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Stabilization and  Regulation in Linear 
Multivariable Systems 

P. J. ANTSAKLIS AND J. B. PEARSON 

Abstruct-Tl~is paper presents a generalization  of some recent results of 
Cheng and Pearson [I]. It is shown that the conditions obtained under 
certain assumptions in [I] are valid under  more  general assumptions. We 
therefore obtain the solution to a more general linear multivariable regula- 
tor  problem than that previously solved by Wonham and Pearson [2]. 

1. INTRODUCTION 

In this  paper we consider  a  linear  time-invariant  system of the form 

x , ( t ) = A , x , ( t ) + A , x , ( r ) + ” , u ( r )  

X2(t)=A2x2tt) (1) 

A t ) =  c,xI(~)+CzX2(~)+C3u(t) 

z ( t )=D,x , ( t )+D,x2(r )+D,u(r )  

which  may  be interpreted as a plant with state vector xl(t) coupled to an 
exogenous  system  with state vector x2(t). The  control  input is u(t); y( t )  is 
the measured output  and z ( t )  is the  regulated output. The  control 
problem is to  find a  feedback  controller  with input y ( f )  and  output u(t) 
such that for  every initial state of the  closed-loop  system we obtain 
lim,-+,z(t)=O. 

A less  general  version of this problem (C, =0, D3 =0) was formulated 
and solved in [2] using the geometric approach. In this paper a  frequency 
domain  formulation is used, thus  permitting  the general  case to be 
treated directly  without the  additional complications  involved in the 
geometric approach. A robust  version of this more  general  problem has 
been treated by Davison and  Goldenberg [3], but  the robust regulator 
problem is quite  different  from the  problem  posed  here. 

Laplace  transforming ( I )  and  denoting initial conditions by a constant 
vector w, we may  write 

j ( ~ ) =  - H,(s)i(s) + G ~ ( s ) w  

;(s) = H2(s)4(s) + G2(s)w (2) 

where j ,  i, and i represent the Laplace transforms of y,  z ,  and u, 
respectively, and 

- H , ( s ) = C l ( S - A l ) - ’ B 1 + C ~  

H z ( s ) = D , ( s - A , ) - ’ B I + D ~  (3) 

We seek a proper controller C(s) of the type 

i ( s )=  C(s)j(s) 
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such that 

is  analytic  for Res > 0 and 

3 l ( s ) 3 ~ t s ) l Z + H l ( s ) C ( s ) l  

is a Hurwitz polynomial  where I#]@) and &(s) are the characteristic 
polynomials of H,(s) and C(s), respectively, and IX(s)l represents the 
determinant of a square matrix X(s). This problem  is  called RPIS 
(regulator  problem with internal stability), and when H,(s)=F(s)P(s) 
and H2(s) = P(s), it has been  solved  by  Cheng and Pearson [I] under  the 
assumptions that F(s) and P(s) have no hidden unstable modes and that 
the  pair (F(s),P(s)) is admissible, i.e., 

where ++(s) represents the unstable  factor of the polynomial ~s). 
In this paper we show  how  the  results obtained in [l]  apply  directly to 

the  problem  specified by  (1) or (2). Basically, this involves  replacing the 
admissibility of (F(s) ,P(s))  by the  stabilizability and detectability of 
( C , , A , , B , )  and  establishing that this is all that is needed to allow the 
proof of Theorem  1 [ I ]  to go through as originally stated. In Section I1 
we furnish  a new proof,  using  the  results of [I], of the  well-known fact 
that a  system (A,B,C,  D) can be stabilized by output feedback  through  a 
proper  controller if and only if ( C , A , B )  is stabilizable and  detectable.  In 
Section 111 stabilizability and detectability of ( C , , A , , B , )  are  introduced, 
a  lemma to replace  Lemma 1 of [ l ]  is proved, and the main results of the 
report  are stated. Our  results are completely  self-contained and rely  only 
on the  solution of RPIS given  in [l]. 

11. STABILEABILITY OF A L m  SYSTEM 

Consider  the  problem of regulating 

x ( t ) = A x ( t ) + B u ( r )  

y ( t ) = C x ( t ) + D u ( t )  

or 
j ( s ) = [ C ( s - A ) - ’ B + D ] i ( s ) + C ( s - A ) - ’ x ( O )  

X ( S ) = ( S - A ) - ’ B ; ( 3 ) + ( 3 - A ) - I X ( O ) .  

Idenm 

- F ( s ) P ( s ) = C ( s - A ) - ’ B + D  

Since - F(s)=[CD],  the  pair (F(s), P(s)) has no unstable  hidden 
modes if and only if ( A .  B )  is stabilizable and is admissible if and only if 
( C , A , B )  is stabilizable and  detectable.  In  order  to use the results of [I], 
define (omit the  argument s for simplicity)  the  minimal fraction repre- 
sentations 

FP = QC ‘PI = P2QT 

( Q ~ G , ) + = R , s ; ~ = s ; ~ R ,  
. . -  

(5)’ 

( PYQ,G, + G2} + = R2S;’ (6) 

‘Q2 = P3 Q< 

plane poles. 
I [  )+ denotes that  part of a partial fraction expansion containing closed right half- 
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TECHNICAL NOTES AND CORRESPONDENCE 

and polynomial  matrices ( X ,   Y )  and ( X l ,   Y , )  by 

Q , X + P , Y = I  

X,R, + Y'S, =I.  

From [ I ]  we  know that if (F, P )  is  admissible, there exists a proper 
controller  stabilizing the system (4) if and only if there  exist  polynomial 
matrices N ,   V ,  and W such that 

S;'S, = N (7) 

and 

R2NXl = P3 V + WS,. (8) 

Since ( F , P )  is  admissible if and only if ( C , A , B )  is  stabilizable and 

Lemma I :  There  exists  a  proper  controller  stabilizing the vstem (4) if 

Proof: Necessity  is  obvious. For sufficiency  we  show that there exist 

First replace (C,A, 8 )  by  a  minimal  (i.e., controllable and observable) 

detectable, we will prove the following  (well-known)  result. 

and only if (C, A ,   B )  is  stabilizable  and  detectable. 

polynomial  matrices N, V, and W satisfying (7) and (8). 

representation (C,X,E).  Then  since 

- F P = - Q , - ~ P , = ~ ( s - ~ ) - ' ~ T + D ,  

it follows that 

Q , C ( S - K ) - I B + Q , D  

is  a  polynomial, and since 

( s - K ) - I B  

is minimal, 

Q , C ( s - Z ) - '  

is  a  polynomial.  Since (C,A) is detectable, 

andsowecanchoose in (5 )Rl=0 ,RI=0 ,S , - I ,S l= I .  
Clearly, 

FPYP, - FP 

is a  polynomial, and since C(s-,T)-)-'BYQ, is a polynomial, so is 

C[(s-K)-'BYQ,C+I](s-K)-]B. 

Then  since (s - X)-'B is minimal and 

c [ ( s - a ) - ' s Y Q , c + + l ]  

is  a  polynomial, so then  is 

C[(s-x)-'BYQ,C+Z](s-if)-' 

=C(s-~)-'['BYQ,C(s-K)-'+I]. 

Again  since c(s -K)- '  is minimal and ( B Y Q , C ( s - K ) - ) - ' + I )  is a 
polynomial, it follows that 

( ~ - ~ ) - I ( B Y Q , ~ ( s - K ) - ' + I )  

is  a  polynomial.  Because of stabilizability and detectability 

{(s-K)-'BYQ,C(s-K)-'+(s-K)-'}+ 
=((S-A)-'BYQ,C(S-A)-'+(S-A)-'}+=O 

929 

and this together  with (9) yields 

( P Y Q , G I + G 2 } + = 0 .  

Therefore,  from (6) we  may  choose R,  = 0, S,  = I .  - 
polynomial  matrix and define 

Since SF 'SI = I ,  (7) is true.  Since R ,  =O and SI = I ,  let V be  any 

w =  - P 3 V .  

Then (8) is true and we have  completed the proof.  From this result it is 
clear that stabilizability and detectability of (C,,Al,Bl) in (I) is the 
necessary  replacement  for  admissibility of (F, P )  in [I] .  

111. MAIN RESULTS 

We first establish the necessary  generalization of Lemma I [I]. Let 

( s - A , ) - ' B , = S P - '  

be a  minimal fraction representation.  From (3) 

H , = - C , S P - ~ - C ~ = R , P ; I  

H ~ = D , s P - ~ + D , = R , P , - ~  (10) 

where ( R , ,  P I )  and (R2. P2)  are minimal. 
Lemma 2: Assume ( C , , A , , B , )  is stabilizable  and  detectable.  Then 

ProoJ Since ( R , , P , )  and (Rz,PJ are minimal, it follows  from (10) 
IH2PI>+ =o. 

that 

P =   P I G ,  = P2G2 

and / G I (  is stable by assumption. Thus, 

H2PI = R2PC'PI=  R2G,G;' 

and so 

I H , P , } + = 0 .  

Our main  result is stated as follows. 
Theorem: Given the system (2) with H , ( s )  and H2(s) defined  by (3). 

Assume ( C I , A , , B , )  is stabilizable  and detectable. There  exists  a  proper 
controller  which solr;es RPIS if and only if there  exist  polynomial  matrices 
N ,  V,  and W satisfuing 

s; 'SI = A' 

R,NX,=P3V+ WS,  
where 

H I  = Q r ' P ,  = P2Q1'  

( Q , G , ) + = R , s ; ~ = s ; ~ R ,  
- -  

{ H Z Y Q I G I + G ~ J + = R I S T '  

H2Q2=P3QF1 

are  minimal  representations  and X ,  and Y are polynomial niatrices  defined 
bY 

Q , X + P , Y = I  

X , R l  + Y ] S ,  = I .  

Proof: The proof  is  identical to the proofs of Theorems 1 and 4 in 
[I]. The key step is to replace  Lemma  1 in [ I ]  by  Lemma 2 as stated 
above. 

IV. CONCLUSION 

In this paper we  have  shown  how the results of Cheng and Pearson [I]  
apply to a  more  general  regulation  problem than  has been  previously 
studied. The results are not completely  satisfactory in that hybrid (Le., 
part state space, part frequency domain) conditions have  been  used. This 
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has been  necessary  because of the key relation that exists  between H,(s) 
and Hz($)  as  stated by  Lemma 1 [ 11 when HI = FP and Hz= P and by 
Lemma 2 in the  present  case.  In  the  general  case,  all we can say at the 
present time  is that if H ,  has  no unstable  hidden  modes and the relation 
given  by  Lemma  2 is satisfied by H ,  and € I 2 ,  the existence of N, V, and 
W satisfying  the  above equations is sufficient for RPIS to be solvable. 

The particular  formulation used  in  Section I1 may be useful in 
parameterizing  all stabilizing controllers  through  the rational  function K 
used in [I] to  solve M I S .  This could  possibly  lead to a  better  under- 
standing of minimal-order  stabilizing  controllers. 
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On Alternative Methodologies for the Design of Robust 
Linear  Multivariable  Regulators 

H. G. KWATNY AND K. C.  KALNITSKY 

Abrtmt--’Ihis paper presents two syntI~esis algorithms which embody 
the two major variants of the n u n e m  methodologies which have been 
proposed for  the design of multivariable linear regulators which exhibit the 
property of disturbance rejection with or withont additional rob- 
qualities. It is shown that these two procedures generally lead to substan- 
tively  different  compensator stmctnres. 

I. INTRODUC~ON 

During the past  decade a  number  of  techniques  have  been  proposed 
for the design of multivariable linear regulators  enjoying  the  properties 
of disturbance rejection and, in  some cases, structural stability  [I]-[ 121, 
[14], 1151, [IS],  [26]-[30].  Many  of  these procedures  have  been  fairly 
widely applied [3],  [13],  [16], [ l q ,  [19],  [20],  [30], and  in view  of the 
interest which has been evidenced by theoretician and  practitioner alike, 
it is clear that with the  development of these  concepts the  day of 
application of “modern” multivariable control theory is at hand. It 
appears  that  although many  investigators  have independently evolved 
their  own  specific  design  methodologies,  these can be grouped into two 
distinct variations-those  employing  estimates of (possibly  artificial) 
disturbance states, and those employing  dynamic error  augmentation. 
Examples of the  former  have  been  proposed by Kwatny et al. [15],  [18], 
Balchen et nl. [30], Parker [29],  Sebakhy and Wonham [26], and  Francis 
[271. Examples of the latter have been proposed by Davison et al. 
[6]-[I I], Young and Williams [ 121, and Calovic and Cuk [ 141. 

In the present authors’ work both types of design  procedures  have 
been  applied-specifically  those  methods of Kwatny et al. and Davison 
et ai. Experience  has  shown that closed-loop transient behavior can be 
significantly different even  when the designs are carried out with the 
intent of attaining  the  same  performance requirements. The  question 
naturally arises as  to whether  these  differences  come about because of 
the  inherent  latitude  the designer has at various points within  the  design 
processes  or  whether  they  are,  in  fact, due  to  fundamental differences in 
structure. This paper reports on studies intended  to provide at  least a 
partial answer to this question. 
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In Section 11, the regulator  problem and  the  robust regulator problem 
are defined as they will be discussed in  this paper.  The  adopted formula- 
tion is somewhat less general than can be  treated and  that  can be found 
discussed in several of the papers cited  above.  Nevertheless, this choice 
has  been  made  in order  to avoid  obscuring  the  main  ideas  with  a host of 
nonessential  technical detail. Section 111 presents two basic  design  algc- 
rithms which  typify the essential variants to  be found  in the  references. 
Section IV identifies  the fundamental difference  between  these 
methodologies and correlates this result with the  classical  compensator 
design  techniques.  Section V presents  a brief concluding statement. 

11. THE REGULATION hOBLEhf AND CoMPENSATOR STRUCTURE 

This paper is  concerned with a hear time-invariant  system  defined by 
the equations 

 AX+ EO+ BU 
;= Z w  
y = C x + F w  
p= Gw 

e =y -? 

where x is an n-dimensional plant  state vector, y i s  an r-dimensional 
output vector, y i s  an r-dimensional  reference output, u is an m-dimen- 
sional input vector, w is a  q-dimensional  vector  representing  a combined 
state for the  exogenous disturbance  and  output reference, and e is an 
r-dimensional error vector.  In  what  follows it is assumed that ( A , B )  is 
controllable and (C,A) is observable and  that B and C are of fu l l  rank. 
With  some  restriction in generality it is  assumed that the  composite pair 

{ [ C i (F-G) 1, [ - - A _ - -  $!  ;]] is  observable.  Where this condition is 

required it can usually  be  relaxed to detectability. The  discussion in 
Francis [27] on this assumption is pertinent.  The regulator problem is the 
construction of a feedback  controller  such that the  closed-loop 
system-excluding  the disturbance states w, is stable  (internal stability) 
and e( t )+=O as t - m  for all initial states  (output regulation). 

A robust (or structually stable) solution of the regulator problem has 
the  desirable property  that closed-loop stability and  output regulation 
are preserved under specified  classes of perturbations of plant and 
controller  parameters. 

Numerous  researchers  have  studied the  regulator problem from vari- 
ous viewpoints in recent  years [1]-[12],  [14], (151, [ 181,  [26]-[30]. The 
notion of robust solutions of the  regulator  problem appears  to  have 
originated with Davison [Y] and  has been further examined by Davison 
and  Goldenberg [ll], Pearson et al. [12], Francis  and Wonham [25], 
Sebakhy and Wonham [26], and  Francis [271. 

Necessary and sufficient conditions  for the  existence of a  solution to 
the  regulator  problem and  the robust  regulator  problem  have  been stated 
by several authors, notably  Davison 191, Davison and  Goldenberg [ 111, 
Francis  and Wonham 1251, and  Francis [2q. These conditions  are 
summarized  for the problem as stated above in  the following  theorem. 

Theorem I: A necessary and sufficient condition for the  existance of 
a  solution to the  regulator  problem  is that  the following conditions  hold: 

1) ( A , B )  is stabilizable; 
2) (C,A)  is detectable; 
3) There exists an n X q matrix X and  an m X q matrix LI satisfying the 

relations 

A X - X Z + B U = E  
CX= F- G. 

A neceSSary and sufficient condition  for  the solution  to the  robust 
regulator  problem is obtained if 3) is replaced by 

4) rank[:-‘ : ] = n + r ,  foreach&inthespectnunofZ. 

Proof  of Theorem 1 for the  regulator problem  is given by Francis [271. 
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