)Z(R AXj+2(t)=hC+8R+822(9XR+ Ta)Z(R'i‘ ?07)3(R
(b7)® (b7)* €516
4 3 4 5 4
+e 6 xR+e"19tR+ e 52 dxR + 52 &iR. (Ad)
5K -2
TeTbroTxR, (A1) We expand the optimal velocity function at the turning point:
2 3 (2b7-)2 2 n
Axj(t+27)=h.+eR+e“2bTixR+ e IxR , V" (hg) 3
2 V(AX))=V(he)+V'(ho)(Ax;—he)+ 6 (AX;—h¢)”.
2br)® 2br)* (A5)
84( 6 ) 3§<R+842T(9TR+85( 24) z?;l(
By inserting Eqgs.(A1)—(A5) into Eq. (5), one obtains Eq.
+&%4b729794R, (A2)  (15).
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