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Abstract— Model Predictive Control (MPC) has recently
been applied to several relevant classes of hybrid systems with
promising results. These developments generated an increasing
interest towards issues such as stability and computational
problems that arise in hybrid MPC. Stability aspects have
been addressed only marginally. In this paper we present
an extension of the terminal cost and constraint set method
for guaranteeing stability in MPC to the class of constrained
piecewise affine systems. Semidefinite programming is used to
calculate the employed terminal weight matrix that ensures
stability for quadratic cost based MPC. A procedure for
computing a robust positively invariant set for piecewise linear
systems is also developed. The implementation of the proposed
method is illustrated by an example.

Index Terms— Piecewise affine systems, Model predictive
control, Stability, Positively invariant sets, Linear matrix
inequalities.

I. INTRODUCTION

Recently, research has focused on questions related to
the optimal control and stabilization of hybrid systems in
general and Piecewise Affine (PWA) systems in particular.
This is motivated by the fact that PWA systems can model
a broad class of hybrid systems [11], [21]. Several results
have been reported in this framework, e.g., see [6], [18],
[19], [22] and the references therein. Extension of Model
Predictive Control (MPC) to this class of systems led to
successful implementations such as the ones reported in [2],
[9], [13], [15]. However, all the implementations mentioned
above faced two serious drawbacks. Firstly, the on-line
computational load caused by the Mixed Integer Quadratic
(or linear) Programming (MIQP) problem prevents real-
time implementation. Secondly, closed-loop stability is not
guaranteed a priori.

The first solution for guaranteeing stability of hybrid
model based receding horizon control has been presented
in [1] for Mixed Logical Dynamical (MLD) systems. This
approach is based on enforcing a terminal state equality
constraint. However, this method may require a long pre-
diction horizon to guarantee feasibility for all initial states
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of interest, especially when input constraints are present.
As a result, a large sampling time is required for real-
time implementation. Most of the other MPC schemes
mentioned above handle stability by keeping the state within
a controllable (reachable) path (a sequence of controllable
sets computed with respect to a desired target set) and
by assuming positive invariance of the predefined target
set. A notable exception is [2], where an extension of the
results obtained for (linear) constrained LP-based receding
horizon control [3] has been pursued. Unfortunately, this
infinity norm based MPC approach did not yield conclusive
stabilization conditions, but only a heuristic stabilization
criterion.

Another option is to determine stability a posteriori by
obtaining the explicit PWA solution of the MPC constrained
optimization problem and then analyzing the stability of
the closed-loop system using piecewise quadratic Lyapunov
functions.

In this paper we develop a priori stabilization conditions
for quadratic cost based MPC of constrained PWA systems.
The proposed method is an extension of the terminal cost
and constraint set approach [17] for guaranteeing stability
in linear or nonlinear MPC. The procedure for deriving the
stabilization conditions is based on Lyapunov arguments,
which yield, after non-trivial transformations, a set of Linear
Matrix Inequalities (LMI). The feasibility of the resulting
LMI implies that the value function of the MPC cost is
a Lyapunov function of the controlled PWA system. The
terminal weight on the state variables is obtained from the
solution of the developed LMI and the terminal state has
to be constrained to a positively invariant set containing
the origin in order to ensure stability. A procedure for
computing a positively invariant set for PWL systems is also
presented. If this set is polyhedral then the MPC constrained
optimization problem can be transformed into an MIQP
problem.

II. PRELIMINARY DEFINITIONS

Consider the time-invariant discrete-time autonomous
nonlinear system described by

xk+1 = f(xk) (1)

and the switched nonlinear system

xk+1 = fj(xk); j ∈ S, (2)

where f(·) and fj(·) are smooth nonlinear functions and S
is a finite set of indices.
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Definition II.1 A set P ⊂ R
n is positively invariant for

system (1) if for all x ∈ P it holds that f(x) ∈ P .

Definition II.2 A set P ⊂ R
n is positively invariant for

system (2) with arbitrary switching if for all x ∈ P and all
j ∈ S it holds that fj(x) ∈ P .

Definition II.3 A positively invariant set P is called maxi-
mal with respect to a set X if P ⊂ X and every positively
invariant set P̃ contained in X is also contained in P .

Note that Definition II.3 applies to both positively in-
variant sets in the sense of Definition II.1 and positively
invariant sets in the sense of Definition II.2.

A polyhedron is a convex set obtained as the intersection
of a finite number of open and/or closed half-spaces.
Moreover, a convex and compact set in R

n that contains
the origin in its interior is called a C-set [4].

III. PROBLEM FORMULATION

Consider the time-invariant discrete-time PWA system
described by equations of the form [20]:

xk+1 = Ajxk + Bjuk + fj when xk ∈ Ωj . (3)

Here, xk ∈ X ⊆ R
n is the state vector and uk ∈ U ⊆

R
m is the control input vector at the discrete-time instant

k ≥ 0. Aj ∈ R
n×n, Bj ∈ R

n×m, fj ∈ R
n, j ∈ S with

S := {1, 2, . . . , s} and s denoting the number of discrete
modes. The sets X and U specify state and input constraints
and it is assumed that they are polyhedral C-sets. If there
are no constraints, then X is equal to R

n and U is equal
to R

m. The collection {Ωj | j ∈ S} defines a partition of
X, meaning that ∪j∈SΩj = X and Ωi ∩ Ωj = ∅ for i �= j.
Ωj is assumed to be a convex polyhedron (not necessarily
closed) for all j ∈ S. Let S0 := {j ∈ S | 0 ∈ cl(Ωj)} and
let S1 := {j ∈ S | 0 �∈ cl(Ωj)} so that S = S0 ∪S1, where
cl(Ωj) denotes the closure of Ωj .

The purpose is to regulate the state of system (3) to the
origin and we assume that the origin is an equilibrium state
for u = 0. To have this, we require that

fj = 0 for all j ∈ S0. (4)

The goal of this paper is to develop for the PWA system (3)
a stabilizing quadratic cost based MPC scheme that leads
to an MIQP problem. For a fixed N ∈ N, let xk(xk,uk) =
(xk+1, . . . , xk+N ) denote a state sequence generated by
system (3) from initial state xk and by applying the input
sequence uk := (uk, . . . , uk+N−1) ∈ U

N . Furthermore, let
XN ⊆ ∪j∈S0Ωj denote a desired target set that contains the
origin.

Definition III.1 The class of admissible input sequences
defined with respect to XN and state xk ∈ X is UN (xk) :=
{uk ∈ U

N | xk(xk,uk) ∈ X
N , xk+N ∈ XN}.

Stated differently, the input sequence uk ∈ U
N is contained

in UN (xk) if the following conditions are satisfied:

xk+1+i = Ajxk+i + Bjuk+i + fj when xk+i ∈ Ωj , (5a)

uk+i ∈ U, xk+i ∈ X for i = 0, . . . , N − 1, (5b)

xk+N ∈ XN , (5c)

where xk ∈ X is given. Now consider the following
problem.

Problem III.2 At time k ≥ 0 let xk ∈ X be given.
Minimize the quadratic cost

J(xk,uk) := x�
k+NPxk+N+

N−1∑
i=0

x�
k+iQxk+i+u�

k+iRuk+i

(6)
over all input sequences uk ∈ UN (xk).

Here, N denotes the prediction horizon and P , Q and
R are positive definite and symmetric matrices. We call
an initial state xk ∈ X feasible if UN (xk) �= ∅. Similarly,
Problem III.2 is said to be feasible (or solvable) for xk ∈ X

if UN (xk) �= ∅. Let

V (xk) := min
uk∈UN (xk)

J(xk,uk) (7)

denote the value function corresponding to (6) and consider
an optimal sequence of controls calculated for state xk by
solving Problem III.2, i.e.,

u∗
k := (u∗

k, u∗
k+1, . . . , u

∗
k+N−1). (8)

According to the receding horizon strategy, the MPC control
is obtained as

uk = u∗
k(1); k ∈ Z+. (9)

Note that the optimal sequence of controls (8) may not be
unique, but this fact does not affect the stability analysis
that follows.

A more precise problem formulation can now be stated
as follows: given Q, R and system (3) the objective is to
determine P , N and XN such that system (3) in closed-
loop with the MPC control (9) is asymptotically stable.
Moreover, if possible, Problem III.2 should lead to an MIQP
problem, as this is a standard tool in the context of hybrid
MPC [1].

Remark III.3 A possible way to ensure stability is to use
the terminal equality constraint method in MPC [17], which
is feasible for PWA systems. Although this method can
be applied straightforwardly and is conceptually simple,
it has the disadvantage that the system must be brought
to the origin in finite time, over the prediction horizon
(this requires that the PWA system is controllable, while
stabilizability should be sufficient in general). Also, the
terminal equality constraint approach may require a long
prediction horizon for ensuring feasibility of Problem III.2.
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IV. LMI BASED STABILIZATION CONDITIONS

In order to achieve stability, we aim at using the value
function (7) as a candidate Lyapunov function for the
closed-loop system (3)-(9) and we consider a local PWL
controller of the form

uk := Kjxk when xk ∈ Ωj , Kj ∈ R
m×n, j ∈ S0. (10)

Let XU := ∪j∈S0{x ∈ Ωj | Kjx ∈ U} denote the safe set
with respect to state and input constraints for this local
controller. Now consider the following nonlinear matrix
inequality

P−(Aj+BjKj)�P (Aj+BjKj)−Q−K�
j RKj > 0 (11)

in the unknowns (P,Kj), j ∈ S0, where the matrix P is
the terminal weight employed in cost (6).

Theorem IV.1 Assume that {(P,Kj) | j ∈ S0} with P > 0
satisfy (11) and let XN ⊆ XU be a positively invariant set for

system (3) in closed-loop with (10), i.e., for system xk+1 =
(Aj + BjKj)xk when xk ∈ Ωj , j ∈ S0. Then it holds that

1) Problem III.2 is feasible at time k ∈ Z+ for state xk ∈
Ωj implies that Problem III.2 is feasible at time k + 1
for state xk+1 = Ajxk + Bju∗

k(1) + fj .

2) The MPC control (9) asymptotically stabilizes the

PWA system (3) for all feasible initial states, while

satisfying the state and input constraints (5).
3) The origin of the PWA system (3) in closed-loop with

feedback (10) is locally asymptotically stable.

Proof: Consider (8) and the shifted sequence of
controls

uk+1 := (u∗
k+1, u

∗
k+2, . . . , u

∗
k+N−1, uk+N ), (12)

where the auxiliary control uk+N is the PWL state-feedback
(10).

1) If Problem III.2 is feasible at time k ∈ Z+ for state
xk ∈ Ωj then ∃u∗

k ∈ UN (xk) that solves Problem III.2.
Then xk+N satisfies constraint (5c). Since XN ⊆ XU is
positively invariant for system (3) in closed-loop with (10),
it follows that uk+1 ∈ UN (xk+1). Hence, Problem III.2 is
feasible for state xk+1 = Ajxk + Bju∗

k(1) + fj .
2) In order to achieve stability we require for all feasible

initial conditions x0 ∈ X\{0} (note that all the states in the
set XN ⊆ XU are feasible with respect to Problem III.2)
that

V (xk+1) − V (xk) < 0; k ∈ Z+, (13)

which can be written as

V (xk+1) − V (xk) =
= J(xk+1,u∗

k+1) − J(xk,u∗
k) ≤

≤ J(xk+1,uk+1) − J(xk,u∗
k) = −x∗�

k Qx∗
k

− u∗�
k Ru∗

k + x�
k+N+1Pxk+N+1 + u�

k+NRuk+N

− x∗�
k+N (P − Q)x∗

k+N < 0 ,∀xk ∈ X\{0}.
(14)

Here, x∗
k = xk ∈ Ωj is the measured state at the sampling

instant k and xk+1 = Ajxk + Bju
∗
k + fj . Since the first

two terms of the last inequality in (14) are always negative,
it suffices to determine the matrix P such that there exists
uk+N with

x�
k+N+1Pxk+N+1 − x∗�

k+N (P − Q)x∗
k+N

+ u�
k+NRuk+N ≤ 0 ,∀xk ∈ X\{0}

(15)

for condition (13) to hold. Next, we substitute xk+N+1 =
Ajx

∗
k+N + Bjuk+N when x∗

k+N ∈ Ωj , j ∈ S0 and (10) in
(15), yielding the equivalent

x∗�
k+N

(
P − (Aj + BjKj)�P (Aj + BjKj)

−Q − K�
j RKj

)
x∗

k+N > 0

for all j ∈ S0. Since {(P,Kj) | j ∈ S0} satisfy (11) for all
j ∈ S0 it follows that (13) holds and then the value function
(7) is a Lyapunov function for the closed-loop system (3)-
(9), thereby proving asymptotic stability.

3) Since {(P,Kj) | j ∈ S0} satisfy (11) we have that{
P > 0
(Aj + BjKj)�P (Aj + BjKj) − P < 0

, j ∈ S0.

(16)
Therefore, it directly follows that the function Ṽ (x) :=
x�Px is a common quadratic Lyapunov function for the
matrices (Aj + BjKj), j ∈ S0, and then the origin of the
PWA system (3) with feedback (10) is asymptotically stable
on some region of attraction, e.g., the level set given by the
largest γ > 0 for which {x ∈ X | Ṽ (x) ≤ γ} is contained
in ∪j∈S0Ωj .

For obvious reasons it would be useful to transform the
nonlinear matrix inequality (11) into an LMI. A solution
to transform the matrix inequality (11) without the terms
Q + K�

j RKj into an LMI has been presented in [18],
where state-feedback stabilization of PWA systems has been
investigated. Note that the approach of [18] no longer works
for (11) due to the extra terms. In order to transform (11)
into an LMI, we employ the following Schur complements
[7] based technique. Consider the variables

Z := P−1 and Yj := KjP
−1 , j ∈ S0 (17)

and the LMI
∆j > 0 , j ∈ S0, (18)

where

∆j :=

⎛
⎜⎜⎝

Z Z Y �
j (AjZ + BjYj)�

Z Q−1 0 0
Yj 0 R−1 0

(AjZ + BjYj) 0 0 Z

⎞
⎟⎟⎠

Theorem IV.2 Suppose that for j ∈ S0 the variables

(P,Kj) and (Z, Yj) are related according to (17). Then (11)
and P > 0 are feasible if and only (18) is feasible.

Proof: Given in [16].
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Remark IV.3 An alternative solution to rewrite matrix in-
equalities of the form (11) as an LMI has been developed
in [14] for uncertain linear systems, in the context of robust
MPC.

If the LMI (18) is feasible then, by Theorem IV.2, the
terminal weight and the feedback gains are recovered as

P = Z−1 and Kj := YjZ
−1 for j ∈ S0. (19)

The main result of the paper can now be formulated as
follows.

Theorem IV.4 Assume that the LMI (18) is feasible and let

{(Z, Yj) | j ∈ S0} be a solution. Calculate P and Kj as

in (19) and let XN ⊆ XU be a positively invariant set for

system (3) in closed-loop with (10), i.e., for system xk+1 =
(Aj + BjKj)xk when xk ∈ Ωj , j ∈ S0. Then it holds that

1) Problem III.2 is feasible at time k ∈ Z+ for state xk ∈
Ωj implies that Problem III.2 is feasible at time k + 1
for state xk+1 = Ajxk + Bju∗

k(1) + fj .

2) The MPC control (9) asymptotically stabilizes the

PWA system (3) for all feasible initial states, while

satisfying the state and input constraints (5).
3) The origin of the PWA system (3) in closed-loop with

feedback (10) is locally asymptotically stable.

Remark IV.5 Theorem IV.1 and Theorem IV.4 require that
a common terminal weight matrix P should satisfy (11) for
all sub-models of the PWA system (3) corresponding to the
indices in S0. One possibility to relax this condition is to
use different terminal weights for each sub-model in (6) or
to employ the S-procedure [7] with respect to (11). The
implementation of these approaches is given in [16].

V. POSITIVELY INVARIANT SETS FOR PWL
SYSTEMS

In order to implement the stabilization conditions given
in Theorem IV.4 one has to compute a positively invariant
set (i.e., XN ⊆ XU) for the autonomous PWL system

xk+1 = (Aj + BjKj)xk =: Acl
j xk when xk ∈ Ωj , j ∈ S0,

(20)
where the feedback gains Kj are calculated as in (19).

It follows from Theorem IV.4 that the most obvious
choice of XN would be

XN := {x ∈ X | x�Px ≤ γ∗},
where γ∗ = supγ{{x ∈ X | x�Px ≤ γ} ⊂ XU}. However,
this set is an ellipsoid, which implies that constraint (5c)
becomes quadratic and Problem III.2 is no longer linear
in the constraints. This is an undesirable property because
Problem III.2 does not lead to an MIQP problem [1].

Another option is to calculate for the PWL system
(20) the maximal positively invariant set in the sense of
Definition II.1. Unfortunately, this set is not convex in
general, but only a union (possibly infinite) of convex sets

[12]. Only in the (rare) case when this set is a finite union
of polyhedral sets, Problem 1 can be put in an MIQP form.
However, this approach suffers from two other drawbacks.
Firstly, it considerably complicates the solution of the MIQP
problem that has to be solved on-line. Secondly, calculating
the maximal positively invariant set for a PWL system in the
sense of Definition II.1 leads to a combinatorial explosion
of possibilities.

That is why it would be preferable that XN is a poly-
hedral positively invariant set for system (20). Systematic
ways of computing such sets for PWA systems or hybrid
systems are not yet available. A possible solution for solving
this problem is developed in the sequel, thereby enabling
the results of the previous sections for application.

In order to obtain a polyhedral positively invariant set for
the PWL system (20) we consider the autonomous switched
linear system corresponding to (20), i.e.,

xk+1 = Acl
j xk, j ∈ S0, (21)

and we derive the following result.

Theorem V.1 Positive invariance for system (21) in the

sense of Definition II.2 implies positive invariance for system

(20) in the sense of Definition II.1.

Proof: This follows directly from the fact that f(x) =
fj(x) for at least one j ∈ S0 at any time, where fj(x) =
{Acl

j x} and f(x) = {Acl
j x when x ∈ Ωj}.

Let XT denote an arbitrary target set and let

Q1
j (XT ) := {x ∈ X | Acl

j x ∈ XT }.

Proposition V.2 [4] If XT is compact, then Q1
j (XT ) is

closed. If XT is convex, then Q1
j (XT ) is convex. If XT is

a polyhedron, then Q1
j (XT ) is a polyhedron.

Since we require that XN ⊆ XU and XU is not convex in
general, we consider in the followings a new safe set, X̃U,
taken as a reasonably large polyhedral set (that contains the
origin) inside XU. For instance, if XU is a polyhedron we
might choose X̃U = XU or, if

⋃
j∈S0

Ωj is a polyhedron we
could take X̃U = {x ∈ ⋃

j∈S0
| Kjx ∈ U,∀j ∈ S0}.

Consider now the following sequence of sets:

X0 = X̃U, Xi =
⋂

j∈S0

X j
i−1, i = 1, 2, . . . , (22)

where X j
i−1 := Q1

j (Xi−1)
⋂Xi−1, i = 1, 2, . . . .

Theorem V.3 The maximal positively invariant set con-

tained in the safe set X̃U, calculated for system (21) with

arbitrary switching, is a convex set that contains the origin

and is given by

P =
∞⋂

i=0

Xi = lim
i→∞

Xi. (23)

Proof: It results from (22) that Xi ⊆ Xi−1 for all
i > 0. If x ∈ P then x ∈ Xi for all i. Hence, we have that
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Acl
j x ∈ Xi−1 for all j ∈ S0 and all i. Then Acl

j x ∈ P for
all j ∈ S0. So, P is a positively invariant set for system
(21) in the sense of Definition II.2.

In order to prove that the set P is maximal let P̃ ⊂
X̃U = X0 be a postively invariant set for system (21) with
arbitrary switching. In order to use induction, we assume
that P̃ ⊂ Xi for some i. For any x ∈ P̃ we have that
Acl

j x ∈ P̃,∀j ∈ S0, yielding
⋃

j∈S0
{Acl

j x} ⊂ P̃ ⊂ Xi

and hence, x ∈ Xi+1. Thus, P̃ ⊂ Xi+1 and by induction
P̃ ⊂ Xi for all i, which yields P̃ ⊂ ⋂∞

i=0 Xi = P .
Now we prove that P is a convex set. Assume that P

is the maximal positively invariant set for system (21) with
arbitrary switching. Then we have that P is a positively
invariant set for any linear system in (21) and then it follows
from [10] that the convex hull of P is also a positively
invariant set for any linear system in (21). Hence, the convex
hull of P is a positively invariant set for system (21) in the
sense of Definition II.2. Since X̃U is a convex set, it follows
that the convex hull of P is included in X̃U. By maximality,
the convex hull of P is also included in P and thus, P is
convex.

As the origin is an equilibrium for xk+1 = Acl
j x,∀j ∈

S0, P contains the origin.

Corollary V.4 If there exists a finite i∗ such that Xi∗ =
Xi∗+1, then Xi = Xi∗ for all i ≥ i∗, P = Xi∗ and P is

polyhedral.

Proof: If there exists a finite i∗ such that Xi∗ = Xi∗+1

it follows directly from Xi ⊆ Xi−1 for all i > 0 that Xi =
Xi∗ for all i ≥ i∗ and P = Xi∗ . From Proposition V.2 and
from the fact that the intersection of (convex) polyhedra
produces (convex) polyhedra the sets X j

0 := Q1
j (X̃U)

⋂
X̃U

are polyhedra for all j ∈ S0. Then it follows that the set
X1 is a polyhedral set and, for the same reason, Xi, i =
2, 3, . . . , are polyhedral sets. Then, by hypothesis, P is also
a polyhedral set.

Corollary V.5 The set P defined as in (23) generated by the

sequence of sets (22) is a positively invariant set for the PWL

system (20).

Proof: This follows directly from Theorem V.1 and
Theorem V.3.

Remark V.6 If Corollary V.4 holds, then the set (23) gen-
erated using (22) is a polyhedral set calculated in finite time.
Due to the fact that this set is not the maximal positively
invariant set for the PWL system (20), the backward pro-
cedure of [5] can be employed to enlarge P . However, this
procedure must be implemented in the sense of Definition
II.1 and then the new regions added to P must be such that
the resulting set remains a polyhedron.

Remark V.7 For any solution of the LMI (18) a different
sequence {(P,Kj) | j ∈ S0} and a different positively

invariant set are obtained. Hence, it would be interesting
to investigate if certain conditions can be added to the
LMI (18) such that the resulting positively invariant set is
“maximized”(under constraints).

VI. EXAMPLE

Consider the example proposed in [2], i.e.,

xk+1 =

{
A1xk + Buk if [1 0]xk ≥ 0
A2xk + Buk if [1 0]xk < 0

(24)

subject to the constraints

xk ∈ X = [−5, 5] × [−5, 5], uk ∈ U = [−1, 1], (25)

where

A1 =
[

0.35 −0.6062
0.6062 0.35

]
, A2 =

[
0.35 0.6062

−0.6062 0.35

]
,

B =
[
0
1

]
.

In [2] a heuristic procedure is employed to guarantee
stability for system (24) in closed-loop with an MILP
based MPC controller. Here we use an MIQP based MPC
algorithm and a systematic method to a priori guarantee
stability. The LMI (18) has been solved using the Matlab
LMI Control Toolbox [8] for the tuning parameters Q = I2,
R = 0.4, yielding the following terminal weight matrix and
feedback gains:

P =
[
1.4876 0

0 2.2434

]
,

K1 =
[−0.611 −0.3572

]
, K2 =

[
0.611 −0.3572

]
.

(26)

We take the safe set with respect to state and input con-
straints as X̃U = {x ∈ X | |K1x| ≤ 1, |K2x| ≤ 1}. The
corresponding polyhedral positively invariant set is

XN =
{

x ∈ X̃U |
[−0.2121 0.373

0.2121 −0.373
0.2121 0.373−0.2121 −0.373

]
x ≤

[
1
1
1
1

]}
. (27)

The simulation results are plotted in Figure 1 for system
(24) with initial state x0 =

[
4 −4

]�
in closed-loop with

the MPC control (9) calculated for N = 3. A plot of the
set (27) is also depicted.

The MPC algorithm based on Problem III.2 with the
terminal weight given in (26), calculated as in (19), suc-
cessfully stabilizes system (24) while fulfilling the state and
input constraints specified in (25).

VII. CONCLUSIONS

In this paper we have derived a priori stabilization
conditions for quadratic cost based MPC of constrained
PWA systems using a terminal cost and constraint set
method. An LMI set-up has been developed to calculate
the employed terminal weight matrix and local feedback
gains such that the value function of the MPC cost is a
Lyapunov function of the PWA system in closed-loop with
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Fig. 1. Simulation results: State trajectory and input history.

the predictive controller. In order to guarantee stability, the
terminal state has to be constrained to a positively invariant
set containing the origin. A procedure for constructing a
robust positively invariant set for PWL systems has also
been developed, which is based on a new concept of positive
invariance for switched systems. If this set is polyhedral,
then the MPC optimization problem leads to an MIQP
problem, which is a standard problem in hybrid MPC.
The implementation of the stabilization conditions has been
illustrated by an example.
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