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Abstract. In this paper it is shown that, given a complex

square matrix A all of whose leading principal minors are nonzero,

there is a diagonal matrix D such that the product DA of the two

matrices has all its characteristic roots positive and simple. This

result is already known for real A, but two new proofs for this case

are given here.

1. The real case. A theorem proved by Fisher and Fuller [2] is an

obvious consequence of the following result (Theorem 1), which in

turn is the real case of our Theorem 2 below.

Theorem 1 (Fisher, Fuller). Let A be an nXn real matrix all of

whose leading principal minors are positive. Then there is annXn posi-

tive diagonal matrix D such that all the roots of DA are positive and

simple.

We shall give here two proofs of Theorem 1, both of them simpler

than the proof in [2]. Our first proof is the shorter of the two, but is

less constructive since it makes use of the continuity of the roots (as

functions of the matrix entries). Our second proof gives explicit (and

relatively simple) estimates for the entries of D in terms of the entries

of A.
First proof of Theorem 1. Here we use induction on n. For « = 1

the result is trivial, so suppose that n 5: 2 and that the result holds for

matrices of order n — 1. Let A be an «X« real matrix all of whose

lpm's (leading principal minors) are positive and let ^4i be its leading

principal submatrix of order n— 1. Then all the lpm's of A\ are posi-

tive, so by our induction assertion there is a positive diagonal matrix

D\ of order n— 1 such that all roots of D1A1 are positive and simple.

Let d be a real number to be determined later (but treated as a vari-

able for the present). Let A be partitioned as follows:
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(where A a is 1X1). Define an nXn diagonal matrix D (depending

on d) by conformable partition:

Lo    dj

Let DA =M(d), where now we emphasize the dependence on d. Then

TDiAi     DiAi]

"(0) = [o o]'

so the nonzero roots of M(0) are just those of D1A1, hence are posi-

tive and simple (and there are exactly n— 1 of them). M(0) also has

a simple root at zero. Thus for all sufficiently small d>0 the real

parts of the roots of M(d) are (still) n distinct real numbers at least

n — 1 of which are positive. (This follows from the fact that the roots

of M(d) are continuous functions of d.) Choose some such d. Then the

roots of M(d) are all real and simple (since nonreal roots must occur

in conjugate pairs) and at least n — 1 of them are positive. But the

determinant of M(d) is positive since those of A and D are, so in fact

all n roots of M(d) are positive. This concludes the proof of the induc-

tion step and hence of Theorem 1.

Remark 1. This same kind of argument can be used to prove that,

when all the 1pm's of A are positive and a sign pattern is given for

w-tuples of real numbers ordered by their absolute values, there is a

real diagonal matrix D of the prescribed sign pattern such that the

roots of DA also have the prescribed sign pattern. Also, when A is an

nXn complex matrix all of whose lpm's are nonzero and also an open

sector containing the positive real axis is prescribed, this same kind

of argument yields a complex nXn diagonal matrix D such that all

the roots of DA lie in the prescribed sector (in fact, if all the lpm's of

A are positive then D can be chosen positive).

For our second proof of Theorem 1 we shall use the following fact

about real polynomials.

Fact 1. Let n be an integer ^ 2 and let Co, c\, • ■ • , cn be positive

real numbers satisfying all the following inequalities:

2 2 2

4c0c2 < ci, 4cic3 < c2, ■ • • , 4c„_2Cre < c„-i.

Let Xk = (ck+\/ck-i)in for k = 1, 2, ■ • • , n— 1. Then all the roots of the

polynomial

f(x) = c0xn - ax"-1 + c2xn~2 -•••+(- l)nc„
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are real (hence positive) and simple, and they are separated by the

n— 1 numbers x\, x2, • • • , x„_i.

Proof. (This result is probably known, is perhaps even classical,

but it is not standard for «S^ 3, so we shall give a short proof here for

the sake of completeness.) Let x0 = ci/c0 and x„ = c„/c„_i. Then

xo>xi>x2> • • • >x„_i>x„; in fact,

\co /        \co /       \C\ /        \Ci )       \c2 /

>£)>     >(~)'

holds by hypothesis, and hence

Xq > Xi > c2/ci > x2 > c3/c2 >  • ■■ > Xn_i > x„.

Thus it suffices to show that (-l)*/(x*)>0 for k = 0, 1, 2, • • • , n.

From the last chain of inequalities we have that cyx*—c/+i is

(1) positive if Q^k<j^n — 1 (and in other cases which we shall

not need here),

(2) negative if 1 ̂ j'+l <k^n, and

(3) zero if 0 = k=j or j-\-l = k = n. Thus we have

f(x0) = x0   (c0x0 — Ci) + x0   (c2x0 — c%) + • • • > 0,
2

(~ !)"/(*•>)   =  (Cn — Cn-lXn) + Xn(cn~2 ~ C„-SX„) +   ■   •   •   > 0

since n §: 2 and the odd term at the end (when n is even) is positive

in each case.

To handle the x* for which l^k<n, we write

f(x) = xn~k+ig(x) + (- l)*x"-*-1(- Ck-ix2 + ckx - Ck+i) + h(x),

where we have put

g(x) = c0x*-2 - cix*-3 + C2x*-4 -...+(- l)*-2a_2,

*(*) = (ck+2xn-k-2 - Ck+,xn~k-3+ •••+(- \y-k-2cn)(- 1)*+2.

We first show that (-l)*g(x*) ^0 and (-\)kh(xk) ^0. Namely,

(— l)kg(xk) = (ci-?. — ck-3xk) + xk(ck-i — ck-x,xk) + ■ • • ^ 0,

(— l)kh(xk) = xk      (ck+2xk — ck+3) + xk      (ck+ixk — Ck+s) + ■ ■ ■ ^ 0.

Thus it remains only to show that  —ck-ixl+ckXk — Ck+i is positive.

But this is a routine consequence of our hypothesis that cl>4c*_i£*+i

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] STABILIZATION BY A DIAGONAL MATRIX 731

and our definition of xk. Thus, as asserted, (—1 )*/(#*) >0 for k = 0, 1,

2, • • • , n, and Fact 1 is proved.

Second proof of Theorem 1. We first assume that all lpm's of A

are 1. For k = 1, 2, ■ • • , n let qk be the sum of the absolute values of

the wowleading principal minors of order k in A (thus qn = 0). Choose

positive real numbers d\, d2, • ■ ■ , dn so that

2dk+iqk < dk    and    36dk+i < dk

for k = 1, 2, • • • , n— 1. (One can choose dj arbitrarily >0 for one/

and choose the other dk recursively, going outward from k=j). Let

D=d\ag(di, d2, ■ ■ ■ , dn), and define c0 ( = 1), C\, c%, • • • , cn by

det (xl — DA) - c0xn — cxxn~x + c2x"~2 —••■+(— l)"c„.

Thus by Fact 1, in order to show that the roots of DA are positive

and simple, it suffices to show that Ci, c2, • ■ • , cn are all positive and

that c£ > 4c*_iCfc+i for k = l, 2, •••,» — 1. This we do as follows.

For k = 0, 1, 2, • • • , n we can write ck = pk+Rk, where pk = did2

■ ■ • dk (hence £o = l) and Rk is the sum of the nonleading principal

kXk minors in DA (hence R0 = 0 = Rn).

Now, each term in P* is of the form

(*) dhdh ■ ■ ■ djtm,

where m is a nonleading principal kXk minor of A and ji<ji< ■ • •

<jk and k<jk. Since di>d2> ■ ■ ■ >dn>0, the absolute value of

the term (*) is therefore less than or equal to

did2 • ■ ■ dk-idk+i| m| = (dk+i/dk)pk \m\.

By the Triangle Inequality and the definition of qk we thus have

(for l^fc^w-l)

| Rk | ^ (dk+i/dk)pkqk < \pk,

the last inequality coming from the way we chose dk and dk+i. Thus

Ck = pk+Rk satisfies pk/2<ck<3pk/2 (for l^k^n — 1, but also for

k = 0 and for k=n), so

2 2

ck > \pk = l(dk/dk+i)pk+ipk-i > 9pk+ipk~i > ick+iCk-i

for £ = 1, 2, • • • , n — 1. This completes the proof for the case where

all the lpm's of A are 1.

Returning now to the general case, where the lpm's of A are not

necessarily all 1 (but are all positive), we let mk be the kXk 1pm of A

(hence m0=l) and let
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E = diag (nto/mi, mi/m2, • • • , tnn-x/mn).

Then all the lpm's of EA are 1, so we can now apply the proof for

that case and get the required matrix D=diag(di, ■ ■ ■ , d„) for this

general case by choosing di, ■ ■ ■ , dn so that

2 2

2dk+itnk+imk-iqk < dkmk    and    0 < 36dk+imk+imk-i < dknik

iork = l,2, ■ ■ ■ , m — 1, where now g* is the sum of the absolute values

of the nonleading principal kXk minors of EA. This completes our

second proof of Theorem 1.

2. The complex case. Here we adapt our second proof of Theorem

1 to yield a proof of the complex case (Theorem 2 below). However,

the rest of this latter proof is not constructive, depending as it does

on the following result from algebraic topology. (This result is a spe-

cial case of [l, Lemma 2, p. 232].)

Fact 2. Let P and Q be n-parallelotopes in Rn which are parallel

to each other, and let / be a continuous mapping of P into R" such

that/ takes each hyperface of P into the closed supporting half space

of Q at the corresponding hyperface of Q. Then f(P) includes Q.

Using Fact 2, we can now prove the next theorem, which is the

main result of this section.

Theorem 2. Let A be an nXn complex matrix all of whose leading

principal minors are nonzero. Then there is an nXn complex diagonal

matrix D such that all the roots of DA are positive and simple.

Proof. We follow the lines of our second proof of Theorem 1 where

we can. Without loss of generality we may assume all lpm's of A are

1. For k = 1, 2, • • • , n, again let qk be the sum of the absolute values

of the kXk nonleading principal minors of A. Choose positive real

numbers n, r%, • • • , rn so that

2rk+iqk < rk    and    36ri+1 < rk

for k = 1, 2, • • • , «—1. Now let dk = rk exp i0k for k = l, 2, • ■ • , n,

where 0\, ■ ■ ■ , 0n are real numbers yet to be determined and are

treated for now as variables. Let

D = diag (du d2, ■ ■ ■ , dn),

det [pel - DA) = c0x" - dx""1 +••• + (- l)"c„

(co=l), as before. Here we define new "variables" <fr, • • ■ , <j>„, related

to 6i, ■ ■ • , 0n by means of the linear transformation
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4>k = e1 + e2-\- ■ ■ ■ +ek     for   k = 1,2, •••,»,

6k = <t>k — 4>k-i        for    k = 2, ■ ■ ■ ,n,    61 = fo,

which is one-one of P" onto P".

As before, we write pk = did2 ■ • ■ dk and c*=£*-)-P*; hence, putting

0o = 0, we have

pk = rxr2 ■ ■ ■ rk exp i(Bi + 02 + • • • + 6k) = rxr2 ■ • • rk exp i<pk

for jfe = 0, 1, 2, • • • , n. Again we find that

I Rk I <   \pk |/2, I pk |/2 <   I ck I  < 3 I Pk |/2        for    0 ^ & g »,

and

\ck |2 > 4 I Ck-i I ■ I c*+i I        for    1 £ * £ » - 1.

Thus by Fact 1 our proof will be complete when we have shown that

we can choose <pi, <p2, ■ ■ ■ , <t>n as real numbers such that Ci, c2, ■ ■ ■ , cn

are all positive.

To show that we can do this, let 1 ̂ k ^n. For </>& = j7r, pk=irir2 ■ • •

rk is positive imaginary, so

Im c* = Im pk+lm Rk= | pk\+Im Rk^ \ pk | — |P* | >h \ pk\,

and likewise, for <j>k= — §T, Im ck< — \\pk\ ■ Thus we have a contin-

uous mapping

(4>u fc, • • ■ , <t>n) —» (Im ci, Im c2, ■ ■ • , Im c„)

from the rectangular w-parallelotope (which here is actually an

w-cube)

— §t = 0* = 5T»        k = 1, 2, • • • , »,

into real «-space, and this mapping satisfies the hypotheses of Fact 2

relative to the rectangular w-parallelotope

I Im ck I ^ i I pk I = fr^ • • • rk,        k = 1, 2, • ■ • , ».

Thus the range of this mapping includes the latter parallelotope and

in particular contains the origin. Therefore we can choose <pi, ■ ■ ■ , </>„

all in the interval [ — %w, \ir] so as to yield

(Im ci, ■ • • , Im cn) = (0, • • • , 0)

and hence for this choice of <j>i, ■ • ■ , <j>n we have a, ■ ■ ■ , cn all real.

It is evident geometrically (and routine to show analytically) that

Ck cannot be ^0 for — ̂ ir^fa^Jtt, so in fact a, ■ ■ ■ , cn are all posi-
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tive for the above choice of 4>i, ■ ■ ■ , <j>n. This completes the proof of

Theorem 2.
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