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STABILIZATION FOR THE 3D NAVIER-STOKES SYSTEM BY
FEEDBACK BOUNDARY CONTROL

A. V. FURSIKOV

Dedicated to Mark Iosifovich Vishik

Abstract. We study the problem of stabilization a solution to 3D Navier-
Stokes system given in a bounded domain Ω. This stabilization is carried
out with help of feedback control defined on a part Γ of boundary ∂Ω. We
assume that Γ is closed 2D manifold without boundary. Here we continuer
investigation begun in [6],[7] where stabilization problem for parabolic equation
and for 2D Navier-Stokes system was studied.

1. Introduction. This paper is devoted to study the problem of stabilization a
solution v(t, x) to boundary value problem for three-dimensional (3D) Navier-Stokes
equations given in a bounded domain Ω ∈ R

3. This solution is stabilized near a
steady- state solution to 3D Navier-Stokes system. We carry out this stabilization
with help of control u defined on a part Γ of boundary ∂Ω. Our assumption
imposed on Γ is that Γ is a closed two-dimensional surface and therefore Γ is a
separate component of ∂Ω.

We require that control u = u(t, x′), t > 0, x′ ∈ Γ has to possess the following
important property: u is a feedback control. This means that for each instant t
u(t, ·) is defined by fluid flow velocity vector field v(t, ·) taken at the same instant
t and therefore control u can react on unpredictable fluctuations of v suppressing
their negative influence to fluid flow. There is a mathematical formalization for this
physical notion of feedback, which was proposed long time ago. With help of this
formalization number results of stabilization for equations described incompressible
fluid flow were obtained: stabilization of 2D Navier-Stokes equation by distributed
control supported on the whole Ω and written in an abstract form (Barbu, Sritharan
[1]), and stabilization by boundary control of 2D Euler equations for incompressible
fluid flow (Coron [3]).

In this paper we use a certain new formalization of feedback notion that we
proposed in [6], [7], and that is more adequate (from our point of view) to study
stabilization problem by boundary feedback control in the case of parabolic equa-
tions and Navier-Stokes system. Moreover, here we develop approach to stabiliza-
tion problem from [6], [7] in order to get stabilization result for 3D Navier-Stokes
equations. The main point of this approach is to construct a special operator that
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extends solenoidal vector fields from Ω on a certain domain G containing Ω. Exten-
sion operator connected with linearized Navier-Stokes equations (i.e. with Oseen
system) is constructed below in Section 5 and extension operator corresponding to
nonlinear case is built in Section 6. Construction of these extension operators is
based on a linear independence property of finite systems of eigen and associated
functions for adjoint steady- state Oseen system when these functions are regarded
over arbitrary subdomain ω ⊂ G. We prove this property in Section 4 with help
of Carleman estimates using some abstract result from [6]. In Section 2 we formu-
late stabilization problem for Navier-Stokes equation and, besides, we compare two
mathematical formalizations of feedback notion: classical one and the formalization
that was proposed in [6], [7]. In Section 3 we recall certain well known results, used
in the paper.

2. Setting of the problem and the main idea of the method.

2.1. Setting of the stabilization problem. Let Ω ⊂ R
3 be a bounded connected

domain with C∞ -boundary ∂Ω which consists of two nonintersecting parts Γ0 and
Γ:

∂Ω = Γ0 ∪ Γ, Γ0 ∩ Γ = ∅ (2.1)

where Γ0, Γ are closed subsets of ∂Ω, i.e. Γ0, Γ are finite sets of connected C∞-
manifolds of dimension 2. We assume that Γ �= ∅ but we admit that the set Γ0 can
be empty.

We set

Q = R+ × Ω, Σ = R+ × Γ, Σ0 = R+ × Γ0. (2.2)

In space-time cylinder Q we consider the Navier-Stokes equations

∂tv(t, x) − ∆v(t, x) + (v,∇)v + ∇p(t, x) = f(x), (t, x) ∈ Q (2.3)

div v = 0 (2.4)

(v = (v1, v2, v3)) with initial condition

v(t, x)|t=0 = v0(x), x ∈ Ω (2.5)

and boundary conditions

v|Σ0 = 0, v|Σ = u, (2.6)

where u = (u1, u2, u3) is a control defined on Σ.
We suppose also that a steady-state solution (v̂(x),∇p̂(x)) of Navier–Stokes sys-

tem with the same right-hand side f(x) as in (2.3) is given:

∆v̂(x) + (v̂,∇)v̂ + ∇p̂ = f(x), div v̂(x) = 0, x ∈ Ω (2.7)

v̂|Γ0 = 0. (2.8)

Let σ > 0 be given. The problem of stabilization with the rate σ is to look for a
control u(t, x′), x′ ∈ Γ such that the solution (v, p) of problem (2.3)–(2.6) with the
boundary value u satisfies the inequality

‖v(t, ·) − v̂‖(H1(Ω))2 � ce−σt as t → ∞. (2.9)
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2.2. Feedback control. Classical definition. Our important additional require-
ment is that a stabilization problem should be solved with help of feedback control.
From physical point of view feedback notion means that control function u(t, ·) at
instant t should be defined with help of state function v(t, ·) taken just at the same
time moment t. This has to give possibility for control to react on unpredictable
fluctuations of the state function in order to suppress all undesirable effects of these
fluctuations.

There is well known mathematical formalization of this physical feedback notion
which was proposed in control theory for ordinary differential equations. To recall
it we rewrite problem (2.3)–(2.6) in a form of abstract ordinary differential vector-
valued equation

∂tv(t, ·) = F (v(t, ·), u(t, ·)), v(t, ·)|t=0 = v0 (2.10)

where F (·, ·) : V × U → W is a nonlinear operator acting from direct product
of phase space V and control space U to W (V,U,W are Banach spaces). Then
steady-state problem (2.7),(2.8) can be rewritten as follows:

F (v̂(·), û(·)) = 0 (2.11)

Suppose that (v̂, û) ∈ V × U is a given solution of (2.11). Then the problem of
stabilization for solution to (2.10) near steady-state solution (v̂, û) with a prescribed
rate σ > 0 is to find u(t, ·) such that the solution v(t, ·) of problem (2.10) with this
u(t, ·) substituted into, satisfies the inequality

‖v(t, ·) − v̂‖V � ce−σt as t −→ ∞. (2.12)

Definition 2.1. Control u(t, ·) of stabilization problem (2.10)–(2.12) is called feed-
back if there exists a map R : V → U such that for each t > 0 u(t, ·) = R(v(t, ·)).

Recall that classical formulation of a stabilization problem by feedback control
is as follows:

Given steady-state solution (v̂, û) of (2.10), find a map R : V → U such that the
solution v(t, ·) of problem

v̇(t, ·) = F (v(t, ·), R(v(t, ·))), v(t, ·)|t=0 = v0 (2.13)

satisfies (2.12). (R does not depend on v0)

Remark 2.1. Usual assumption imposed on the exponent σ in this formulation is
that σ is a certain positive but it is not an arbitrary positive as in formulation (2.3)–
(2.9). But usually a map R is looked for by such a way that boundary value problem
(2.13) is well posed, i.e. inequality (2.12) remaines true after small fluctuations of
data for this problem .

If stabilization problem by feedback control should be solved only for initial
conditions v0 belonging to a certain neighborhood of v̂, then it is called a local
stabilization problem. This classical setting of stabilization problem by feedback
control was successfully applied not only for controlled ordinary differential equa-
tions but also for certain controlled PDE including 2D Navier-Stokes equations with
distributed control supported on the whole domain containing liquid (see [1]). Nev-
ertheless this approach did not give yet possibility to solve stabilization problem for
general quasi linear parabolic equation or for Navier-Stokes system with feedback
control supported on the boundary of the domain as our new setting proposed in [6],
[7]. Properties of Euler equations regarded in [3] differ essentially from properties
of parabolic equation or Navier-Stokes system.
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2.3. The main idea of construction. Construction of feedback control which
we proposed in [6], [7] is not included in the framework of Definition 2.1. Let recall
this construction.

Let ω ⊂ R
3 be a bounded domain such that

Ω ∩ ω = ∅, Ω ∩ ω = Γ (2.14)

We set
G = Int(Ω ∪ ω) (2.15)

(the notation IntA means, as always, the interior of the set A). We suppose that
∂G is a two-dimensional surface belonging to the smoothness class C∞.

We extend problem (2.3)–(2.6) from Q = R+ × Ω to Θ = R+ × G For this end
we forget for a while about the second boundary condition in (2.6) and write this
extended problem as follows:

∂tw(t, x) − ∆w + (w,∇)w + ∇q(t, x) = g(x), div w(t, x) = 0 (2.16)

w(t, x)|t=0 = w0(x) (2.17)

with additional condition
w|S = 0 (2.18)

where S = R+ × ∂G. Moreover we assume that solution (v̂,∇p̂) of (2.7), (2.8) is
extended on G in a pair (a(x),∇q̂(x)), x ∈ G such that

−∆a(x) + (a,∇)a + ∇q̂(x) = g(x), div a(x) = 0, x ∈ G (2.19)

a|∂G = 0 (2.20)

where right side g(x) is the same as in (2.16). (We show below how to construct
such extension.) Note that, actually, w0 from (2.17) will be a special extension of v0

in (2.5) from Ω to G : w0 = Extσv0. More precisely, w0 should belong to the stable
manifold Mσ which is invariant with respect to the semigroup generated by the
Navier-Stokes problem (2.16)–(2.18) and which contains solutions w(t, ·) tending
to a with the rate σ (as in (2.9)). More detailed definition of Mσ will be given in
Section 6.

We introduce the following space of solenoidal vector fields:

V k(G) = {v(x) ∈ (Hk(G))3 : div v(x) = 0}
where Hk(G) is Sobolev space of functions f(x), x ∈ G belonging to L2(Ω) together
with their derivatives of order not more than k. Definition of Hk(G) with fractional
or negative k see in [15]. (Hk(G))3 is Sobolev space of three- dimensional vector
fields f(x) = (f1(x), f2(x), f3(x)) with fi(x) ∈ Hk(G). For vector fields defined on
G we introduce the operator γΩ of restriction on Ω and the operator γΓ of restriction
on Γ:

γΩ : V k(G) −→ V k(Ω), k � 0, γΓ : V k(G) −→ (Hk−1/2(Γ))3, k > 1/2. (2.21)

As well known (see, for instance, [15]), operators (2.21) are bounded.

Definition 2.2. A control u(t, x) in stabilization problem (2.3)–(2.6) is called feed-
back if the solution (v(t, x), u(t, x)) of (2.3)–(2.6) is defined by the equality:

(v(t, x), u(t, x)) = (γΩw(t, ·), γΓw(t, ·)) (2.22)

where w(t, x) satisfies to (2.16)–(2.18), and γΩ, γΓ are operators of restriction of a
function defined on G to Ω and to Γ respectively.
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This definition of feedback control is basic for us: we will use only it below. Now
we show connection between Definitions 2.1 and 2.2.

Let S(t, w0) be the semigroup generated by boundary value problem (2.16)–
(2.18), i.e. if w(t, ·) is a solution to (2.16)–(2.18) with initial condition w0, then
S(t, w0) = w(t, ·). Then the map which acts initial condition v0 from (2.5) to the
solution v(t, ·) of (2.3)–(2.5) is defined as follows:

v(t, ·) = γΩS(t,Extσv0) (2.23)

Using (2.23) we define the following extension operator from Ω to G:

E(t, v(t, ·)) = S(t,Extσv0) (2.24)

where v0 is the initial condition of v(t, ·). Note that operator E(t, ·) depends on
t because it is defined on the set of functions which belong to the image of the
operator S(t,Extσ·) and this set depends on t. Now we can define the operator
which acts solution v(t, ·) to the correspondent control function u(t, ·):

u(t, ·) = R(t, v(t, ·)) ≡ γΓE(t, v(t, ·)) (2.25)

In contrast to operator R from Definition 2.1 operator (2.25) depends on t.

3. Ozeen equations. We begin investigation of stabilization problem from the
case of linearized Navier-Stokes equations, i.e. from the Ozeen equations. Note
that the results of this section connected with 3D Oseen equations as well as their
proofs are absolutely identic to analogous results and proofs for 2D Oseen equations.
That is why we give here only their short formulation. Detailed exposition of these
results can be found in [7].

3.1. Preliminaries. Let G be domain (2.15). We consider in R+ × G the Oseen
equation which is written as follows:

∂tw(t, x) − ∆w + (a(x),∇)w + (w,∇)a + ∇p(t, x) = 0 (3.1)

div w(t, x) = 0 (3.2)
w(t, x)|t=0 = w0(x) (3.3)

Moreover, we impose on w the zero Dirichlet boundary condition

w|S = 0, (3.4)

where S = R+ × ∂G. We assume that

a(x) ∈ V 2(G) ∩ (
H1

0 (G)
)3

(3.5)

where, recall, Sobolev spaces V k(G), Hk(G) were defined above, and H1
0 (G) =

{f(x) ∈ H1(G) : f(x)|x∈∂G = 0}. In the case k = 0 we define

V 0
0 (G) = {v(x) ∈ V 0(G) : v · ν|∂Ω = 0} (3.6)

where ν(x) is the vector-field of outer normals to ∂G. In [16] it is established that
restriction v · ν|∂Ω is well defined for v ∈ V 0(G). Denote by

π : (L2(G))2 −→ V 0
0 (G) (3.7)

the operator of orthogonal projection. We consider the Ozeen steady state operator

Av ≡ −π∆v + π[(a(x),∇)v + (v,∇)a] : V 0
0 (G) −→ V 0

0 (G) (3.8)

where a(x) is vector-field (3.5). This operator is closed and it has the domain:

D(A) = V 2(G) ∩ (H1
0 (G))2 (3.9)
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which is dense in V 0
0 (G).

Assuming that spaces in (3.7), (3.9) are complex we denote by ρ(A) the resolvent
set of operator A, i.e. the set of λ ∈ C such that the resolvent operator

R(λ,A) ≡ (λI − A)−1 : V 0
0 (G) −→ V 0

0 (G) (3.10)

is defined and continuous. Here I is identity operator. Denote by Σ(A) ≡ C
1 \ρ(A)

the spectrum of operator A.
As well-known, Ozeen operator (3.8) is sectorial, i.e. there exist ϕ ∈ (0, π/2),

M � 1, a ∈ R such that

Sa,ϕ = {λ ∈ C : ϕ � | arg(λ − a)| � π, λ �= a} ⊂ ρ(A) (3.11)

and ‖(λI −A)−1‖ � M/|λ− a|, ∀λ ∈ Sa,ϕ. Besides, for λ ∈ ρ(A) resolvent (3.10)
is a compact operator, and the spectrum Σ(A) consists of a discrete set of points.

We decompose the resolvent R(λ,−A) in a neighborhood of −λj ∈ Σ(−A):

R(λ,−A) =
∞∑

k=−m

(λ + λj)kRk, Rk = (2πi)−1

∫
|λ+λj |=ε

(λ + λj)−k−1R(λ,−A)dλ

(3.12)
Note that m < ∞.

Let us consider the adjoint operator A∗ to Ozeen operator (3.8):

A∗w ≡ −π∆w − π[(a(x),∇)w − (∇a)∗w] : V 0
0 (G) −→ V 0

0 (G) (3.13)

where

(∇a)∗w = ((∂1a,w), (∂2a,w), (∂3a,w)), (∂ia,w) =
3∑

j=1

∂iajwj

Evidently, A∗ is a closed operator with domain D(A∗) = V 2(G) ∩ (H1
0 (G))2.

Moreover, A∗ is sectorial with a compact resolvent and

ρ(A∗) = ρ(A) and R(λ,A)∗ = R(λ̄, A∗) ∀ λ ∈ ρ(A) (3.14)

(Here the line above means complex conjugation.) Below we always assume that

vector field a(x) from (3.5), (3.8), (3.13) is real valued. (3.15)

That is why we have ρ(A) = ρ(A) = ρ(A∗) = ρ(A∗).

3.2. Structure of Rk with k < 0. Let −λj ∈ Σ(−A) be an eigenvalue of −A, and
e �= 0, e ∈ ker(λ0I + A) be an eigenvector. Vector ek is called associated vector of
order k to e if ek satisfies:

(λ0I + A)e = 0, e + (λ0I + A)e1 = 0, . . . , ek−1 + (λ0I + A)ek = 0.

We say that e, e1, e2, . . . form a chain of associated vectors. The maximal order m
of vectors, associated to e is finite and the number m + 1 is called multiplicity of
the eigenvector e.

Definition 3.1. The set of eigenvectors and associated vectors

e(k)(−λj), e
(k)
1 (−λj), . . . , e(k)

mk
(−λj) (k = 1, 2, . . . , N(−λj)) (3.16)

corresponding to an eigenvalue −λj is called canonical system if:
i) Vectors e(k)(−λj), k = 1, 2, . . . , N(−λj) form a basis in the space of eigenvec-

tors corresponding to the eigenvalue −λj .
ii) e(1)(−λj) is an eigenvector with maximal possible multiplicity.
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iii) e(k)(−λj) is an eigenvector which can not be expressed by a linear combination
of e(1)(−λj), . . . , e(k−1)(−λj) and multiplicity of e(k)(−λj) achieves a possible
maximum.

iy) Vectors (3.16) with fixed k form a complete chain of associated elements.

Besides canonical system (3.16) which corresponds to an eigenvalue −λj of op-
erator −A we consider a canonical system

ε(k)(−λj), ε
(k)
1 (−λj), . . . , ε(k)

mk
(−λj) (k = 1, 2, . . . , N(−λj)) (3.17)

that corresponds to the eigenvalue −λj of the adjoint operator −A∗. Definition
of canonical system (3.17) is absolutely analogous to Definition 3.1 of canonical
system (3.16). We define canonical system (3.17) by E∗(−λj).

Theorem 3.1. Let Rk are operators defined in (3.12). Then

R−kx = 0, ∀k = 1, 2, . . . ,m

if and only if
〈x, ε

(k)
l (−λj)〉 = 0 ∀ε

(k)
l (−λj) ∈ E∗(−λj)

This assertion follows immediately from one result of Keldysh [12] on structure
of the main part of Laurent series for R(λ,−A). The proof of Theorem 3.1 see in
[7].

3.3. Holomorphic semigroups. We regard boundary value problem (3.1)–(3.4)
for Ozeen equations written in the form

dw(t)
dt

+ Aw(t) = 0, w|t=o = w0. (3.18)

where A is operator (3.8). Then for each w0 ∈ V 0
0 (G) the solution w(t, ·) of (3.18)

is defined by w(t, ·) = e−Atw0 and

e−At = (2πi)−1

∫
γ

(λI + A)−1eλtdλ, (3.19)

where γ is a contour belonging to ρ(−A) such that arg λ = ±θ for λ ∈ γ, |λ| � N
for certain θ ∈ (π/2, π) and for sufficiently large N . Moreover, γ surrounds Σ(−A)
from the right. Such contour γ exists, of course, because we can choose γ belonging
to set −Sa,ϕ from (3.11).

Let σ > 0 satisfy:

Σ(−A) ∩ {λ ∈ C : Reλ = −σ} = ∅ (3.20)

The case when there are certain points of Σ(−A) placed righter than the line
{Reλ = −σ} will be interesting for us. By γσ we denote the continuous contour
that is placed in {λ ∈ C : Reλ � −σ} and constructed from an interval of the line
{Reλ = −σ} and from two branches of contour γ that transform to {arg λ = θ}
and {arg λ = −θ}, θ ∈ (π/2, π) for sufficiently large |λ|.

In virtue of Cauchy Theorem we reduce integration over γ in (3.19) to integration
over γσ and integration around poles −λj from (3.12) for λj satisfying Reλj < σ
After calculation corresponding residues we transform (3.19) to the equality:

e−At = (2πi)−1

∫
γσ0

(λE + A)−1eλtdλ +
∑

Reλj<σ

e−λjt

m(−λj)∑
n=1

tn−1

(n − 1)!
R−n(−λj).

(3.21)
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We denote
V 1

0 (G) = {v ∈ V 1(G) : v|∂G = 0}.
Equality (3.21) implies

Theorem 3.2. Suppose that A is operator (3.8) and σ > 0 satisfies (3.20). Then
for each w0 ∈ V 1

0 (G) that satisfies

〈w0, ε
(k)
l (−λ̄j) >= 0, ∀l = 0, 1, . . . ,mk, k = 1, 2, . . . , N(−λj), Re(λj) < σ

(here by definition ε
(k)
0 (−λj) = ε(k)(−λj)) the following inequality holds:

‖eAtw0‖V 1
0 (G) � ce−σt‖w0‖V 1

0 (G) for t � 0 (3.22)

Proof see in [6], [7].

4. unique continuation property. To solve stabilization problem we will use
unique continuation property for solution of adjoint Oseen equation, i.e. for solution
of equation (µ0 − A)∗w = 0 where A∗ is operator (3.13). Unique continuation
property for the Stokes equations has been established in [9] with help of Carleman
estimates derived in [11]. That Stokes equation differs from adjoint Oseen equation
indicated above. That is why we give here complete proof of the unique continuation
property for a solution of (µ0 −A)∗w = 0. As in [11], [9], to do it we use Carleman
estimate, but our technology differ from techniques of [11] and it is close to methods
from [5, Ch.7, §7].

So we consider equality (µ0 −A∗)w = 0, x ∈ G, where µ0 is an eigenvalue of the
operator A∗ and w is a corresponding eigenvector. Note that generally speaking
µ0 is a complex number and w is a complex-valued vector field. As usual, the bar
over notation of a complex number means the operation of complex conjugation.
By (3.13) and by definition of operator π this equality can be rewritten as follows:

∆v(x) + (a(x),∇)v(x) − (∇a(x))∗v(x) + µ0v + ∇p̃(x) = 0, divv = 0, (4.1)

where x ∈ G. Applying to the first equality in (4.1) operator div and taking into
account the second equality div v = 0 we get

∆p̃(x) = −(∂iaj(x))∂jvi + (∆a, v) + (∂jai)(∂jvi) (4.2)

First of all we prove some Carleman estimate for solution of (4.1), (4.2).

4.1. Carleman estimate. We consider the following analog of (4.1),(4.2):

∆z(x) + (a(x),∇)z − (∇a)∗z + µ0z + ∇p(x) = f(x) divv = 0, (4.3)

∆p(x) = div f(x) − (∂iaj(x))∂jzi + (∆a, z) + (∂jai)(∂jzi). (4.4)
We suppose also that z(x) and p(x) satisfy on ∂G the following equalities:

z|∂G = 0, ∇z|∂G = 0, p|∂G = 0, ∇p|∂G = 0. (4.5)

Let ε > 0 be sufficiently small. Denote

G−ε = {x ∈ G : dist(x, ∂G) ≡ min
y∈∂G

|x − y| > ε}

(the sign ”minus” in lower index in G−ε means that G−ε is a subset of G in contrast
of notation Ωε used below in Theorem 5.1 when Ωε contains Ω)

Let ω be a subdomain compactly embedded to G−ε : ω ⊂⊂ G−ε. We consider
a function β(x) ∈ C2(G) which has no critical points outside ω , i.e.

min
x∈G\ω

|∇β(x)| > 0 (4.6)
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and
β(x) � 1, x ∈ G; max

x∈G\G−ε/2

β(x) < 2 min
x∈G−ε

β(x) (4.7)

Lemma 4.1. . A function β(x) ∈ C2(G) satisfying (4.6),(4.7) exists.

Proof. We consider β0(x) ∈ C2(G) such that

β0(x) � 2, x ∈ G, max
x∈G\G−ε/2

β0(x) < 4 min
x∈G−ε

β0(x), min
x∈G\G−ε

|∇β0(x)| � 1.

(4.8)
Existence of β0(x) satisfying these properties is evident. After that we include the
domain G ⊂ R

3 in a cube and identify opposite 2-faces of this cube. In other words
we include G into 3-dimensional torus Π. We extend β0 to a function β1 ∈ C2(Π).
As well known (see [4, Part 2, Ch.2, §10.4]), β1 can be approached in C2(Π) by
a Morse function β2 ∈ C2(Π), (i.e. ∇β2(x) = 0 not more than in finite number
of points x, called critical points). Let β3 be the restriction of β2 on G. Since β0

satisfies (4.8), the function β3 satisfies (4.7) and min
x∈G\G−ε

|∇β3(x)| > 0. Now we

”transform” critical points of β3 to ω as we did it in [5, Ch. 7, §7.4], and obtain
the desired function β. �

We also introduce the function:

ϕ(x) ≡ ϕλ(x) = eλβ(x) (4.9)

where λ > 0 is a parameter.
Recall that coefficient a(x) from (4.3), (4.4) satisfies (3.5).

Theorem 4.1. Let z ∈ (H3(G))3, p ∈ H2(G), f ∈ (H1(G))3 satisfy (4.3)–(4.5).
Then there exists a magnitude λ0 > 0 such that for each λ > λ0 the following
Carleman estimate holds:∫

G

e2ϕλ(x)[λ4ϕ3
λ(x)(|z(x)|2 + |p(x)|2) + λ2ϕλ(x)(|∇z(x)|2 + |∇p(x)|2]dx �

c(
∫
G

e2ϕλ(x)(|f(x)|2 + |div f(x)|2)dx+ (4.10)

∫
ω

e2ϕλ(x)[λ4ϕ3
λ(x)(|z(x)|2 + |p(x)|2) + λ2ϕλ(x)(|∇z(x)|2 + |∇p(x)|2)]dx)

where the constant c > 0 does not depend on z, p, f , and λ > λ0.

Proof. We do in (4.3),(4.4) the change of functions:

z(x) = e−ϕw(x), p(x) = e−ϕq(x) (4.11)

Evidently (4.5) imply:

w|∂G = 0, ∇w|∂G = 0, q|∂G = 0, ∇q|∂G = 0, (4.12)

We substitute (4.11) into (4.3). Then taking into account that

∇ϕ = λϕ∇β, ∆ϕ = λ2ϕ|∇β|2 + λϕ∆β

we obtain the equality

A1w + A2w = eϕf + L1(w, q) (4.13)

where
A1w = ∆w + ϕ2λ2|∇β|2w, A2w = −2ϕλ(∇β,∇)w, (4.14)
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L1(w, q) = (λ2ϕ|∇β|2 + λϕ∆β)w+
λϕ(a,∇β)w − (a,∇)w + (∇a)∗w − µ0w −∇q + λϕq∇β (4.15)

It follows from (4.13) that

‖A1w‖2
L2(G)+‖A2w‖2

L2(G)+2Re(A1w,A2w)L2(G) =
∫
G

|e−ϕf+L1(w, q)|2dx (4.16)

where Rez is the real part of a complex number z. In virtue of (4.14)

2Re(A1w,A2w)L2(G) = I1 + I2 (4.17)

where

I1 = −4Re
∫
G

ϕλ(∆w, (∇β,∇)w)dx, I2 = −4
∫
G

ϕ3λ3|∇β|2Re(w, (∇β,∇)w)dx

Integration by parts with help of (4.12) yields:

I2 = −2
∫
G

ϕ3λ3|∇β|2(∇β,∇|w|2)dx =

∫
G

(6ϕ3λ4|∇β|4|w|2 + 2ϕ3λ3|w|2(|∇β|2∆β + (∇β,∇|∇β|2))dx, (4.18)

I1 = 4
∫
G

ϕλRe[∂iwj∂kβ∂k∂iwj ]dx+

∫
G

{4ϕλ2((∇β,∇)w, (∇β,∇)w) + 4ϕλRe[∂iwj∂i∂kβ∂kwj ]}dx =

−2
∫
G

ϕλ2|∇β|2|∇w|2dx+ (4.19)

∫
G

2ϕλ(−∆β|∇w|2 + 2λ((∇β,∇)w, (∇β,∇)w) + 2Re[∂iwj∂i∂kβ∂kwj ]}dx

Besides, estimating (4.15) we get for λ � 1:∫
G

|L1(w, q)|2dx � c

∫
G

(λ4ϕ2|w|2 + |∇w|2 + |∇q|2 + λ2ϕ2q2)dx (4.20)

where c does not depend on w, q, λ � 1.
Now we substitute (4.17)–(4.19) into (4.16) and do simple transformations tak-

ing into account (4.20) and inequalities ((∇β,∇w), (∇β,∇w)) � 0, ϕλ � λ (see
(4.7),(4.9)). As a result we obtain:

‖A1w‖2
L2(G) + ‖A2w‖2

L2(G) +
∫
G

6ϕ3λ4|∇β|4|w|2 − 2ϕλ2|∇β|2|∇w|2dx �

c1

∫
G

(e2ϕ|f(x)|2 + λ3ϕ3|w(x)|2 + λϕ|∇w(x)|2 + |∇q(x)|2 + λ2ϕ2|q(x)|2)dx (4.21)

where c1 does not depend on w, q, f and λ � 1.
Substitution (4.11) into (4.4) implies the equality

Â1q + Â2q = L2(w, q) + eϕdivf (4.22)
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where
Â1q = ∆q + ϕ2λ2|∇β|2q, Â2q = −2ϕλ(∇β,∇q) (4.23)

L2(w, q) = (λ2ϕ|∇β|2 + λϕ∆β)q − (∂iaj)∂jwi + λϕ(∂iaj)∂jβwi+
(∆a,w) + (∂jai)(∂jwi) − λϕ(∂jai)(∂jβ)wj (4.24)

Repeating arguments which were used to derive (4.21) from (4.13),(4.15), we derive
from (4.22)–(4.24) the following inequality:

‖Â1q‖2
L2(G) + ‖Â2q‖2

L2(G) +
∫
G

6ϕ3λ4|∇β|4|q|2 − 2ϕλ2|∇β|2|∇q|2dx � (4.25)

c2

∫
G

(e2ϕ|divf(x)|2 + λ3ϕ3|q(x)|2 + λϕ|∇q(x)|2 + |∇w(x)|2 + λ2ϕ2|w(x)|2)dx

where c2 does not depend on w, q, f and λ � 1.
Now we scale in L2(G)both parts of (4.13) on λ2ϕ|∇β|2w. Taking real part of

obtained equality and using the first equality in (4.14) we obtain:∫
G

λ2ϕRe(∆w,w)|∇β|2 + λ4ϕ3|∇β|4|w|2dx = R1 (4.26)

where
R1 = Re

∫
G

(eϕf + L1(w, q) − A2w,w)λ2ϕ|∇β|2dx (4.27)

Integration by parts in left side of (4.26) yields:∫
G

(λ4ϕ3|∇β|4|w|2 − λ2ϕ|∇w|2|∇β|2)dx = R1+

∫
G

(
λ3ϕ

2
(∇β,∇|w|2)|∇β|2 +

λ2ϕ

2
(∇|∇β|2,∇|w|2))dx = R1−

∫
G

λ3ϕ

2
(λ|∇β|4 + |∇β|2∆β + (∇β,∇|∇β|2) + (∇|∇β|2,∇β) + λ−1∆|∇β|2)|w|2dx

Multiplying this equation on −1 and estimating its right side with help of (4.27)
and (4.20) we get:∫

G

(λ2ϕ|∇w|2|∇β|2 − λ4ϕ3|∇β|4|w|2)dx � 1
4
‖A2w‖2

L2(G)+ (4.28)

1
2

∫
G

e2ϕ|f |2dx + c3

∫
G

(λ4ϕ2|w|2 + |∇w|2 + |∇q|2 + λ2ϕ2q2)dx

Analogously, scaling (4.22) on λ2ϕ|∇β|2q in L2(G) and taking real part, we obtain
after some transformations the inequality:∫

G

(λ2ϕ|∇q|2|∇β|2 − λ4ϕ3|∇β|4|q|2)dx � 1
4
‖Â2q‖2

L2(G)+ (4.29)

1
2

∫
G

e2ϕ|divf |2dx + c3

∫
G

(λ4ϕ2|q|2 + |∇q|2 + |∇w|2 + λ2ϕ2|w|2)dx

Note that constant c3 in (4.28), (4.29) does not depend on w, q, f, λ � 1.
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Now we multiply both parts of (4.28), (4.29) on 3, add these inequalities and add
obtained inequality with the sum of inequalities (4.21) and (4.25). As the result we
obtain

‖A1w‖2
L2(G) + ‖Â1q‖2

L2(G) +
1
4
‖A2w‖2

L2(G) +
1
4
‖Â2q‖2

L2G(G)+

∫
G

3ϕ3λ4|∇β|4(|w|2 + |q|2) + ϕλ2|∇β|2(|∇w|2 + |∇q|2)dx �

c

∫
G

[e2ϕ(|f |2 + |divf |2) + λ3ϕ3(|w|2 + |q|2) + λϕ(|∇w|2 + |∇q|2)]dx (4.30)

In virtue of (4.6) inequality (4.30) implies∫
G

(ϕ3λ4|(|w|2 + q2) + ϕλ2(|∇w|2 + |∇q|2)dx �

c

[∫
G

e2ϕ(|f |2 + |divf |2)dx +
∫
G

(λ3ϕ3(|w|2 + |q|2) + λϕ(|∇w|2 + |∇q|2))dx+

∫
ω

(ϕ3λ4(|w|2 + q2) + ϕλ2(|∇w|2 + |∇q|2)dx

]
(4.31)

Evidently for λ > λ0 with enough large λ0 inequalities λ3ϕ3 < λ4ϕ3/2 and λϕ �
λ2ϕ/2 are true. Therefore (4.31) implies inequality∫

G

(ϕ3λ4(|w|2 + q2) + ϕλ2(|∇w|2 + |∇q|2)dx �

2c

[∫
G

e2ϕ(|f |2 + |divf |2)dx +
∫
ω

(ϕ3λ4(|w|2 + q2) + ϕλ2(|∇w|2 + |∇q|2)dx

]
(4.32)

that holds for each λ � λ0 and with a constant c which does not depend on λ. Now
we substitute w = eϕz, q = eϕp into (4.32) and after simple transformations we
get that for sufficiently large λ equality (4.10) is true. �

4.2. Unique continuation property. We consider now equations (4.1) with co-
efficient a(x) ∈ V 2(G) ∩ V 1

0 (G) which possesses a solution (v(x), p̃(x)) satisfying
the boundary condition

v|∂G = 0 (4.33)

It is easy to see that if (v(x), p̃(x)) ∈ V 1
0 (G) × L2(G) satisfies (4.1), (4.33) then

(v(x), p̃(x)) ∈ (V 1
0 (G) ∩ H3(G)) × H2(G)

Theorem 4.2. . Suppose that a solution (v(x), p̃(x)) ∈ (V 1
0 (G)∩H3(G))×H2(G)

of (4.1), (4.33) satisfies the condition

v(x) ≡ 0 for x ∈ ω (4.34)

where ω is a subdomain of G. Then v(x) ≡ 0, p̃(x) ≡ const for x ∈ G.
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Proof. We reduce our problem to such one that all conditions of Theorem 4.1
are fulfilled. Recall that G−δ = {x ∈ G : dist(x, ∂G) > δ}. We can suppose that
for a sufficiently small δ > 0 the set ω in (4.34) satisfies condition ω ⊂⊂ G−δ, i.e.
dist(ω, ∂G) > δ. Otherwise we change ω on its a certain open subset.

We reduce now problem (4.1), (4.33) to problem (4.3), (4.5). To do this we
consider a function ψ(x) ∈ C∞(G) satisfying

ψ(x) =
{

1, x ∈ G−δ/2

0, x ∈ G \ G−δ/4

Let us consider the boundary value problem

rotw(x) = v(x), divw(x) = 0, x ∈ G

(w(x), n(x))|∂G = 0
where n(x) is the vector field of outer normals to ∂G. As well-known (see, for
instance [16] ) since v(x) ∈ V 1

0 (G) ∩ H3(G), there exists a solution w(x) of this
problem and w(x) ∈ H4(G). We introduce the vector field

z(x) = rot(ψ(x)w(x)) (4.35)

Note that in virtue of (4.34) the component p̃(x) of solution (v, p̃) to (4.1), (4.33)
satisfies ∇p̃(x) ≡ 0 for x ∈ ω. Since p̃(x) is defined from (4.1) to within arbitrary
constant we can choose this constant such that

p̃(x) = 0, x ∈ ω (4.36)

We define
p(x) = ψ(x)p̃(x) (4.37)

So we have (z(x), p(x)) ∈ (V 1
0 (G) ∩ H3(G)) × H2(G),divz(x) = 0, for x ∈ G and

z, p satisfy (4.5). Besides, for x ∈ G−δ (z(x), p(x)) = (v(x), p̃(x)). Therefore if
we substitute (z(x), p(x)) in the left side of (4.1), we obtain equations (4.3) with a
right side f(x) which satisfies

f(x) = 0 for x ∈ G−δ/2 (4.38)

As a result we see that the triplet (z, p, f) satisfies all condition of Theorem 4.1
and therefore estimate (4.10) is true. In virtue of (4.9), (4.34)– (4.37) this estimate
implies the following upper bound:∫

G−δ

exp(2eλβ(x))λ4e3λβ(x)(|z(x)|2 + |p(x)|2)dx �

c

∫
G

exp(2eλβ(x))(|f(x)|2 + |divf(x)|2)dx (4.39)

which is true for each λ � λ0 and c in (4.39) does not depend on λ � λ0.
Assume that there exists a set Λ ⊂ G−δ of positive Lebesgue measure such that

|z(x)|2 + |p(x)|2 > 0 for x ∈ Λ. Then (4.39) is not true for sufficiently large λ
because f satisfies (4.38), and for β(x) the second equality in (4.7) is true. Hence
|z(x)|2 + |p(x)|2 = 0 for x ∈ G−δ. In virtue of (4.35),(4.37) the solution (v(x), p̃(x))
of (4.1) also satisfies the equality

|v(x)|2 + |p̃(x)|2 ≡ 0, x ∈ G−δ

Since δ > 0 can be chosen arbitrary small, desired assertion of the Theorem 4.2 has
been proved. �
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4.3. On linear independence of ε
(k)
l (x,−λj). We set some strengthening of

well-known result on linear independence of eigenvectors and associated vectors for
operator A∗ which is defined in (3.13). To prove this result we use Theorem 4.2

Theorem 4.3. Consider the set

E∗
σ ≡

⋃
Reλj<σ

E∗(−λj)

of canonical systems (3.17) for operator −A∗ with σ satisfying (3.20).Then for an
arbitrary subdomain ω ⊂ G vector fields ε

(k)
l (x,−λj) ∈ E∗

σ regarded for x ∈ ω are
linear independent.

Proof.The main part of Theorem 4.3 is to prove that eigenvectors ε(k)(−λj , x) ≡
ε
(k)
0 (−λj , x), k = 1, ..., N of operator A∗ with fixed eigenvalue −λj are linear inde-

pendent if they are regarded for x ∈ ω. Indeed, suppose that

v(x) ≡
N∑

k=1

ckε(k)(−λj , x) = 0 for x ∈ ω.

Since this v(x) with a certain p(x) satisfies (4.1),(4.33), in virtue of Theorem 4.2
equality v(x) = 0, x ∈ ω,imply that v(x) = 0 for x ∈ G. Since by Definition 3.1
eigenvectors ε(k)(−λj , x) are linear independent on G, the last equality implies that
ck = 0, k = 1, ..., N . Note that only in this part of proof we use specific of equation
(4.1). The general assertion of Theorem 4.3 is derived from the property proved
above with help of some general arguments written in [6]. �

Impose on canonical systems (3.17) the following condition

ε(k)(−λj) = ε̄(k)(−λ̄j); ε
(k)
l (−λ̄j) = ε̄k

l (−λj) (4.40)

Condition (4.40) can be realized with help of (3.15).
In virtue of (4.40) canonical system corresponding to real −λj consists of real-

valued vector fields. If Imλj �= 0, instead of vector fields ε(k)(−λ̄j), ε
(k)
l (−λj),

l = 0, 1, . . . , we consider real valued vector fields

Reε(k)
l (−λ̄j), Imε

(k)
l (−λ̄j), l = 0, . . . , k = 1, 2 . . . (4.41)

(with ε
(k)
0 (−λ̄j) = ε(k)(−λ̄j) by definition). We renumber all functions (4.41) with

Reλj < σ (including fields with Imλj = 0) as follows:

ε1(x), . . . , εK(x) (4.42)

Lemma 4.2. For an arbitrary subdomain ω ⊂ G vector fields (4.42) restricted on
ω are linear independent over the field R of real numbers.

Lemma 4.2 follows easily from Theorem 4.3 (see details in [6]).
Note that Theorem 3.2 and Lemma 4.2 imply immediately the following asser-

tion.

Corollary 4.1. Assume, that A is operator (3.8) and σ > 0 satisfies (3.20). Then
for each w0 ∈ V 0

0 (G) satisfying∫
G

(w0(x), εj(x))∂x = 0, j = 1, ..,K

with εj from (4.42), inequality (3.22) is true.

5. Stabilization of Oseen equations.
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5.1. Setting of the problem. As in section 2 we suppose that Ω ⊂ R
3 is a

bounded connected domain with C∞-boundary ∂Ω, which is decomposed on two
parts:

∂Ω = Γ ∪ Γ0, Γ �= ∅ (5.1)

where Γ,Γ0 are closed subsets of ∂Ω and Γ ∩ Γ0 = ∅. The case Γ0 = ∅ is possible.
In other words if

∂Ω =
J⋃

j=1

∂Ωj (5.2)

where ∂Ωj are closed connected components of ∂Ω then (possibly after renumeration
of ∂Ωj)

Γ =
l⋃

j=1

∂Ωj , Γ0 =
J⋃

j=l+1

∂Ωj (5.3)

Let Q = R+ × Ω,Σ = R+ × Γ,Σ0 = R+ × Γ0. In space-time cylinder Q we
consider the Ozeen equations

∂tv(t, x) − ∆v + (a(x),∇)v + (v,∇)a + ∇p(t, x) = 0 (5.4)

div v(t, x) = 0 (5.5)

with initial and boundary conditions

v(t, x)|t=0 = v0(x). (5.6)

v|Σ0 = 0, v|Σ = u (5.7)

where a(x) = (a1(x), a2(x), a3(x)) is a solenoidal vector field (div a = 0) and u =
(u1, u2, u3) is a control. Besides solenoidalness of initial condition v0(x) we suppose
that ∫

∂Ωj

(v0(x′), n(x′))dx′ = 0, j = 1, . . . , l. (5.8)

Analogously to section 2 stabilization problem for Oseen equations is formulated
as follows:

Given σ > 0 find a control u on Σ such that the solution v(t, x) of problem
(4.2)–(4.5) satisfies the inequality

‖v(t, x)‖L2(Ω) � ce−σt (5.9)

where c > 0 depends on v0, σ and Γ. Moreover, we require that this control u
satisfies the feedback property in the meaning analogous to Definition 2.2: firstly we
extend by a special way problem (5.4)–(5.7) (without second equality from (5.7))
to the problem (3.1)–(3.4) defined on a domain G ⊃ Ω, solve the last problem,
and after that we define the solution (v, u) of stabilization problem (5.4)–(5.9) by
the formula (2.22) Details of this definition will be given simultaneously with the
construction of feedback control.
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5.2. Theorem on extension. First of all we define the set ω from (2.14), (2.15)
which is used to extend the domain Ω to the set G. Note that being closed each
component ∂Ωj of ∂Ω separates R

3 on two parts: Ωj− and Ωj+. By definition
points of Ωj− which are close enough to ∂Ωj belongs to Ω. Taking a sufficiently
small magnitude κ > 0 we define the set ω as follows:

ωj = {x ∈ Ωj+ : dist(x, ∂Ωj) < κ}; ω =
l⋃

j=1

ωj (5.10)

where l is defined in (5.3). Now we define the domain G by the formula:

G = Int(Ω ∪ ω) (5.11)

We introduce the following spaces

V 1
0 (G) = {u(x) = (u1(x), u2(x)) ∈ V 1(G) : u|∂G = 0}
V̂ k(G) = {u(x) = (u1(x), u2(x), u3(x)) ∈ V k(G) :∫

∂Gj

(u(x′), n(x′)dx′ = 0, j = 1, ..., J} (5.12)

where k is nonnegative integer, and ∂Gj , j = 1, ..., J) are all connected components
of the boundary ∂G, and n is outer normal to ∂G. Recall that operation of restric-
tion onto the boundary for (u(x), n(x)) is well defined for u ∈ V k(G) with each
k � 0 (see [16]).

Below we use well-known operator rot which is defined by the formula:

rotv(x) =

(
∂v2(x)
∂x3

− ∂v3(x)
∂x2

,
∂v3(x)
∂x1

− ∂v1(x)
∂x3

,
∂v1(x)
∂x2

− ∂v2(x)
∂x1

)

It is clear that for each gradient vector field ∇p(x), p ∈ H1(G) the inclusion
∇p(x) ∈ ker rot is true. Note that, generally speaking, for the functions space
V 0

0 (G) defined in (3.6) the inequality V 0
0 (G) ∩ ker rot �= {0} holds. Indeed, the

following orthogonal decomposition with respect to the scalar product in L2(G) is
true (see, e.g. [10] and [16, Appendix 1,pp.458-471]):

V 0
0 (G) = W 0(G)

⊕
Hc, (5.13)

where Hc = V 0
0 (G)∩ker rot is a finite-dimensional space of C∞-vector fields isomor-

phic to the space of the first cohomologies of G. Hc consists of vector fields ∇p(x),
where p(x) are multi-valued functions satisfying ∆p = 0 and (∂p/∂n)|∂G = 0; for
details see [16, Appendix 1]. Now the functions space W 0(G) is well defined by
equality (5.13). For each integer k � 0 we define

W k(G) = W 0(G) ∩ (Hk(G))3 (5.14)

where (Hk(G))3 is usual Sobolev space of vector valued functions of smoothness k.

Lemma 5.1. . Let k � 0. Then the operator

rot : W k+1 −→ V̂ k(G) (5.15)

is an isomorphism.

The proof of this Lemma see in [16, Appendix 1], [8].
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Lemma 5.2. . The operator

rot−1 : V 1
0 (G) −→ H2(G) (5.16)

satisfying rot rot−1v = v ∀v ∈ V 1
0 (G) is well defined on V 1

0 (G).

Proof. In virtue of Lemma 5.1 operator (5.15) has the inverse operator rot−1.
Restriction of this operator on V 1

0 (G) ⊂ V̂ 1(G) defines the right inverse operator
(5.16). �

We prove now the extension theorem. In the space of real valued vector fields
V 1

0 (G) we introduce the subspace

X1
σ(G) = {v(x) ∈ V 1

0 (G) :
∫
G

v(x) · εj(x) dx = 0, j = 1, . . . , K} (5.17)

where εj(x) are functions (4.42). Let also

V 1(Ω,Γ0) = {v ∈ V 1(Ω) : v|Γ0 = 0,

∫
∂Ωj

(v(x′), n(x′))dx′ = 0, j = 1, ..., J}
(5.18)

where ∂Ωj are closed connected component of ∂Ω, and n(x′) is the vector fields of
outer normals to ∂Ω.

Theorem 5.1. There exists a linear bounded extension operator

E1
σ : V 1(Ω,Γ0) → X1

σ(G) (5.19)

(i.e. E1
σ(v)(x) ≡ v(x) for x ∈ Ω).

Proof. Step 1. Recall firstly that there exists a linear continuous extension
operator

L : V 1(Ω,Γ0) → V 1
0 (G). (5.20)

Indeed let v ∈ V 1(Ω,Γ0) ⊂ V̂ 1(Ω). Then rot−1v ∈ H2(Ω) is the vector field well
defined in virtue of Lemma 5.2. Existence of bounded extension operator

E : H2(Ω) −→ H2(G)

is well known (see e.g. [15]). Set

Ωε = {x ∈ G : dist(x,Ω) < ε}
where dist(x,Ω) is the distance from x to Ω. Suppose that ε is so small that for
each j = 1, . . . , l ωj \ Ωε �= ∅. Let ψ(x) ∈ C∞(Ḡ), 0 � ψ(x) � 1,

ψ(x) =

{
1, x ∈ G ∩ Ωε/2,

0, x ∈ G \ Ωε.
(5.21)

Then we denote operator (5.20) by the formula L = rot ◦ ψ ◦ rot−1.
Step 2.Introduce now an open subset Ω̂ = G \ Ωε/2. We look for extension

operator E1
σ in a form

E1
σv(x) = (Lv)(x) + ŵ(x), (5.22)

where L is operator (5.20) and ŵ(x) is a vector field which satisfies:

ŵ ∈ V 1
0 (G), supp ŵ ⊂ Ω̂ = G \ Ωε/2. (5.23)

By virtu of (5.17) to establish inclusion E1
Kv ⊂ X1

K(G) we have to assume that∫
G

εk(x)ŵ(x) dx = −
∫
G

εk(x)(Lv)(x) dx (5.24)
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where k = 1, . . . ,K. At last, to determine ŵ uniquely we suppose that

‖ŵ‖2
V 1

0 (G) = inf
w∈A

‖w(·)‖2
V 1

0 (G) where A = {w : w satisfies (5.23), (5.24)}. (5.25)

(Recall that ‖v‖V 1
0 (G) = ‖∇v‖L2(G).)

Step 3.We have to show that there exists unique vector field ŵ that satisfies
(5.25). To do this we define the operator R by the formula:

R : V 1
0 (Ω̂) → R

K , Rv =
(∫

G

ε1(x)v(x) dx, . . . ,

∫
G

εK(x)v(x) dx
)
. (5.26)

We claim that ImR = R
K . Indeed, if this is not true, there exists a vector p =

(p1, . . . , pK) �= 0 such that∫
G

K∑
j=1

pjεj(x)v(x) dx = 0 ∀v ∈ V 1
0 (Ω̂).

This equality implies that
K∑

j=1

pjεj(x) = ∇q(x) x ∈ Ω̂ (5.27)

Since in virtue of (3.5) εj(x) ∈ V 3(G), we get that q(x) ∈ H4(Ω̂). Therefore,
equality εj |∂G = 0 implies that ∇q|∂G\Γ0 = 0. As a result we obtain:

q|(∂G\Γ0)∩ωj
= cj , ∂nq|(∂G\Γ0)∩ωj

= 0 (5.28)

where cj are constants and ∂n is the derivative with respect to the vector field n of
outer normals to ∂G. Applying to both parts of (5.27) operator div we get that

∆q(x) = 0, x ∈ Ω̂ (5.29)

In virtue of uniqueness of solution for Cauchy problem (5.29), (5.28), q|ωj
= cj and

therefore (5.27) implies
K∑

j=1

pjεj(x) = 0 x ∈ Ω̂

This equality and Lemma 4.2 imply pj = 0, j = 1, . . . ,K that contradicts to the
assumption (p1, . . . , pK) �= 0.

Since Im R = R
K , the set A of admissible elements for problem (5.25) is not

empty. In virtue of definition (5.25) A is a closed convex subset of V 1
0 (G), and

(5.25),actually, is the problem to determine the distance from origin to the set A
in the Hilbert space V 1

0 (G). As well known, this problem has unique solution ŵ(x).
Step 4. Existence and uniqueness of solution for problem (5.25) implies that

the operator E1 that transforms a vector field v ∈ V 1(Ω,Γ0) to the solution ŵ of
problem (5.25): E1v = ŵ, is well defined. To finish the proof of the Theorem we
have to show that the operator

E1 : V 1(Ω,Γ0) → V 1
0 (Ω̂) (5.30)

is linear and bounded.
We derive optimality system for minimization problem (5.25) with help of La-

grange principle. As one can see, for instance, in [5], the relation ImR = R
K which

was proved for the operator R defined in (5.26) guarantees, that we can apply to
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(5.25) Lagrange principle when Lagrange multiplier before minimized functional
equals one. This Lagrange function has a form:

L(w, p1, . . . , pK) =
1
2
‖w‖2

V 1
0 (Ω̂)

+
K∑

j=1

pj

(∫
Ω̂

(εj(x), w(x)) dx +
∫
G

(εj(x), Lv(x)) dx

)

By Lagrange principle for solution ŵ of (5.25) there exists a vector p = (p1, . . . , pK)
such that for each h(x) ∈ V 1

0 (Ω̂)

< L′
w(ŵ, p1, . . . , pK), h >=

∫
Ω̂

[(∇w,∇h) +
K∑

j=1

pj(εj , h)] dx = 0 (5.31)

In the set Ω̂ we consider the Stokes problem:

−∆w(x) + ∇p(x) = v(x), div w(x) = 0, x ∈ Ω̂; w|∂Ω̂ = 0

As well known, for each v ∈ V 0(Ω̂) there exists unique solution w ∈ V 1
0 (Ω̂)∩V 2(Ω̂)

of this problem. The resolving operator of this problem we denote as follows:
(−π∆)−1

Ω̂
v = w. Extension of (−π∆)−1

Ω̂
v from Ω̂ to G by zero we also denote as

(−π∆)−1

Ω̂
v. Evidently, (−π∆)−1

Ω̂
v ∈ V 1

0 (G).
Since (5.31) means that ŵ is the solution of the Stokes problem with right side

v = −∑K
j=1 pjεj , we get

ŵ = −(−π∆)−1

Ω̂

K∑
j=1

pjεj (5.32)

Substitution of (5.32) into (5.24) yields the linear system of equations:
K∑

j=1

akjpj = bk, where akj =
∫
Ω̂

(εk, (−π∆)−1

Ω̂
εj) dx, bk =

∫
G

(εk, Lv) dx (5.33)

Relations (5.33), (5.32) implies that operator E1 from(5.30) is linear.
To prove the boundedness of operator (5.30) we show that the matrix A = ‖akj‖

is positively defined. Note that

akj =
∫
Ω̂

εk(x) · [(−π∆)−1

Ω̂
εj(x)] dx =

∫
Ω̂

(∇wk(x)) : (∇wj(x)) dx. (5.34)

where wj(x) = (−π∆)−1

Ω̂1
εj(x) and : is the sign of scalar product between two

tensors. Let α = (α1, · · · , αK), f(x) =
∑K

j=1 αjwj(x). Then

(Aα,α) =
K∑

k,j=1

αkαj

∫
w1

∇wk(x)) : ∇wj(x) dx =
∫
ω1

|∇f(x)|2dx � 0.

Moreover, if for some α (Aα,α) =
∫
ω1

|∇f(x)|2dx = 0 then ∆f(x) = div∇f(x) = 0

for x ∈ Ω̂. By definition of wj(x) we have: −∆wj(x) = εj(x) − ∇qj(x), x ∈ Ω̂,
where qj(x) is a harmonic function in Ω̂ (to see this one can apply the operator div to
both parts of previous equality). Hence, 0 = −∆f(x) =

∑K
j−1 αjεj −∇q(x) where

q(x) is a harmonic function in Ω̂ and by previous equality we get that ∇q|∂Ω̂∩∂G = 0
(because εj |∂Ω̂∩∂G = 0). In virtue of uniqueness for solution to Cauchy problem for
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Laplace operator we get that ∇q(x) = 0 for x ∈ Ω̂. Hence
∑K

j−1 αjεj = 0 and by
Lemma 4.2 α1 = · · · = αK = 0.

So, detA �= 0. In virtue of (5.31), (5.32)

ŵ = E1v = −(−π∆)−1

Ω̂
(A−1b, ε)

where b = (b1, . . . , bK) (see (5.32)), ε = (ε1, . . . , εK), and therefore operator (5.30)
is bounded. �

Remark 5.1. In fact in the Theorem’s 5.1 proof we showed that operator (5.19)
can be defined by formulas (5.22), (5.32) where (p1, . . . , pK) is the solution of the
system from (5.33). This definition is equivalent to the definition of operator (5.19)
given in the proof of Theorem 5.1

5.3. Result on stabilization. We prove now the main theorem of this section on
stabilization of 3D Ozeen equations by feedback boundary control.

Theorem 5.2. Let domains Ω and G satisfy (5.10), (5.11). Then for each initial
value v0(x) ∈ V 1(Ω,Γ0) and for each σ > 0 there exists a feedback control u defined
on Σ such that the solution v(t, x) of (5.4)–(5.7) satisfies the inequality

‖v(t, ·)‖(H1(Ω))2 � ce−σt as t → ∞. (5.35)

Proof. We can assume that σ satisfies to condition (3.20), otherwise we make
it a little bit more. We act to initial condition v0 ∈ V 1(Ω,Γ0) by the operator
E1

σ from (5.19), (5.22) and by Theorem 5.1 we obtain that w0 = E1
σv0 ∈ X1

σ(G).
Since X1

σ(G) ⊂ V 1
0 (G) ⊂ V 0

0 (G), the solution w(t, x) of problem (3.1)–(3.4) can be
written in the form w(t, ·) = e−Atw0 where A is operator (3.8). By Theorem 3.2
w(t, ·) satisfies estimate (3.22). Now we define the solution (v(t, x), u(t, x′)) of
stabilization problem for (5.4)–(5.7) by formula (2.22). Then (3.22) implies (5.35) �

6. Stabilization of 3D Navier–Stokes equations. In this section we study the
problem of stabilization a solution to the Navier–Stokes equations which is formu-
lated in subsection 2.1. In particular, the boundary ∂Ω of the space component Ω
to space-time cylinder Q = R+ ×Ω where the Navier-Stokes system is determined,
satisfies condition (2.1). We do this stabilization with help of control determined
on the part Σ = R+ × Γ of the lateral surface to cylinder Q, and we consider only
feedback control in the meaning of Definition 2.2.

6.1. Invariant manifolds. Let g(x) from (2.16) satisfies the condition:

g(x) ∈ (L2(G))2. (6.1)

Then as well-known (see, for instance [17]) equations (2.16) are equivalent to the
following equation with respect to one unknown vector field w(t, x):

∂tw(t, x) − π∆w + π(w,∇)w = πg(x) (6.2)

where π is orthoprojector (3.7) on V 0
0 (G) (see (3.6)). We set an initial condition

for this equation:
w(t, x)|t=0 = w0(x), w0 ∈ V 1

0 (G). (6.3)

We look for a solution w of (6.2) (as well as solution w of (2.16)) in the space

V 1,2
0 (ΘT ) ≡ {w(t, x) ∈ L2(0, T ;V 2(G)∩ (H1

0 (G))3) : ∂tw ∈ L2(0, T ;V 0
0 (G)} (6.4)

for each T > 0, where ΘT = (0, T ) × G.
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Note that we can rewrite (2.19) in the form analogous to (6.2):

−π∆a(x) + π(a,∇)a = πg, a(x) ∈ V 2(G) ∩ V 1
0 (G). (6.5)

It is known (see [14], [17]) that if for each T > 0 there exists a small enough
ε = ε(T ) such that ‖a − w0‖V 1

0 (G) < ε then unique solution w(t, x) ∈ V 1,2
0 (QT ) of

problem (6.2), (6.3) exists. Solution w(t, x) of (6.2), (6.3) taken at time moment t
we denote as S(t, w0)(x):

w(t, x) = S(t, w0)(x). (6.6)
Since embedding V 1,2(QT ) ⊂ C(0, T ;V 1

0 (G)) is continuous, the family of ope-
rators S(t, w0) is continuous semigroup on the space V 1

0 (G) : S(t + τ, w0) =
S(t, S(τ, w0)).

Since a(x) is steady-state solution of (6.2), S(t, a) = a for each t � 0. We can
decompose semigroup S(t, w0) in a neighborhood of a in the form

S(t, w0 + a) = a + Ltw0 + B(t, w0) (6.7)

where Ltw0 = S′
w(t, a)w0 is derivative of S(t, w0) with respect to w0 at point a,

and B(t, w0) is nonlinear operator with respect to w0. Differentiability of S(t, w0)
is proved, for instance in [2, Ch. 7. Sect. 5]. Therefore

B(t, 0) = 0, B′
w(t, 0) = 0. (6.8)

Moreover in [2, Ch. 7. Sect. 5] is proved that B′(t, w) belongs to class Cα with
α = 1/2 with respect to w. This means that for each w0 ∈ V 1

0 (G) such that
‖a − w0‖V 1

0 (G) < ε(t)

‖B′
w(t, w0)‖Cα ≡ sup

‖u − w0‖V 1
0 (G) � 1

‖u − a‖V 1
0 (G) � ε(t)

‖B′
w(t, u) − B′

w(t, w0)‖V 1
0 (G)

‖u − w0‖α
V 1

0 (G)

< ∞

and left side is a continuous function with respect to w0.
We study now semigroup Ltw0 = S′

w(t, a)w0 of linear operators. First of all note
that w(t, x) = Ltw0 is the solution of problem (3.1)–(3.4) in which the coefficient a
is the solution of (6.5). Therefore

Ltw0 = e−Atw0 (6.9)

where A is Ozeen operator (3.8).
Below we suppose that r0 ∈ (0, 1) satisfies the property:

{ζ ∈ C : |ζ| = r0} ∩ Σ(e−At0) = ∅ (6.10)

where, recall, Σ(e−At) is the spectrum of operator (6.9).
It is clear, that ζj ∈ Σ(e−At0) if and only if ζj = e−λjt0 and −λj ∈ Σ(−A).

That is why condition (6.10) is equivalent to condition (3.20) where σ = − ln r0/t0.
Besides, if |ζj | > r0 then −Reλj > −σ.

The following assertion holds:

Theorem 6.1. Family of operators e−At : V 1
0 (G) → V 1

0 (G) where A is operator
(3.8) is well defined for each t � 0. Let

σ+ = {ζ1, . . . , ζN : ζj ∈ Σ(e−At0), |ζj | > r0, j = 1, . . . , N} (6.11)

where r0 ∈ (0, 1) and satisfies (6.10). Let X+ ⊂ V 1
0 (G) be the invariant subspace

for e−At0 corresponding to σ+, Π+ : V 1
0 (G) → X+ be the projector on X+ (i.e.,

Π+V 1
0 (G) = X+, Π2

+ = Π+) and X− = (I−Π+)V 1
0 (G) be complementary invariant
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subspace. Let L+
t0 = e−At0 |X+ : X+ → X+, L−

t0 = e−At0 |X− : X− → X−. Then
operator L+

t0 has inverse operator (L+
t0)

−1. For some t0 there exist constants r̂, ε+,
ε− ∈ (0, 1) such that

‖L−
t0‖ � r̂(1 − ε−), ‖(L+

t0)
−1‖ � r̂−1(1 − ε+). (6.12)

The proof of this Theorem is absolutely the same as in the case of space dimension
two (see [7]).

Generally speaking eigenvalues of operators A and e−At are complex-valued.
That is why all spaces in Theorem 6.1 are complex. But to apply obtained results
to (nonlinear) Navier—Stokes equation we need to have analogous results for the
real spaces of the same type. Actually, for this we have to define the projector of
Π+ in real spaces.

Lemma 6.1. Restriction of operator Π+ on the real space V 1
0 (G) can be written

in the form

(Π+)(x) =
K∑

j=1

ej(x)
∫
G

v(x)εj(x) dx (6.13)

where {εj} is the set of functions (4.42) which are suitably renumbered and renor-
malized functions (4.41) and {ej} is set of Real and Imaginary parts of functions
(3.16) analogously renumbered and renormalized.

The proof of this simple lemma one can find in [6].

Lemma 6.2. For an arbitrary subdomain ω ⊂ G vector fields {ej(x), j = 1, . . . ,K}
from (6.13) restricted on ω are linear independent over R.

To prove this Lemma we first establish analog of Theorem 4.1 for functions
(3.16). After that we derive Lemma 6.2 from this Theorem by the same way as
Lemma 4.2 was derived from Theorem 4.1.

Using (6.13) we can easily restrict spaces X+ and X− as well as operators L+
t0 ,

L−
t0 defined in formulation of Theorem 6.1 on the real subspaces of V 1

0 (G). We
denote this new real spaces and operators also by X+, X−, L+

t0 , L−
t0 . This will not

lead to misunderstanding because below we do not use their complex analogs.
In a neighborhood of steady-state solution a of (6.5) we establish existence of

a manifold M− which is invariant with respect to semigroup S(t, w) (i.e., ∀w ∈
M ∀t > 0, S(t, w) is well defined and for each t > 0, S(t, w) ∈ M− ). This
manifold can be represented as the graph:

M− = {u ∈ V 1
0 (G) : u = a + u− + g(u−), u ∈ X− ∩ O} (6.14)

where O is a neighborhood of origin in V 1
0 (G), g : X− ∩ O → X+ is an operator-

function of class C3/2 and
g(0) = 0, g′(0) = 0. (6.15)

Note that condition (6.15) means that manifold (6.14) is tangent to X− at
point a.

The following theorem is true.

Theorem 6.2. Let a satisfy (6.5), σ > 0 satisfy (3.20), O = Oε = {v ∈ V 1
0 (G) :

‖v‖V 1
0 (G) < ε} and ε is sufficiently small. Then there exists unique operator-

function g : X− ∩ O → X+ of class C3/2 satisfying (6.15) such that the mani-
fold M− defined in (6.14) is invariant with respect to resolving semigroup S(t, w0)
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of problem (6.2),(6.3). There exists a constant c > 0 such that

‖S(t, w0) − a‖V 1
0 (G) � c‖w0 − a‖V 1

0 (G)e
−σt as t � 0 (6.16)

for each w0 ∈ M−.

This theorem follows form results of [2, Ch. 5, Sect. 2; Ch. 7,Sect. 5], from
Theorem 6.1, and Lemma 6.1.

6.2. Extension operator. Here we construct extension operator for Navier—
Stokes equations. This operator is nonlinear analog of extension operator (5.19)
constructed for Ozeen equations.

Recall that the domain Ω and its extension G satisfy (5.10), (5.11). Besides, the
space V 1(Ω,Γ0) is defined in (5.18).

Theorem 6.3. Suppose that a(x) is a steady-state solution of (6.5), v̂(x) = γΩa,
and M− is the invariant manifold constructed in a neighborhood a+O of a in V 1

0 (G)
in Theorem 6.2. Let Bε1 = {v0 ∈ V 1(Ω,Γ0) : ‖v0 − v̂‖V 1(Ω) < ε1}. Then for
sufficiently small ε1 there exists a continuous operator

Extσ : v̂ + Bε1 → M−, (6.17)

which is operator of extension for vector fields from Ω to G:

(Extσv)(x) ≡ v(x), x ∈ Ω. (6.18)

Proof. Let L : V 1(Ω,Γ0) → V 1
0 (G) be the extension operator constructed in

Step 1 of Theorem’s 5.1 proof. Similarly to (5.22) we introduce the following oper-
ator of extension:

Qv(x) = Lv(x) + w(x) (6.19)

where w(x) is a vector field concentrated in Ω̂ = G \ Ωε/2 which is constructed by
v(x). We describe its construction below. At last we define the desired operator
Extσ by the formula

Extσv = Π−Qz + g(Π−Qz) + a, with z = v − a, (6.20)

where Π− = I − Π+, Π+ is operator (6.13) of projection on X+ = Π+V 1
0 (G),

X− = Π−V 1
0 (G), and g : X− → X+ is the operator constructed in Theorem 6.2.

By definition (6.14) of M− we have Extσv ∈ M−. Hence we have to ensure that
the equality

(Extσv)(x) ≡ v(x), x ∈ Ω (6.21)

is true, that shows that Extσ is an extension operator. By (6.13) {ej(x)} generates
X+ and therefore the map g(u) can be written in the form

g(u) =
K∑

j=1

ejgj(u).

That is why taking into account (6.13) we can rewrite (6.20) in the form

Extσv = a(x) + Qz(x) −
K∑

j=1

ej(x)
∫
Q

Qz(y)εj(y) dy +
K∑

j=1

ej(x)gj(Π−Qz), (6.22)

(z = v − a).
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In virtue of Lemma 6.2 {ej(x), x ∈ Ω} are linear independent and therefore
(6.21), (6.22) imply∫

G

Qz(x)εj(x) dx = gj(Π−Qz), j = 1, . . . ,K. (6.23)

Similarly to (5.32) we look for the vector field w(x) from (6.19) in the form

w = −(−π∆)−1

Ω̂

K∑
j=1

pjεj (6.24)

To find coefficients (p1, . . . , pK) ≡ �p we substitute (6.24) into (6.23) taking into
account (6.19), (6.13). As a result we get

�z − A�p = �g
(
Lz − (�p, (−π∆)−1

Ω̂
�ε) − (�e, �z − A�p)

)
, (6.25)

where L is the extension operator from (6.19), �z = (z1, . . . , zK), A = ‖ajk‖ and

zj =
∫
G

(Lz(x), εj(x)) dx, ajk =
∫
G

((−π∆)−1

Ω̂
εk(x), εj(x)) dx,

�g(u) = (g1(u), . . . , gK(u)),

�ε = (ε1(x), . . . , εK(x)), �e = (e1(x), . . . , eK(x)), (�c,�e) =
K∑

j=1

cjej .

We showed in Step 4 of Theorem’s 5.1 proof that matrix A = ‖ajk‖ is positive
defined and therefore it is invertible.

Applying to both parts of (6.25) the matrix −A−1 we get the equality

�p = Gz(�p) (6.26)

where the map Gz : R
K → R

K is defined by the relation

Gz(�p) = A−1z − A−1�g(Lz − (�e, �z) + (�p, (−π∆)−1

Ω̂
�ε) + (�e,A�p)). (6.27)

In virtue of Theorem 6.2 the map A−1�g : R
K → R

K belongs to the class C1+1/2

and A−1�g(0) = 0, A−1�g′(0) = 0. Therefore for sufficiently small ‖�p1‖RK , ‖�p2‖RK ,
‖z‖V 1

0 (G) we derive from (6.27) that

‖Gz(�p1) − Gz(�p2)‖ � sup
β∈[0,1]

‖A−1�g′(Γz − (�e, �z)+

+ (β�p1 + (1 − β)�p2, (−π∆)−1

Ω̂
�ε) − (�e,A[β�p1 + (1 − β�p2)]))‖ · ‖�p1 − �p2‖ �

� γ(z, �p1, �p2)‖�p1 − �p2‖, where γ(z, p1, p2) � γ1(‖z‖1/2

V 1
0 (G)

+ ‖p1‖1/2

RK + ‖p2‖1/2

RK ),

and γ1 > 0 is a constant. Therefore the map Gz is a contraction one. Hence
by contraction mapping principle ([13]) equation (6.26) has a unique solution �p =
(p1, . . . , pK) if ‖z‖V 1

0 (G) is sufficiently small. For these ‖z‖V 1
0 (G) the operator Extσ

defined in (6.20), (6.19), (6.24) is the desired extension operator. �
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6.3. Theorem on stabilization. We set

V 2(Ω,Γ0) = V 2(Ω) ∩ V 1(Ω,Γ0) (6.28)

where V 1(Ω,Γ0) is space (5.18).

Proposition 6.1. Let f ∈ (L2(Ω))3 and a pair (v̂(x),∇p̂(x)) belongs to V 2(Ω,Γ)×
(L2(Ω))3 and satisfies equations (2.7), (2.8). Then there exist an extension g(x) ∈
(L2(G))2 of f(x) from Ω to G and an extension (a(x),∇q(x))in(V 2(G)∩V 1

0 (G))×
(L2(G))2 of (v̂(x),∇p̂(x)) from Ω to G such that the pair (a(x),∇q(x)) is a solution
of (2.19), (2.20).

The proof of this simple assertion is absolutely the same as in two-dimension
case (see Proposition 5.1 in [7]).

We now are in position to formulate the main result of this paper.

Theorem 6.4. Let Ω ⊂ R
3 be a bounded domain with C∞-boundary ∂Ω and

∂Ω = Γ0 ∪ Γ, where Γ,Γ0 are closed unintersectig surfaces, and Γ �= ∅. Suppose
that an extension G ⊂ R

3 of Ω satisfies (5.10), (5.11). Let f(x) ∈ (L2(Ω))3 and
(∇v̂(x),∇p̂(x)) ∈ V 2(Ω,Γ0) × (L2(Ω))3 satisfy (2.7), (2.8). Then for an arbitrary
σ > 0 there exists a sufficiently small ε1 > 0 such that for each v0 ∈ V 1(Ω,Γ0)
satisfying

‖v̂ − v0‖V 1(Ω) < ε1 (6.29)

there exists a feedback boundary control u(t, x), (t, x) ∈ Σ ≡ R+ × Γ which stabi-
lizes Navier—Stokes boundary value problem (2.3)–(2.6) with the rate (2.9), i.e. the
solution v of (2.3)–(2.6) satisfies (2.9).

Proof. Using Proposition 6.1 we extend v̂(x) to a(x) ∈ V 1(G), and f(x) to
g(x) ∈ (L2(G))2. As a result we get boundary value problem (2.16)–(2.18) (with
certain w0) and steady-state solution (a(x),∇q(x)) of this problem. We can suppose
that σ > 0 satisfies (3.20): otherwise we increase σ a little bit and get (3.20). In
virtue of Theorem 6.2 in a neighborhood of a there exists a manifold M− which
is invariant with respect to resolving semigroup S(t, w0) of problem (6.2), (6.3),
and for each w0 ∈ M− inequality (6.16) holds. Let ε1 be so small that it satisfies
condition of Theorem 6.3. Then we apply extension operator Extσ constructed in
Theorem 6.3 to initial condition v0 of problem (2.3)–(2.6) and take w0 = Extv0 as
initial condition for problem (2.16)–(2.18) or for equation (6.2) (that is equivalent).
Then since w0 ∈ M−, S(t, w0) ∈ M− for each t � 0, and estimate (6.16) holds.
We define solution (v, u) of stabilized problem (2.3)–(2.6) by formula (2.22) where
w(t, x) = S(t, w0) is the solution of (6.2), (6.3). Then (2.9) follows from (2.22),
(6.16) �
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