
Entropy 2015, 17, 2862-2875; doi:10.3390/e17052862
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Stabilization Effects of Dichotomous Noise on the Lifetime of the
Superconducting State in a Long Josephson Junction
Claudio Guarcello 1,2,*, Davide Valenti 1, Angelo Carollo 1 and Bernardo Spagnolo 1,2,3

1 Dipartimento di Fisica e Chimica, Interdisciplinary Theoretical Physics Group,
Università di Palermo and CNISM, Unità di Palermo, Viale delle Scienze, Edificio 18,
I-90128 Palermo, Italy; E-Mails: davide.valenti@unipa.it (D.V.); angelo.carollo@unipa.it (A.C.);
bernardo.spagnolo@unipa.it (B.S.)

2 Radiophysics Department, Lobachevsky State University of Nizhni Novgorod, 23 Gagarin Avenue,
Nizhni Novgorod 603950, Russia

3 Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-90123 Catania, Italy

* Author to whom correspondence should be addressed; E-Mail: claudio.guarcello@unipa.it.

Academic Editors: Demosthenes Ellinas, Giorgio Kaniadakis, Jiannis Pachos and Antonio M. Scarfone

Received: 6 March 2015 / Accepted: 30 April 2015 / Published: 6 May 2015

Abstract: We investigate the superconducting lifetime of a long overdamped current-biased
Josephson junction, in the presence of telegraph noise sources. The analysis is performed by
randomly choosing the initial condition for the noise source. However, in order to investigate
how the initial value of the dichotomous noise affects the phase dynamics, we extend our
analysis using two different fixed initial values for the source of random fluctuations. In our
study, the phase dynamics of the Josephson junction is analyzed as a function of the noise
signal intensity, for different values of the parameters of the system and external driving
currents. We find that the mean lifetime of the superconductive metastable state as a function
of the noise intensity is characterized by nonmonotonic behavior, strongly related to the
soliton dynamics during the switching towards the resistive state. The role of the correlation
time of the noise source is also taken into account. Noise-enhanced stability is observed in
the investigated system.

Keywords: long Josephson junction; metastability; dichotomous noise; mean switching
time; nonlinear relaxation time; noise enhanced stability; nonequilibrium statistical
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1. Introduction

Often, in solid state physics, the electric resistance of real systems shows fluctuations related to
defects that modify the electric properties of the conductors. The influence of these defects therefore
causes random modifications in the electric resistance and diffusion [1,2]. This behavior can be
described as a random process, in which the electric characteristic considered takes on only discrete
values and stochastically switches between these values. A similar behavior is usually described by the
well-known random telegraph noise (RTN). The time intervals between two successive transitions are
random, and the spectrum of values taken by the fluctuating quantity is discrete. In many different
systems, such as semiconductor devices and p-n junctions, metal-oxide-semiconductor field-effect
transistors (MOSFETs), point contacts and tunnel junctions, small semiconductor resistors or small
metallic samples, the random switching of the resistance among different values and, consequently, of
the current and voltage was observed. For a complete review about RTN, see [1]. At low temperatures,
typically only one or a few telegraph processes can be observed, but increasing the temperatures (or
the voltages applied to the device), the number of contributing telegraph processes increases [3–5].
At high enough temperatures, a continuous 1/f noise, rather than discrete resistance switching, is
observed (see [3,4,6] for two different interpretations of this behavior). According to Wakai and Van
Harlingen [7], who measured the RTN in PbInAu-In2O3-Pb Josephson junctions, RTN is generated
by electron transitions from the metallic electrodes to electron traps in the oxide layer and back.
Moreover, RTN has been observed in numerous nanodevices based on semiconductors, normal metals
and superconductors [3–5,8–12]. However, despite the great progress in 1/f noise physics, the full
understanding of the origins of low-frequency fluctuations in most of the systems showing 1/f and/or
random telegraph noise is still an unsolved problem.

In superconductors, fluctuations occur due to the random motion of quasi-particles, i.e., the
unpaired electrons, similarly to the motion of electrons in a normal conductor. A Josephson junction
(JJ) is a superconducting device composed by two superconductors separated by a thin layer of
non-superconducting material that can be in a resistive state or in a superconducting state. The stationary
and nonstationary Josephson relations describe the behavior of supercurrents and voltage difference
across the junction as a function of the difference φ of the phases of wavefunctions describing the
condensates in the two superconductors. Moreover, JJs are widely studied in out of equilibrium systems
characterized by tilted or switching periodic potentials [13,14].

Recently, the characterization of JJs as detectors, based on the statistics of the escape times, has
been proposed [15–22]. Specifically, the statistical analysis of the switching from the metastable
superconducting state to the resistive running state of the JJ has been proposed to detect weak periodic
signals embedded in a noisy environment [17,18]. Moreover, the rate of escape from one of the
metastable wells of the tilted washboard potential of a JJ encodes information about the non-Gaussian
noise present in the input signal [15,16,19–21]. After the seminal paper by Tobiska and Nazarov [23],
JJs used as threshold detectors allow one to study non-Gaussian features of current noise [19,20].
Specifically, when a JJ leaves the metastable zero voltage state, it switches to a running resistive state, and
a voltage appears across the junction. Therefore, it is possible to measure the escape times or switching
times directly and to determine their probability distribution [24–29].
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In the last decade, theoretical progress allowed calculating the entire probability distribution of the
noise signal and its cumulants, performing a full counting statistics of the current fluctuations [30].
Moreover, the presence of non-Gaussian noise signals has been found experimentally in many
systems [31–36]. As an example, in a wireless ad hoc network with a Poisson field of co-channel users,
the noise has been well modeled by an α-stable distribution [36]. A non-equilibrated heat reservoir can be
considered as a source of non-Gaussian noise sources [33–35]. Specifically, the effect of non-Gaussian
noise on the average escape time from the superconducting metastable state of a current biased JJ,
coupled with non-equilibrium current fluctuations, has been experimentally investigated [31,32].

Other theoretical works analyzed the switching dynamics from the superconducting state to the
resistive one. In long and short JJs, in the presence of both Gaussian and non-Gaussian noise sources,
the existence of a threshold junction length has been shown above which the formation of noise-induced
solitons is permitted [37–43]. The dependence of this threshold length with respect to the geometry of
the junction was also studied [44], finding that for the annular structure, it is twice as long as the linear
one. For a junction length smaller than this value, the connection among the parts of the junction is so
strong, that soliton formation is forbidden. As a result, the junction can move from, or remain inside, a
potential minimum as a whole.

In this work, we study the effects of a source of dichotomous RTN (dRTN) on a long JJ (LJJ), excited
by both constant and oscillating external driving currents. We study the mean switching time (MST), that
is the average time the junction takes to switch from the superconducting state to the resistive regime, as
a function of various parameters of system and the noise source. The dynamics of the phase difference
of the LJJ, analyzed within the sine-Gordon model [37,38,45,46], is characterized by the formation and
propagation of particular wave packets, called solitons [47,48]. Their presence is strongly related to the
penetration of the magnetic flux quanta, i.e., fluxons [49,50], traveling through the junction during the
switching towards the resistive state.

The paper is organized as follows. Section 2 briefly illustrates the mathematical model and
the computational approach used to describe the dynamics of the system, carefully discussing the
sine-Gordon (SG) equation and the dichotomous noise signal. In Section 3, results are presented and
discussed. In the last section, the conclusions are drawn.

2. The Model

In long JJs, the magnetic field generated by the Josephson current itself is no longer negligible. Long
JJs have a spatial size larger than the Josephson penetration depth λJ , which gives a measure of the
maximum length for which Josephson direct currents are confined at the edge of the junction. For a LJJ,
the dynamics of the order parameter φ is described in terms of a nonlinear partial differential equation,
called the sine-Gordon (SG) equation. The SG equation used in our work is “perturbed” by a dissipative
term, a driving current ib(t) and the dRTN term iDN, which appear in the RHS of the following equation:

βc
d2φ

dt2
− d2φ

dx2
+ sin(φ) = −dφ

dt
+ ib(t) + iDN(t). (1)

Here, the x-axis is along the junction and the z-axis is perpendicular to the barrier. Equation (1) is written
measuring the distance x in units of λJ and the time t in units of the inverse of the characteristic frequency
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ωJ of the junction. The coefficient βc = ωJRC, where R and C are the effective normal resistance and
capacitance of the junction, respectively, is the Stewart–McCumber parameter. The bias current ib(t)
and the supercurrent are both normalized to the critical current ic of the junction. The presence of an
external magnetic field Γ is taken into account in the boundary conditions of Equation (1):

φx(0, t) = φx(L, t) = Γ, (2)

where L is the length of the junction normalized to λJ . Hereinafter Γ = 0 is imposed. An LJJ can be
depicted as a long string lying along the washboard potential (WP) U(φ, x, t) given by:

U(φ, x, t) = 1− cos(φ(x, t))− ib(t) φ(x, t). (3)

The sinusoidal term of Equation (3) gives, at each time, the sequence of the maxima and minima
(metastable states) characteristics of the WP, while the bias current ib(t) determines the slope of the
potential. A tilted washboard potential and a string located between two consecutive valleys are shown
in (a) of Figure 1.
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Figure 1. (a) Washboard potential in a fixed instant of its dynamics with a soliton located
between two adjacent valleys. (b) Different slopes of the washboard potential during one
period T of oscillation, in particular at times t = 0, T/2, T (solid line) and t = T/4, 3T/4

(dotted lines), with i0 = 0.5 and A = 0.7. The red arrows are used to stress the four different
“parts” in which the time evolution of the potential can be divided. This partition allows
us to identify the time intervals in which the “rightward” escape dynamics of the string is
supported or disadvantaged by the dynamics of the potential.

The external bias current is formed by a constant term i0 in addition to an oscillating component:

ib(t) = i0 + A sin(ωt), (4)

where the amplitude A and the frequency ω of the dimensionless driving current are normalized to ic and
ωJ , respectively. Hereafter, the amplitude of the oscillating component of the current is set to A = 0.7.
Due to the sinusoidal term in the bias current, the washboard slope oscillates with the same frequency
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ω around the mean value i0. When ib ≥ 1, the barriers between consecutive minima of the potential
vanish, and the metastable states are removed.

The expression for the left (or right) potential barrier height ∆U+(or ∆U−) is:

∆U±(t) = 2
√

1− i2b(t) + ib(t)[2 arcsin(ib(t))± π]. (5)

In this work, three different initial values of the bias current are set, namely i0 = {0.1, 0.5, 0.9}, so that
the time averages of the right potential barrier height are ∆U−

i0
≃ {1.9, 1.0, 0.4}, respectively.

The SG equation admits stable traveling wave solutions, called solitons and antisolitons, represented
by a 2π step in φ with the string lying on two adjacent WP valleys (see the solid line in (a) of Figure 1).
The rest energy of a soliton is equal to eight in units of E0, where E0 is defined as the Josephson
coupling energy of a small Josephson junction of area λJw, with w the width of the junction. In a long
JJ, all energies are normalized to the characteristic energy E0, which is obtained as the product between
the Josephson coupling energy per unit length eJ [50] and the Josephson penetration length λJ , that is
E0 = eJλJ . In Equation (5), ∆U± are the energy barriers seen by every cell (i.e., the short junction limit
of a long JJ) normalized to the Josephson coupling energy eJ [29].

The soliton formation and the MST behavior are studied looking at the escape dynamics of the string
through the potential barriers, whose heights are just ∆U±. The string is initially at rest within the first
washboard valley, that is φ (x, 0) = arcsin (i0) ∀x : 0 ≤ x ≤ L.

The stochastic current iDN(x, t), representing the dRTN signal, is equal to:

iDN(x, t) = γ β(t), (6)

where γ is the normalized noise amplitude and β(t) randomly jumps between two values, βup and βdown.
In detail, the parameter β(t) is a dichotomous stochastic process, whose jump rate is a periodic function:

γDN(t) =


0, ∆tr ≤ τd

γ0 (1 + ADN |cos (ωDNt)|) , ∆tr > τd.

(7)

Here, ∆tr is the random time interval between two consecutive switches, and τd is the delay between two
jumps, that is the time interval after a switch, before another jump can occur. In Equation (7), ADN and
ωDN are the amplitude and the angular frequency of the periodic term, respectively, and γ0 is the jump
rate in the absence of periodic term. In Figure 2, the time series of β(t) for different values of the delay
τd, namely τd = 0.5, 3, 10, is shown, setting βup = 1 and βdown = −1. We note that the correlation time
τd of the dichotomous noise affects the time of switching between the two levels of β(t). For a delay
time greater than TDN, where TDN = 2π/ωDN, we observe a synchronization between the jumps and the
periodicity of the rate γDN(t). A similar approach to model the dichotomous noise source was previously
implemented and used in other contexts, from a Lotka–Volterra system of two [51,52] or more [53,54]
competing species to electron transport dynamics in Gallium arsenide (GaAs) samples [55].
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Figure 2. Time evolution of the dichotomous noise signal β(t) with different values of the
delay: τd = 0.5 (a), 3 (b), 10 (c). The values of the other parameters are: ADN = 0.9,
ωDN = 1.0, γ0 = 0.02, β(0) = βdown.

Equation (1) is numerically solved within the Ito scheme. The system is overdamped, condition
obtained imposing βc = 0.01. The numerical solution of Equation (1) is calculated setting the time
and spatial steps to ∆t = 0.05 and ∆x = 0.05, respectively. We calculate the mean switching time
(MST) towards the resistive state, starting from the metastable state (bottom of a potential minimum)
corresponding to the superconducting regime. The MST τ is a nonlinear relaxation time (NLRT) [56]
and represents the mean value of the permanence times of the phase φ within the first valley, that is
φ ∈ [φL

Max , φR
Max]. Due to the stochastic nature of the dynamics of the system, the switching time has

been obtained averaging over a sufficiently large number (N = 5000) of stochastic realizations. The
thresholds φL

Max and φR
Max are, respectively, the positions of the left and right maxima, which bound

the minimum chosen as the initial condition. No absorbing barriers are set, so that during the entire
observation time, tmax, all of the events of permanence inside the initial minimum are taken into account
to calculate τ . The probability Pij that φ ∈ [φL

Max , φ
R
Max], in the i-th realization for the j-th cell (i.e., the

elementary parts forming the string), is:

Pij(t) =


1 ⇐⇒ φ ∈ [φL

Max , φ
R
Max]

0 ⇐⇒ φ /∈ [φL
Max , φ

R
Max].

(8)

Summing Pij(t) over the total number Nc = L/∆x of cells and over the number N of realizations, the
average probability that the entire string is in the superconducting state at time t can be computed:

P (t) =
1

N Nc

N∑
i=1

Nc∑
j=1

Pij(t). (9)

The MST τ is therefore calculated as:

τ =

∫ tmax

0

P (t)dt. (10)

3. Results

The analysis is performed studying the MST τ as a function of the noise intensity γ. The values of
γ are in the interval γ ∈ [10−4, 102] and normalized to the critical current ic. The length of the junction
is set to L = 20, that is a value large enough to allow solitons formation along the string [37,43]. The
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driving frequency is set to ω = 0.2. Three different values of the correlation time τd are used, namely
τd = {0.5, 3, 10} (see Figure 2). These values are chosen to be, respectively, shorter, comparable and
greater than half oscillation period TDN/2 of the jump rate γDN(t) of the noise signal (see Equation (7)).

The escape dynamics from the metastable state is strongly related to the height of the potential barriers
that the phase string has to overcome to switch towards the resistive state. The height of these barriers,
according to the Equation (5), is directly dependent on the slope of the potential, which coincides with
the bias current value. To completely explore the switching dynamics of an LJJ, three values of the
initial bias current are chosen i0 = {0.1, 0.5, 0.9}. In this way, we set, respectively, a small, halfway and
high value of the mean potential slope. Using a large positive initial bias current, the escape events from
the metastable state occur preferentially throughout the “right” potential barrier. Conversely, setting
small values of the initial bias current, the escape dynamics throughout the “left” potential barrier can
also occur.
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Figure 3. Mean switching time (MST) τ as a function of the noise intensity γ, varying
the initial bias current i0 = {0.1, 0.5, 0.9} and the correlation time τd = {0.5, 3, 10} with a
random initial value of β(t). The values of τd are: 0.5 (a), 3 (b) and 10 (c). The legend in (b)
refers to all panels.

The dRTN signal of Equation (6), applied to the junction together with an external bias current,
can hinder or support the switching dynamics from the superconducting state. In particular, a noise
contribution with the sign equal to the bias current increases the potential slope, assisting the escape
events of the phase string. Conversely, a noise contribution of opposite sign to the bias current contrasts
with the escape events and further confines the string within a potential minimum. Therefore, an initial
value of the dichotomous noise of the sign equal or opposite to the bias current can strongly affect the
MST value. Although the MST τ is an NLRT, the value of τ is mainly influenced by the time the
string requires for the first escape from the initial metastable state. Therefore, imposing β(0) = βdown

or β(0) = βup, the phase evolution of the string and the value of τ can drastically change. To release
the results from the initial condition of the dRTN, the value of β(0) can be randomly chosen among
βdown and βup in each numerical realization. The data obtained randomly choosing the initial value β(0)
of the dichotomous signal are shown in Figure 3. Panels (a), (b) and (c) of this picture show data for
τd = {0.5, 3, 10}, respectively, and every panel contains curves for i0 = {0.1, 0.5, 0.9}. The τ data for
i0 = 0.1 show an evident saturation effect for low noise intensities as the result of setting an observation
time tmax not long enough to observe escape events. Nonmonotonic behaviors characterize the MST
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curves. To well understand the results obtained, the analysis setting β(0) = βdown and β(0) = βup had
to be performed.

The results of this study are shown in Figure 4. Every panel of this figure contains curves for
i0 = {0.1, 0.5, 0.9}. The top panels are obtained setting β(0) = βdown with τd = {0.5 (a), 3 (b) and
10 (c)}. The bottom panels are obtained setting β(0) = βup with τd = {0.5 (d), 3 (e) and 10 (f)}.
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Figure 4. MST τ as a function of the noise intensity γ, with initial bias current i0 =

{0.1, 0.5, 0.9} and correlation time τd = {0.5, 3, 10}, setting the initial values of β(t) to
β(0) = βdown (a,b,c) and β(0) = βup (d,e,f). The values of τd are: 0.5 (a,d); 3 (b,e); 10 (c,f).
The driving frequency is ω = 0.2. The legend in (b) refers to all panels.

All curves for i0 = 0.1 show a saturation effect of the MST (i.e., τ = tmax) for low noise intensities,
followed by a decreasing behavior. Setting this slope (i0 = 0.1), the mean values of the right and left
potential barrier are ∆U−

0.1 ≃ 1.9 and ∆U+
0.1 ≃ 2.6, respectively. The cells can escape from the potential

minimum only when the noise contribution is strong enough to cancel the potential barriers, that is when
γ > 1.

With i0 = 0.5 and i0 = 0.9, the bias current ib(t) takes on values greater than one, so that the right
potential barrier vanishes during the oscillation of the potential. As a result, the string is able to escape
from the potential minimum also if γ → 0. In particular, for i0 = 0.5 and i0 = 0.9, the MST are
τ 0.5
γ→0 ≃ 11.4 and τ 0.9

γ→0 ≃ 5.3, respectively, for each value of τd and both initial conditions.
It is noteworthy that in Panels (a), (b) and (c) of Figure 4 for high noise intensities, specifically for

γ ≳ 4, the curve for i0 = 0.1 is lower than the curves for greater slopes. This counterintuitive behavior
is related to the initial condition β(0) = βdown and to the fact that τ is computed as an NLRT. A very
intense noise in fact causes a rapid shift leftward of the string. However, when a mean slope significantly
greater than zero is applied, i.e., i0 = 0.5 and 0.9, the string tends to roll rightward along the potential
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up to returning within the initial potential valley, contributing again to increasing the MST. The data of
the bottom Panels (d), (e) and (f) of Figure 4, obtained setting β(0) = βup, show that the MST, as well
as the right potential barrier, reduces as i0 increases.

The data obtained for i0 = 0.5, shown in (a) of Figure 4, as the noise intensity increases, exhibit
an effect of noise-enhanced stability (NES) [42,43,56–74], a noise-induced phenomenon consisting
of a nonmonotonic behavior with the appearance of a maximum. In the presence of NES, the
stability of metastable states is enhanced, and the average lifetime of the metastable state increases
non-monotonically with the noise intensity. The maximum shown in Panel (a) is obtained in
correspondence with γNES = 1 and τNES ≃ 38. This NES effect occurs due to several negative and
positive jumps that the dRTN source exhibits for a low value of τd, before the string escapes from the
metastable state. The nodal point to observe this NES maximum is to impose as the initial condition
β(0) = βdown. In this way, in the short time τ 0.5

γ→0 ≃ 11.4 that the string needs to escape in the absence
of noise (deterministic escape time), the number of negative jumps is larger than the positive ones. As
a consequence, the string is confined in the initial minimum. Conversely, setting β(0) = βup, for short
delay times τd, see (d) and (e) of Figure 4, the NES maxima vanish.

Concerning the results obtained for β(0) = βdown and i0 = 0.5, shown in (b) and (c) of Figure 4, we
note that, as τd increases, the noise is less and less able to confine the string within the first WP minimum,
and the NES effect tends to vanish. For τd = 3, the NES maximum is centered at γ = 5, and the MST
value is τNES ≃ 23. There is no evidence of the NES effect setting τd = 10. This occurs because up to
t = τd, the string feels the confining effect of β(0) = βdown during the initial times of its dynamics, that
is when its inertial mass is quite high, since the string is initially at rest and the system is overdamped.
For t ≳ τd = 10, the RTN switches to βup, and the string feels a noise signal that assists its escape
dynamics. When this occurs, the potential is in an ideal configuration to support an escape event. Panel
(b) of Figure 1 shows the WP for i0 = 0.5 in three different positions during one period of oscillation.
The solid line of this panel represents the WP for t = {0, T/2, T} (mean slope), while the dotted lines
represent the WP for t = T/4 and t = 3T/4 (maximum and minimum slopes, respectively). Setting
ω = 0.2, a quarter of period of oscillation is T/4 ∼ 8. The red arrows are used to divide into four parts
the evolution of the potential. The rightward escape of the phase string can be supported (Parts 1 and
2) or disadvantaged (Parts 3 and 4) by the potential dynamics. When t ≳ 10, β(t) switches to βup, the
potential is in the second part of its evolution, and the string can be easily pushed out of the metastable
state. Conversely, setting β(0) = βup, initially, the dRTN tends to push out the string when its inertial
mass is high. When t ≳ 10, β(t) switches to βdown, and the noise signal tends to confine the string within
the potential minimum. This explains the NES effect that emerges in (f) of Figure 4 for i0 = 0.5. This
NES maximum is centered at γ ≃ 0.4 with an MST value τNES ≃ 38. The curve for i0 = 0.1 of this
panel shows a minimum centered at γ = 2, that is in correspondence with a noise intensity that almost
matches the time average of the right potential barrier height ∆U−

0.1 ≃ 1.9. For noise intensities that are
a little higher, first, the MST slightly grows due to retrapping events throughout the left potential barrier
and then decreases exponentially when the noise intensity further increases.

The curves shown in Figure 3 were obtained by randomly choosing the initial condition β(0) of the
dichotomous noise and are therefore an average between the results obtained setting β(0) = βdown and
those obtained for β(0) = βup.
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4. Conclusions

We studied the effects of a correlated dichotomous noise on the switching dynamics from the
superconducting state towards the resistive state of a long overdamped Josephson junction (JJ). The
analysis was computationally performed within the framework of the sine-Gordon equation, studying
the mean lifetime of the metastable state of the junction. The mean switching time (MST) of the phase
difference across the JJ was analyzed varying the intensity of the noise source when the system is driven
by an external oscillating bias current. The junction length is set to a value great enough to observe
noise-induced soliton formation along the string.

We found nonmonotonic behavior of the MST τ as a function of the noise intensity γ, with
characteristics related to the initial value of the applied bias current. In particular, we observed a
noise-induced phenomenon called noise-enhanced stability (NES), whose characteristics depend on the
initial value imposed by the dichotomous noise. In particular, we observed several temporary trapping
events related to the specific choice, βup or βdown, of the initial value β(0) of the noise source. The
study was extended, exploring the effects of the correlation time τd of the dichotomous noise on the
nonmonotonic behaviors observed. Moreover, curves obtained for a random initial condition of the
noise signal were presented. These results show non-monotonic trends that can be understood in light of
the analysis performed by deterministically choosing the initial condition of β(t).

Our results contribute to a deeper comprehension of the physics of fluctuations in long JJs in view of
an improvement of the performance of these devices. Our findings could help to shed light on the general
context of the nonequilibrium statistical mechanics. In fact, JJs are good candidates to probe relevant
physics issues in metastable systems [25]. Moreover, the MST from one of the metastable states of the
potential profile encodes information on the non-Gaussian background noise. Therefore, the statistical
analysis of the switching times of JJs can be used to analyze weak signals in the presence of a background
noise characterized by unknown non-Gaussian statistics.
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