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a b s t r a c t

This paper is concerned with the problem of stabilization and L2-gain analysis for a class
of cascade switched nonlinear systems by using the average dwell-time method. First,
when all subsystems are stabilizable, we design a state feedback controller and an average
dwell-time scheme,which guarantee that the corresponding closed-loop system is globally
asymptotically stable and has a weighted L2-gain. Then, we extend the result to the case
where not all subsystems are stabilizable, under the condition that the activation time
ratio between stabilizable subsystems and unstabilizable ones is not less than a specified
constant, we also derive sufficient conditions for the stabilization and weighted L2-gain
property. Finally, an example is given to illustrate the effectiveness of our results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, switched systems have gained considerable interest in both theoretical research and practical
application [1–6]. This is motivated by the need for systematic and formal methods to investigate such systems. Stability
analysis is one of the fundamental problems in the study of switched systems. In this aspect, the Lyapunov approach and
its variants still play an important role. Stability under arbitrary switchings is guaranteed by the existence of a Common
Lyapunov function [7,8]. However, Common Lyapunov functions are often too conservative in order to assess stability for
switched systems. This problem may be avoided by using a different strategy, such as multiple Lyapunov functions [9–11]
or average dwell-time constraints [12,13].

Nonlinear cascade systems are composed of two parts, where control input only enters one part, state change of the other
one can be ‘‘controlled’’ by the interconnections between these two parts. With the development of geometric theory for
nonlinear systems, it is known thatmany nonlinear systemswith reduced relative degree can be transformed into nonlinear
cascade systems under certain conditions. Therefore, the study of nonlinear cascade systems has been a hot topic in the
control area [14,15]. For such systems, considerable attention has been paid to robust control problem [16], invariance
control problem [17], etc. Especially, the L2-gain disturbance attenuation problem has been concerned in [18–21], and
it should be mentioned that the problem is very difficult because these results usually require solving Hamilton–Jacobi
inequalities.

On the other hand, for switched systems, because of the complicated behavior caused by the interaction between the
continuous dynamics and discrete switching, the stabilization and L2-gain analysis problem of switched cascade systems
is more difficult to study. Only a few results have appeared in the literature and most of the results are about the systems
that are linear or nonlinear containing linear parts [22–24]. The importance of the study of stabilization and L2-gain analysis
problem for switched cascade systems arises from the extensive applications in actual control systems; see e.g., [25,26].
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However, to the best of the authors’ knowledge, few results on the topic for cascade switched nonlinear systems with
stabilizable and unstabilizable subsystems have been reported by now.

In this paper, we discuss the stabilization and L2-gain analysis problem for a class of cascade switched nonlinear systems
by using the average dwell-time method. Each subsystem under consideration is composed of two cascade-connected
parts: a nonlinear one which contain disturbance input and a linearizable and controllable one. Sufficient conditions for
the stabilization and weighted L2-gain of the switched system are derived. State feedback controllers for subsystems and
certain average dwell-time based switching laws are designed to achieve global asymptotic stability of the resulting closed-
loop system with the weighted L2-gain property.

Unlike the previous works on the stabilization and L2-gain analysis problem for switched systems, this paper owns
three features. First, we concern the cascade switched nonlinear systems where the disturbance input appears in all system
equations. Second, after considering the casewhere all subsystems are stabilizable, unstabilizable subsystems are permitted
to exist to reduce conservativeness. Third, with the help of the generalized inverse ofmatrices, the dimensions of the control
input and the state variables in the controllable part of the switched system are allowed to be different, which covers more
general cases.

2. Problem formulation and preliminaries

In this paper, we consider a class of cascade switched nonlinear systems of the form:ẋ1(t) = f1,σ (t)(x1(t), x2(t)) + cσ(t)(x1(t), x2(t))ω(t),
ẋ2(t) = f2,σ (t)(x1(t), x2(t)) + pσ(t)(x1(t), x2(t))uσ(t)(t) + bσ(t)(x1(t), x2(t))ω(t),
y(t) = hσ(t)(x1(t), x2(t)) + dσ(t)(x1(t), x2(t))ω(t),

(1)

where x1(t) ∈ Rn−d, x2(t) ∈ Rd are the states, ω(t) ∈ L2[0, ∞) is the external disturbance input, and y(t) ∈ Rp is the
controlled output. σ(t) : [0, ∞) → M = {1, . . . ,N} is the switching signal, which is a right continuous piecewise constant
function of time and will be determined later. ui(t) ∈ Rm is the control input, and f1,i(·, ·), f2,i(·, ·), ci(·, ·), pi(·, ·), bi(·, ·),
hi(·, ·), di(·, ·) are smooth real functions with f1,i(0, 0) = 0, f2,i(0, 0) = 0, hi(0, 0) = 0, for ∀(xT1(t), x

T
2(t))

T
∈ Rn, i = 1,

. . . ,N .
Corresponding to the switching signalσ(t), we have the switching sequence

∑
= {(xT1(t0), x

T
2(t0))

T
; (i0, t0), (i1, t1), . . . ,

(ik, tk), . . . , | ik ∈ M, k = 0, 1, . . .}, which means that the ikth subsystems is active when t ∈ [tk, tk+1). In addition, we
assume that the state of the switched system (1) does not jump at the switching instants.

Remark 1. The switched system (1) is more general than many models of the existing results, see e.g., [17–20,22–26]. The
advantage of the system under consideration is that all parts of each subsystem are nonlinear. Furthermore, the disturbance
input ω(t) is allowed to enter all system equations, which is more realistic.

From a practical consideration, the disturbance gains di(·, ·) in the output of (1) are usually bounded. Hence, we shall
make the following assumption.

Assumption 1. There exists a positive constant γd such that

dTi (x1(t), x2(t))di(x1(t), x2(t)) ≤ γ 2
d I, ∀(xT1(t), x

T
2(t))

T
∈ Rn, i ∈ M. (2)

The problem to be addressed in this paper is stated as follows: Given a positive scalar γ > 0, for each i, design a state
feedback controller

ui(t) = ui(x1(t), x2(t))

with ui(0, 0) = 0 and a switching law σ = σ(t) such that the resulting closed-loop system of (1) satisfies the following
conditions:

(i) Internal stability. The system
ẋ1(t) = f1,σ (t)(x1(t), x2(t)),
ẋ2(t) = f2,σ (t)(x1(t), x2(t)) + pσ(t)(x1(t), x2(t))uσ(t)(x1(t), x2(t)),

is asymptotically stable.
(ii) Weighted L2-gain. That is, the following inequality holds for some real-valued function β(x1(t), x2(t)) with β(0, 0) = 0∫

∞

0
e−λτyT (τ )y(τ )dτ ≤ γ 2

∫
∞

0
ωT (τ )ω(τ)dτ + β(x1(0), x2(0)). (3)

We focus on switching laws with some average dwell-time given by the following definition.
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Definition 1 ([12]). For any switching signal σ(t) and any t > τ > 0, let Nσ (τ , t) denote the number of switchings of σ(t)
on the interval (τ , t). If

Nσ (τ , t) ≤ N0 +
t − τ

τa
(4)

holds for N0 ⩾ 0, τa > 0. The constant τa is called average dwell-time and N0 is the chatter bound. As commonly used in the
literature, we choose N0 = 0.

Definition 2. For the switched system (1), suppose that Vi(x) is the corresponding Lyapunov function for the ith subsystem,
then V (t) is called a piecewise Lyapunov function candidate if it can bewritten as V (t) = Vσ(t)(x), where Vσ(t)(x) is switched
among Vi(x) in accordance with the piecewise constant switching signal σ(t).

Remark 2. The standard L2-gain, which has been commonly adopted for non-switched systems, cannot be achieved in
general for switched systems with switchings satisfying a certain average dwell-time and thus weight L2-gain with the
weighted term e−λτ is used instead in the literature [13,22].

3. Main results

In this section, we solve the stabilization and L2-gain analysis problem for the switched systems (1). We first address
the problem when all subsystems are stabilizable. Then, we generalize the result to the case where not all subsystems are
stabilizable.

First of all, we write the functions f1,i(x1, x2), ci(x1, x2), hi(x1, x2) in the form:

f1,i(x1, x2) = f1,i(x1, 0) + f̃1,i(x1, x2)x2
ci(x1, x2) = ci(x1, 0) + c̃i(x1, x2)x2 i = 1, . . . ,N.

hi(x1, x2) = hi(x1, 0) + h̃i(x1, x2)x2. (5)

For the case where all subsystems are stabilizable, the following result shows that the stabilization and L2-gain analysis
problem of the switched system (1) are solvable when the subsystems are switched by an average dwell-time scheme.

Theorem 1. Given any constant γ > γd, suppose that the switched system (1) satisfies the following conditions:

(1) There exist radially unbounded positive definite differentiable functions Vi(x1), i = 1, . . . ,N, constants γ1 > 0, λ0 > 0, and
µ ≥ 1, such that

∂Vi

∂x1
f1,i(x1, 0) +

1
4γ 2

1

∂Vi

∂x1
ci(x1, 0)cTi (x1, 0)

∂V T
i

∂x1
+ hT

i (x1, 0)hi(x1, 0) + λ0Vi ≤ 0, (6)

Vi(x1) ≤ µVj(x1), i, j = 1, . . . ,N, (7)

and

α∗

1(‖x1‖) ≤ Vi(x1) ≤ α∗

2(‖x1‖), (8)

where α∗

1 and α∗

2 are two class K∞ functions.
(2) The matrices pi(x1, x2) have the M–P generalized inverses p+

i (x1, x2), such that

pi(x1, x2)p+

i (x1, x2)Fi(x1, x2) = Fi(x1, x2) (9)

holds for ∀(xT1, x
T
2)

T
∈ Rn, i = 1, . . . ,N. Where Fi(x1, x2) = f2,i(x1, x2) + f̃ T1,i(x1, x2)

∂V T
i

∂x1
+ 2h̃T

i (x1, x2)hi(x1, 0) +
1

4γ 2
4
(bi

(x1, x2))2x2+ 1
4γ 2

2
c̃Ti (x1, x2)

∂V T
i

∂x1
∂Vi
∂x1

c̃i(x1, x2)x2+h̃T
i (x1, x2)h̃i(x1, x2)x2+

λ0
2 x2, andγ2, γ4 are some properly chosen constants.

Then, the switched system (1) is globally asymptotically stabilizable when ω ≡ 0 and has a weighted L2-gain level γ with the
state feedback controller

ui(x1, x2) = −p+

i (x1, x2)Fi(x1, x2) (10)

and under an arbitrary switching law which satisfies the average dwell-time

τa ≥ τ ∗

a =
logµ

λ
, (11)

where λ can be chosen in the open set (0, λ0).

Proof. See the Appendix. �
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Remark 3. (6) can be considered as a type of Hamilton–Jacobi inequalities which are often adopted in the literature on
switched systems, see e.g., [13,22]. For switched systems, (7)–(8) are assumptions that are commonly made when the
average dwell-time method is applied. (9) is used to handle a general case where pi(x1, x2) are allowed to be rectangular
matrices. When pi(x1, x2) are square matrices, which is often addressed in the literature [16,18,26], (9) is automatically
satisfied.

Now, we consider the case that not all subsystems are stabilizable, in addition to the average dwell-time scheme, we
employ a switching condition so as for the switched system (1) to achieve a finiteweighted L2-gain,where the total activation
time ratio between stabilizable and unstabilizable subsystems is required to be smaller than a specified constant.

Let Mp denote a proper nonempty subset of M, M̃p denote a complement of Mp with respect to M . If i ∈ Mp, then the ith
subsystem is stabilizable, otherwise, if i ∈ M̃p, then the ith subsystem is unstabilizable.

For any switching signal and any t > τ ≥ 0, we let T+(τ , t) (resp., T−(τ , t)) denote the total activation time of
unstabilizable subsystems (resp., stabilizable subsystems) during the interval [τ , t). Denote λ+

= maxi∈M̃p
{−λi|λi < 0},

λ−
= mini∈Mp{λi|λi > 0}, and choose an arbitrary λ∗

∈ (0, λ−). Motivated by the idea in [13], we employ the following
switching strategy:
(S) Determine the switching signal σ(t) such that the following inequality holds for any given initial time t0

inf
t⩾t0

T−(t0, t)
T+(t0, t)

≥
λ+

+ λ∗

λ− − λ∗
.

From the switching strategy (S) and the discussion of the previous section, we obtain the following result immediately.

Theorem 2. Given any constant γ > γd, and positive constants λi for i ∈ Mp, negative constants λi for i ∈ M̃p. Suppose that the
switched system (1) satisfies the following conditions:
(1) There exist radially unbounded positive definite differentiable functions Vi(x1), i = 1, . . . ,N, constants γ1 > 0, and µ ≥ 1,

such that

∂Vi

∂x1
f1,i(x1, 0) +

1
4γ 2

1

∂Vi

∂x1
ci(x1, 0)cTi (x1, 0)

∂V T
i

∂x1
+ hT

i (x1, 0)hi(x1, 0) + λiVi ≤ 0, (12)

Vi(x1) ≤ µVj(x1), i, j = 1, . . . ,N, (13)

and

α∗

1(‖x1‖) ≤ Vi(x1) ≤ α∗

2(‖x1‖), (14)

where α∗

1 and α∗

2 are two class K∞ functions.
(2) The matrices pi(x1, x2) have the M–P generalized inverses p+

i (x1, x2), such that

pi(x1, x2)p+

i (x1, x2)Fi(x1, x2) = Fi(x1, x2) (15)

holds for ∀(xT1, x
T
2)

T
∈ Rn, i = 1, . . . ,N. Where Fi(x1, x2) = f2,i(x1, x2) + f̃ T1,i(x1, x2)

∂V T
i

∂x1
+ 2h̃T

i (x1, x2)hi(x1, 0) +
1

4γ 2
4
(bi

(x1, x2))2x2+ 1
4γ 2

2
c̃Ti (x1, x2)

∂V T
i

∂x1
∂Vi
∂x1

c̃i(x1, x2)x2+h̃T
i (x1, x2)h̃i(x1, x2)x2+

λi
2 x2, and γ2, γ4 are some properly chosen constants.

Then, the switched system (1) is globally asymptotically stabilizable when ω ≡ 0 and has the weighted L2-gain property with
the state feedback controller

ui(x1, x2) = −p+

i (x1, x2)Fi(x1, x2) (16)

and under an arbitrary switching signal σ(t) with average dwell-time (4) and switching condition (S) satisfying

τa ≥ τ ∗

a =
lnµ

λ
, (17)

where λ can be chosen in the open set (0, λ∗).
Proof. See the Appendix. �

Remark 4. From the proof of Theorem 2, when µ = 1, we known that a common Lyapunov function can be found for the
closed-loop system (1). From (38) we have τ ∗

0 = 0, which implies that the global asymptotic stabilization problem of the
switched system (1) is solvable with an arbitrary switching law under the switching condition (S). From (42), we know that
the closed-loop system (1) has the standard L2-gain for the trivial case of µ = 1.

4. Example

In this section, we provide a numerical example to demonstrate the proposed results. In what follows, for the sake of
simplicity, we shall omit the dependence on t for all functions wherever no confusion will be caused.
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Fig. 1. The state responses of the switched system.

Consider the switched system (1) with M = {1, 2}, n = 4, d = 2, x1 = (x11, x12)T , x2 = (x21, x22)T , and

f1,1(x1, x2) =

[
−2x11 + 0.25x221

−3x11 − 4.4x12 + 0.25x222

]
, c1(x1, x2) =

[
0
x22

]
, p1(x1, x2) =

[
10
01

]
,

f2,1(x1, x2) =

[
−x21 + 0.25x11
−x22 + 0.2x12

]
, b1(x1, x2) =

[
x11
x12

]
, d1(x1, x2) =

[
0.7 cos(x11)
0.7 cos(x11)

]
,

h1(x1, x2) =

[
0.5x11
0.5x12

]
, f1,2(x1, x2) =

[
0.1x11 + x212

0.2x12 − 2x11x12

]
, c2(x1, x2) =

[
x21
0

]
,

p2(x1, x2) =

[
10
01

]
, f2,2(x1, x2) =

[
x21(1 + x222) + 0.2x11
x22(1 + x221) + 0.2x12

]
, b2(x1, x2) =

[
x21
x22

]
,

d2(x1, x2) =

[
0.6 sin(x21)
0.6 sin(x21)

]
, h2(x1, x2) =

[√
0.1x11 + x21√
0.1x12 + x22

]
.

It is easy to check that the first subsystem is stabilizable and the second one is unstabilizable. Let γ = 3, γd = 1, on the

base of γ 2
1 +γ 2

2 +γ 2
4 =

γ 2
3 (γ 2

−γ 2
3 −γ 2

d )

γ 2
3 +γ 2

d
, we can choose γ1 =

√
2,γ2 = 1, γ3 =

√
2,γ4 = 1.We alsomakeλ1 = 0.8, λ2 = −0.5,

and then λ−
= 0.8, λ+

= 0.5. Choose V1(x1) = 1.5x211 + 0.8x11x12 + 1.5x212, V2(x1) = 2x211 + x212, from (12) we can get

∂V1

∂x1
f1,1(x1, 0) +

1
4γ 2

1

∂V1

∂x1
c1(x1, 0)cT1 (x1, 0)

∂V T
1

∂x1
+ hT

1(x1, 0)h1(x1, 0) + λ1V1(x1)

= −6.95x211 − 13.48x11x12 − 11.75x212 ≤ 0,

∂V1

∂x1
f1,2(x1, 0) +

1
4γ 2

1

∂V1

∂x1
c2(x1, 0)cT2 (x1, 0)

∂V T
1

∂x1
+ hT

2(x1, 0)h2(x1, 0) + λ2V2(x1) = −0.5x211 ≤ 0.

Let µ = 1.6, λ∗
= 0.5 and λ = 0.496, we obtain τ ∗

a = 0.95 and T−(0, t)/T+(0, t) ⩾ (λ+
+ λ∗)/(λ−

− λ∗) = 3.33. In
addition, the state feedback controller (16) can be constructed as:

u1 = −

[
0.4x21 + 0.75x11x21 + 0.2x12x21 + 0.25x211x21 + 0.25x11x12x22 + 0.25x11
0.4x22 + 0.75x12x24 + 0.2x11x22 + 2.5x212x22 + 0.25x11x12x21 + 0.6x11x12x22 + 1.6x211x22 + 0.2x12

]
,

u2 = −


0.2 + 2

√
0.1


x11 + 2.25x21 + 0.25x321 + 1.25x21x222 + 4x211x21

0.2 + 2
√
0.1


x12 + 2.25x22 + 0.25x322 + 1.25x221x22

 .

By using the switching scheme provided by Theorem 2, the closed-loop system of (1) is globally asymptotically stable
when ω ≡ 0 and has the weighted L2-gain property. The simulation results are depicted in Figs. 1 and 2.
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Fig. 2. The switching signals for the switched system.

5. Conclusions

This paper has focused on the stabilization and L2-gain analysis problem for a class of cascade switched nonlinear
systems by using the average dwell-time method. Sufficient conditions are derived for the switched system to be globally
asymptotically stabilizable with the weighted L2-gain property via switching and associated state feedback controllers. Our
results allow unstabilizable subsystems to exist and the theory of the generalized inverse is used to release the conservative
hypothesis that the dimensions of the control input and the state variables in the controllable part of each subsystem are
identical. The feasibility of the proposed results has been illustrated through a numerical example.
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Appendix

Proof of Theorem 1. For arbitrary t > 0, denote t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk · · · ≤ tNσ (t0,t) as the switching instants of σ(t)
over the interval (t0, t) and Nσ (t0, t) as the number of switchings of σ(t) in the interval (t0, t). Without loss of generality,
we further assume that the initial time t0 = 0.

From Definition 2, we choose the following piecewise Lyapunov function candidate

V ∗(t) = V ∗

σ(t)(x) = Vσ(t)(x1) +
1
2
xT2x2, (18)

where Vi(x1) satisfy (6)–(8).
In view of (5), when σ(t) = i, differentiating V ∗ along the trajectory of the switched system (1) gives rise to

V̇ ∗
=

∂Vi

∂x1


f1,i(x1, x2) + ci(x1, x2)ω


+ xT2


f2,i(x1, x2) + pi(x1, x2)ui + bi(x1, x2)ω


=

∂Vi

∂x1
[f1,i(x1, 0) + f̃1,i(x1, x2)x2 + ci(x1, 0)ω + c̃i(x1, x2)x2ω]

+ xT2[f2,i(x1, x2) + pi(x1, x2)ui + bi(x1, x2)ω].

Base on the formula ab ≤
1

4γ 2 a2 + γ 2b2, γ ≠ 0, we can get

V̇ ∗
≤

∂Vi

∂x1
f1,i(x1, 0) +

1
4γ 2

1


∂Vi

∂x1
ci(x1, 0)

2

+ xT2


f2,i(x1, x2) + pi(x1, x2)ui + f̃ T1,i(x1, x2)

∂V T
i

∂x1
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+ bi(x1, x2)ω +
1

4γ 2
2


∂Vi

∂x1
c̃i(x1, x2)

2

x2


+ γ 2

1 ωTω + γ 2
2 ωTω. (19)

Using Assumption 1, we obtain

yTy − γ 2ωTω = hT
i (x1, x2)hi(x1, x2) + 2hi(x1, x2)di(x1, x2)ω + dTi (x1, x2)di(x1, x2)ω

Tω − γ 2ωTω

≤ hT
i (x1, x2)hi(x1, x2) +

γ 2
d

γ 2
3
hT
i (x1, x2)hi(x1, x2) − (γ 2

− γ 2
3 − γ 2

d )ωTω

=


1 +

γ 2
d

γ 2
3


hT
i (x1, x2)hi(x1, x2) − (γ 2

− γ 2
3 − γ 2

d )ωTω, (20)

where γ3 > 0 is a constant satisfying γ 2
− γ 2

3 − γ 2
d > 0.

Combining the previous two inequalities gives

V̇ ∗
+

γ 2
3

γ 2
3 + γ 3

d
(yTy − γ 2ωTω) ≤

∂Vi

∂x1
f1,i(x1, 0) +

1
4γ 2

1


∂Vi

∂x1
ci(x1, 0)

2

+ hT
i (x1, 0)hi(x1, 0)

+ x2


f2,i(x1, x2) + f̃ T1,i(x1, x2)

∂V T
i

∂x1
+ pi(x1, x2)ui

+ h̃T
i (x1, x2)h̃i(x1, x2)x2 + 2h̃T

i (x1, x2)hi(x1, 0)

+
1

4γ 2
4

(bi(x1, x2))2x2 +
1

4γ 2
2


∂Vi

∂x1
c̃i(x1, x2)

2

x2



+ (γ 2
1 + γ 2

2 + γ 2
4 )ωTω −

γ 2
3


γ 2

− γ 2
3 − γ 2

d


γ 2
3 + γ 2

d
ωTω. (21)

Let γ 2
2 =

γ 2
3


γ 2

−γ 2
3 −γ 2

d


γ 2
3 +γ 2

d
− γ 2

1 − γ 2
4 , and based on the controller (10), it holds that

V̇ ∗
+

γ 2
3

γ 2
3 + γ 2

d
(yTy − γ 2ωTω) ≤

∂Vi

∂x1
f1,i(x1, 0) +

1
4γ 2

1


∂Vi

∂x1
ci(x1, 0)

2

+ hT
i (x1, 0)hi(x1, 0) −

1
2
λ0xT2x2

≤ −λ0Vi (x1) −
1
2
λ0xT2x2

= −λ0V ∗. (22)

When ω = 0, from the above inequality, we obtain

V̇ ∗
≤ −λ0V ∗. (23)

According to (7), it holds that

V ∗

i (t) ≤ µV ∗

j (t), i, j = 1, . . . ,N. (24)

Then, from (23) and (24), we have

V ∗(t) ≤ µNσ (0,t)e−λ0tV ∗(0) = eNσ (0,t) ln u−λ0tV ∗(0). (25)

Here, we assume V ∗(tk) is the value of the Lyapunov function V ∗(t) at the switching instant tk, k = 0, 1, . . . ,Nσ (0, t).V ∗

(t−Nσ (0,t)) is the value of the Lyapunov function V ∗(t) at the former instant of the switching instant tNσ (0,t).
Furthermore, in view of Nσ (0, τ ) ≤ τ/τ ∗

a for ∀τ > 0, (11) implies that

Nσ (0, τ ) lnµ ≤ λτ . (26)

Thus,

V ∗(t) ≤ e−(λ0−λ)tV ∗(0). (27)

From (8) and (18), we know that there exist two class K∞ functions α1 and α2, such that

α1(‖x‖) ≤ V ∗(t) ≤ α2(‖x‖). (28)

In fact, we can choose α1(x) = α∗

1(‖x1‖) +
1
2‖x2‖

2, α1(x) = α∗

2(‖x1‖) +
1
2‖x2‖

2.
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Combining (27)–(28) gives

‖x(t)‖ ≤ α−1
1 (e−(λ0−λ)tα2(‖x(0)‖)), (29)

which implies global asymptotic stability of the closed-loop system (1) when ω(t) ≡ 0.
Integrating both sides of (22) and from (24), we have

V ∗(t) ≤ V ∗(tNσ (0,t))e−λ0(t−tNσ (0,t)) −

∫ t

tNσ (0,t)

e−λ0(t−τ)Γ (τ )dτ

≤ µ


V ∗(tNσ (0,t)−1)e−λ0(tNσ (0,t)−tNσ (0,t)−1) −

∫ tNσ (0,t)

tNσ (0,t)−1

e−λ0(tNσ (0,t)−τ)Γ (τ )dτ


e−λ0(t−tNσ (0,t))

−

∫ t

tNσ (0,t)

e−λ0(t−τ)Γ (τ )dτ ≤ · · ·

≤ µNσ (0,t)e−λ0tV ∗(0) − µNσ (0,t)
∫ t1

0
e−λ0(t−τ)Γ (τ )dτ − µNσ (0,t)−1

∫ t2

t1
e−λ0(t−τ)Γ (τ )dτ

− · · · − µ0
∫ t

tNσ (0,t)

e−λ0(t−τ)Γ (τ )dτ

= e−λ0t+Nσ (0,t) lnµV ∗(0) −

∫ t

0
e−λ0(t−τ)+Nσ (τ ,t) lnµΓ (τ )dτ ,

where Γ (τ ) =
γ 2
3

γ 2
3 +γ 2

d
[yT (τ )y(τ ) − γ 2ωT (τ )ω(τ)].

Multiplying both sides of the above inequality by e−Nσ (0,t) lnµ and considering (26), we can get∫ t

0
e−λ0(t−τ)−λτyT (τ )y(τ )dτ ≤

γ 2
3 + γ 2

d

γ 2
3

e−λ0tV ∗(0) + γ 2
∫ t

0
e−λ0(t−τ)ωT (τ )ω(τ)dτ . (30)

Integrating both sides of the foregoing inequality from t = 0 to ∞ and rearranging the double-integral area, we have∫
∞

0
e−λτyT (τ )y(τ )dτ ≤

γ 2
3 + γ 2

d

γ 2
3

V ∗(0) + γ 2
∫

∞

0
ωT (τ )ω(τ)dτ . (31)

From (3), we know that the closed-loop system (1) has the weighted L2-gain level γ . �

Proof of Theorem 2. Similar to the proof of Theorem 1, we define the following Lyapunov function candidate

V ∗(t) = V ∗

σ(t)(x) = Vσ (x1) +
1
2
xT2x2, (32)

where Vi(x1) satisfy (12)–(14).
Then, when the ith switched subsystem is activate, based on (16), we can get

V̇ ∗

i +
γ 2
3

γ 2
3 + γ 2

d
(yTy − γ 2ωTω) ≤ −λiV ∗

i . (33)

When ω ≡ 0, from the above inequality, we obtain

V̇ ∗

i ≤ −λiV ∗

i . (34)

From (34), we know that for any t ∈ [tk, tk+1)(0 ≤ k ≤ Nσ (0, t)), the piecewise Lyapunov function candidate (32)
satisfies

V ∗(t) = V ∗

σ(t)(t) ≤


e−λ−(t−tk)V ∗

σ(tk)(tk), i ∈ Mp,

eλ+(t−tk)V ∗

σ(tk)(tk), i ∈ M̃p.
(35)

From (13), V ∗

σ(tk)
(tk) ≤ µV ∗

σ(t−k )
(t−k ) is true at the switching point tk. Therefore, we obtain by induction that

V ∗(t) ≤ eλ+T+(tk,t)−λ−T−(tk,t)V ∗

σ(tk)(tk)

≤ µeλ+T+(tk,t)−λ−T−(tk,t)V ∗

σ(t−k )
(t−k )
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≤ µeλ+T+(tk−1,t)−λ−T−(tk−1,t)V ∗

σ(tk−1)
(tk−1)

≤ · · · ≤ µNσ (0,t)eλ+T+(0,t)−λ−T−(0,t)V ∗

σ(0)(0)

= eλ+T+(0,t)−λ−T−(0,t)+Nσ (0,t) lnµV ∗

σ(0)(0). (36)

From (14) and (32), we know that there exist two class K∞ functions α1 and α2, such that

α1(‖x‖) ≤ V ∗(t) ≤ α2(‖x‖). (37)

In fact, we can choose α1(x) = α∗

1(‖x1‖) +
1
2‖x2‖

2, α1(x) = α∗

2(‖x1‖) +
1
2‖x2‖

2.
Combining (35)–(37) gives

‖x(t)‖ ≤ α−1
1 (eλ+T+(0,t)−λ−T−(0,t)+Nσ (0,t) lnµα2(‖x(0)‖)).

When µ = 1, which is a trivial case, we obtain from the switching strategy (S) that

‖x(t)‖ ≤ α−1
1 (e−λ∗tα2(‖x(0)‖)), (38)

which means that the switched system (1) is globally asymptotically stabilizable under the switching condition (S) without
considering the average dwell-time (17).

For the nontrivial case of µ > 1, it follows from the average dwell-time (17) and the switching condition (S) that

λ+T+(0, t) − λ−T−(0, t) + Nσ (0, t) lnµ ≤ −(λ∗
− λ)t. (39)

Then, ‖x(t)‖ ≤ α−1
1 (e−(λ∗

−λ)tα2(‖x(0)‖)), which implies global asymptotic stability of the closed-loop system (1) when
ω(t) ≡ 0.

Next, we show that the closed-loop system (1) has the weighted L2-gain property. It can be easily seen from (33) that for
any t ∈ [tk, tk+1)(0 ≤ k ≤ Nσ (0, t)), the piecewise Lyapunov function candidate (32) satisfies

V ∗(t) ≤


e−λ−(t−tk)V ∗

σ(tk)(tk) −

∫ t

tk
e−λ−(t−τ)Γ (τ )dτ , i ∈ Mp,

eλ+(t−tk)V ∗

σ(tk)(tk) −

∫ t

tk
eλ+(t−τ)Γ (τ )dτ , i ∈ M̃p,

where Γ (τ ) =
γ 2
3

γ 2
3 +γ 2

d
[yT (τ )y(τ ) − γ 2ωT (τ )ω(τ)].

From (13), V ∗

σ(tk)
(tk) ≤ µV ∗

σ(t−k )
(t−k ) is true at the switching point tk. Therefore, we obtain by induction that

V ∗(t) ≤ eλ+T+(tk,t)−λ−T−(tk,t)V ∗

σ(tk)(tk) −

∫ t

tk
eλ+T+(τ ,t)−λ−T−(τ ,t)Γ (τ )dτ

≤ eλ+T+(tk,t)−λ−T−(tk,t)µV ∗

σ(t−k )
(t−k ) −

∫ t

tk
eλ+T+(τ ,t)−λ−T−(τ ,t)Γ (τ )dτ

≤ eλ+T+(tk−1,t)−λ−T−(tk−1,t)µV ∗

σ(tk−1)
(tk−1) −

∫ t

tk
eλ+T+(τ ,t)−λ−T−(τ ,t)Γ (τ )dτ

− eλ+T+(tk,t)−λ−T−(tk,t)µ

∫ tk

tk−1

eλ+T+(τ ,t)−λ−T−(τ ,t)Γ (τ )dτ ≤ · · ·

≤ eλ+T+(0,t)−λ−T−(0,t)µNσ (0,t)V ∗

σ(0)(0) −

∫ t

0
µNσ (τ ,t)eλ+T+(τ ,t)−λ−T−(τ ,t)Γ (τ )dτ

= eλ+T+(0,t)−λ−T−(0,t)+Nσ (0,t) lnµV ∗

σ(0)(0) −

∫ t

0
eλ+T+(τ ,t)−λ−T−(τ ,t)+Nσ (τ ,t) lnµΓ (τ )dτ . (40)

For the trivial case of µ = 1, (40) and (S) give that∫ t

0
e−λ−(t−τ)yT (τ )y(τ )dτ ≤

γ 2
3 + γ 2

d

γ 2
3

e−λ∗tV ∗

σ(0)(0) + γ 2
∫ t

0
e−λ∗(t−τ)ωT (τ )ω(τ)dτ . (41)

Integrating both sides of this inequality from t = 0 to ∞ and rearranging the double-integral area, we obtain∫
∞

0
yT (τ )y(τ )dτ ≤

λ−(γ 2
3 + γ 2

d )

λ∗γ 2
3

V ∗

σ(0)(0) +
λ−γ 2

λ∗

∫
∞

0
ωT (τ )ω(τ)dτ

=
λ−(γ 2

3 + γ 2
d )

λ∗γ 2
3

V ∗

σ(0)(0) + γ 2
0

∫
∞

0
ωT (τ )ω(τ)dτ , (42)
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where γ0 =


λ−

λ∗ γ , which means that the closed-loop system (1) has finite L2-gain under switching law (S) without
considering the average dwell-time (17).

For the case of µ > 1, under the average dwell-time (17) and the switching condition (S), we can obtain from (40) that∫ t

0
e−λ−(t−τ)−λτyT (τ )y(τ )dτ ≤

γ 2
3 + γ 2

d

γ 2
3

e−λ∗tV ∗

σ(0)(0) + γ 2
∫ t

0
e−λ∗(t−τ)ωT (τ )ω(τ)dτ . (43)

Again, integrating both sides of the foregoing inequality from t = 0 to ∞ and rearranging the double-integral area leads
to ∫

∞

0
e−λτyT (τ )y(τ )dτ ≤

λ−(γ 2
3 + γ 2

d )

λ∗γ 2
3

V ∗

σ(0)(0) + γ 2
0

∫
∞

0
ωT (τ )ω(τ)dτ (44)

with γ0 =


λ−

λ∗ γ . From (3), we know that the closed-loop system (1) has the weighted L2-gain property. �
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