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respect. This controller requires more a priori knowledge on the unmodelled dynamics, as it is
dynamic and incorporates a signal bounding the unmodelled effects. However this is only possible
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1 Introduction

Consider the system : 
ẋ = f(x) +

p∑
i=1

gi(x) [ui + ci(x, z, u)]

ż = a(x, z, u)

(1)

where a and f are continuous vector fields, G = (gi) is a continuous “matrix field”, and c1, . . . , cp

are continuous functions. The x-subsystem represents, when c = 0, the nominal system. Its state
x, taking values in IRn, is measured and the vector u = (ui), taking values in IRp, is its input. The
z-subsystem represents the unmodelled dynamics, its state z, taking values in IRm, is unmeasured
and the functions a and c are unknown.

The problem is to design a feedback law, with x as only input, guaranteeing boundedness of the
solutions of the closed-loop system and regulating x around 0. To solve this problem we shall assume
(see A1) that the nominal system is globally asymptotically stabilizable and that the z-subsystem
has an appropriately “stable” input-output behavior (see A2 or A2’).

In the terminology of linear systems, the perturbation introduced via c would be called stable
and proper multiplicative perturbation. Its main characteristics are :
– The relative degree between u and any “generic” output function of x cannot be decreased by the

presence of c.
– The so called matching assumption is met. Namely, if c were measured, we could completely

annihilate its effects on the x-subsystem (see [I, Remark 4.6.2]). Here c is not assumed to be
measured. Instead, we shall impose an amplitude limitation (see A2 or A2’).

– The state x can be measured, and consequently, there is no inverse dynamics. This makes it
theoretically possible to use “high gain” controllers. However, we know that, if other classes
of “real life” unmodelled effects – input saturations, unmeasured noise, unmatched unmodelled
dynamics, . . . – are present, then “high gain” controllers may be unsuitable. For this reason, we
shall propose two solutions to the problem stated above with a different high gain requirement.
The topic of stabilizing (nonlinear) systems with uncertainties has been attracting the attention

of many authors for a long time, see for instance [BCL, C, CL, G, K]. While most of the work
in this area focused on unmodelled static (time varying) uncertainties, less work has been done
for systems with dynamic uncertainties. The recent work [KSK] has formulated very properly the
problem of stabilizability for nonlinear systems with unmodelled dynamics. There also, the authors
have proposed a solution for a specific class of systems with linear unmodelled dynamics at the input.
Some related work in this area can also be found in [Q1, Q2], where the author has investigated the
tracking problem for linear systems with unmodelled dynamic uncertainties.

Our problem generalizes the one stated and solved by Krstić, Sun and Kokotović in [KSK, Lemma
3.1] for x in IR and functions c and a linear and not depending on x. The solution proposed by these
authors incorporates, in the controller, a signal, called normalizing signal which captures the effect
of the unmodelled dynamics. This concept of normalizing signal is nowadays widely used in linear
adaptive control, and its extension to the nonlinear case has been suggested in [JP1, JP2, J]. Jiang,
Mareels and Pomet have shown in [JMP] that the result of [KSK, Lemma 3.1] holds also with a static
feedback law, without using the normalizing signal. For this, an appropriate change of coordinates
of the unmodelled dynamics is made and the technique of propagating the ISS property through
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integrators proposed in [JTP] is applied. Based on the technique of gain assignment and the Small-
Gain Theorem of [JTP], Krstić and Kokotović have obtained another solution in [KK], without
normalizing signal for the system (1), allowing the functions c and a to be nonlinear and to depend
on x but still imposing that x be in IR.

Here, we extend the work in [KK] to the general case when x is in IRn. Our major assumptions are:
(1) the nominal system is stabilizable, and (2) the unmodelled dynamics is input-to-output stable
(IOS) with a small enough gain function. In the special case when there is no dynamic uncertainty
presented in the system, that is, when the functions ci’s do not depend on z, the IOS condition reduces
to the usual boundedness condition on the static uncertainties considered, for instance, in [C, K, Q2].
After stating our assumptions in section 2, we shall propose, in section 3, a first control law which
solves the problem. It is a static feedback but, as already mentioned, it exhibits a high gain feature.
This feature has been found usefull to solve some problems in robust control (see for instance [BCL]
and [SK]) but it may also be undesirable in some other situations. This motivates our proposition of a
second controller in section 4. Our two controllers are compared for a simplistic example in section 5.
In section 6 we propose a framework allowing us to relax somehow the assumptions made in section 2.
In fact, to prove that our second controller provides the closed-loop system with properties similar to
the ones given by the first one, we need to restrain the class of unmodelled dynamics. Nevertheless
in the case ci(x, z, u) = z, i.e. the disturbance is the state of the unmodelled dynamics itself, we
prove in section 7 that there is in fact no restriction.

2 Assumptions

We assume the nominal system is globally asymptotically stabilizable and more precisely :

A1 : We know a C1 positive definite function V satisfying, for all x,

V (x) ≥ α1(|x|) , (2)

for some function α1 of class1 K∞, and a C0 feedback law un(x) with un(0) = 02, such that
the function3 :

W (x) = −L[f+Gun]V (x) (3)

is also positive definite.

According to [S1], if there exists un satisfying Assumption A1, then the following feedback us

also globally asymptotically stabilizes the nominal system :

usi(x) =

 −
LfV (x) +

√
LfV (x)2 + ‖LGV (x)‖4

‖LGV (x)‖2
LgiV (x) , if LGV (x) 6= 0 ,

0 , if LGV (x) = 0 ,

(4)

1For the definitions of class K, K∞ and KL functions see [H].
2Assuming un(0) = 0 can be done without loss of generality as far the nominal system is concerned. Indeed, if

un(0) = u0 6= 0, it is sufficient to replace f by f̂ = f + Gu0 and u by û = u− u0.
3LfV is the Lie derivative of V along f and LGV is the row vector (LgiV ).
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where ‖·‖ denotes the usual Euclidian norm of IRp. With this control we get the following positive
definite function :

Ws(x) = −L[f+Gus]V (x) . (5)

The interest of this particular feedback is that we have, for all x,

LGV (x) 6= 0 =⇒ LGV (x)us(x) < 0 . (6)

A2 : The z-subsystem of (1) with input (x, u) and output c is BIBS and IOpS. That is:

BIBS : For each initial condition z(0) and each measurable essentially bounded function (x, u) :
IR≥0 → IRn × IRp, the corresponding solution z(t) is defined and bounded on IR≥0.

IOpS : There exist a function βc of class KL, two functions γu and γx of class K and a posi-
tive real number c0 such that, for each initial condition z(0) and each measurable essentially
bounded function (x, u) : IR≥0 → IRn × IRp, the corresponding solution satisfies, for all t in
IR≥0,4

|c(t)| ≤ c0 + βc(|z(0)|, t) + γu(U(t)) + γx( sup
τ∈[0,t)

{|x(τ)|}) , (7)

where :
U(t) = sup

τ∈[0,t)
{|u(τ)|} , (8)

and for each vector v in IRp, |v| denotes max{|v1|, . . . , |vp|}, and similarly for vectors in IRn.

With Assumption A2, we shall be able to get a control law whose design is based on the only
fact that inequality (7) holds. However Krstić and Kokotović have noticed in [KK] that better
performance can be obtained if one uses more a priori knowledge on c, namely that the last two
terms in the right hand side of (7) can be evaluated on line and therefore used in the control law.
Unfortunately such terms involve U which is the output of an infinite dimensional system with u
as input. To overcome this difficulty, we remark that assumption A2 could apply to systems with
dynamics involving mathematical objects more complex than the system :{

ż = a(x, z, u) ,
y = c(x, z, u) .

(9)

In particular, when the initial condition z(0) is fixed, this system provides operators: u 7→ z and
u 7→ y which are finite dimensional, the former being strictly proper, whereas, in (8), the operator:
u 7→ U is only proper and infinite dimensional. From this, we conjecture that the restriction of A2
to systems in the particular form (9) should give a stronger property. These arguments lead us to
restrain assumption A2 with replacing the infinite dimensional operator supτ∈[0,t) {·} by a first order
one. This yields :

A2’ The z-subsystem with input u and output c is BIBS and exp-IOpS. That is:

exp-IOpS : For some positive real number µ and some functions γvx, γvu, γcx and γc of class

4For the sake of simplicity, here and all along the paper we make the following abuse of notations: sup is to be taken
as the essential supremum norm and “for all t” should be “for almost all t with respect to the Lebesgue measure”.
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K, there exist a positive real number co, a function γcu of class K and a function β of class KL,
such that, for each initial condition z(0) and for each measurable essentially bounded function
(x, u) : IR≥0 → IRn × IRp, the corresponding solution satisfies, for all t in IR≥0,

|c(t)| ≤ c0 + β(|z(0)|, t) + γcu(|u(t)|) + γcx(|x(t)|) + γc(r(t)) , (10)

where the function r(t) satisfies the following equations :

ṙ = −µ r + γvu(|u|) + γvx(|x|) , r(0) = 0 . (11)

The main difference between IOpS and exp-IOpS is that in (10), through r, an exponentially weighted
L1 norm is used instead of the L∞ one expressed in U . Clearly, exp-IOpS implies IOpS with the
gains of the relations u 7→ c and x 7→ c given by :

γu = γcu + γc ◦ 1
µ γvu , γx = γcx + γc ◦ 1

µ γvx (12)

respectively. But the previous arguments let us expect that the converse may be true. This will be
proved in section 7 for the case when c = z.

Assumption A2’ is strongly related with Assumption UEC (73) in [JP1]. From this relation, we
note :
– [JP1, Lemma 1] is a helpful tool for selecting the real number µ and the functions γvx, γvu, γcx

and γc.
– Equations in (11) provide us with r as a pseudo state for the stability analysis. In the proof of [JP1,

Proposition 1], it is shown that it is well suited for the application of Lyapunov second method.
– To help the reader get a better grip on the meaning of this signal r, we refer to [P, Property 1].

Let us remark that Assumption A1 and A2 or A2’ are not sufficient for guaranteeing the existence
of a feedback law solving our problem. Consider the system : ẋ = x2 − (u− γ(z))x ,

ż = (u− z) z2 ,
(13)

where γ is a smooth odd function satisfying :

sign(r) [r − γ(r)] ≤ M ∀ r ∈ IR , (14)

for some positive real number M . This condition says roughly that the function γ grows at least as
much as the identity function. Assumption A1 holds, with :

V (x) = 1
2 x2 , un(x) = x + x2 , (15)

and Assumption A2 holds also since the z-subsystem with input u and output γ(z) is IOS with
γx ≡ 0 and γu, any gain function of class K strictly greater than γ. However system (13) is not
asymptotically controllable. Precisely, we prove in Appendix A that there is no control law u(t) that
can drive to zero the x-component of any solution starting from (x0, 1) with x0 > M exp(1).

This example shows that it is in general impossible to solve the problem stated in section 1 if the
function Id− γu is bounded.
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3 First solution with a static feedback

Proposition 1 Assume A1 and A2 hold. Under this condition, for any functions κu and κx of class
K∞, there exists a continuous feedback law ω(x) such that all the solutions of the closed-loop system
(1) are bounded provided that we have :

(Id + ρ2) ◦ [γu ◦ (Id + ρ1) ◦ (Id + κu) + γx ◦ (Id + ρ1) ◦ κx] ≤ Id (16)

for some functions ρ1 and ρ2 of class K∞. Moreover, for each closed-loop solution, we have :

lim sup
t→+∞

|x(t)| ≤ κx ◦ (Id + ρ−1
2 )(c0) . (17)

Remark 2 : If, in (7), c0 = 0, that is, when the z-subsystem of (1) is IOS with (x, u) as input and
c as output, then it follows immediately from (17) that :

lim
t→+∞

|x(t)| = 0 . (18)

If c0 6= 0, since κx can be chosen as an arbitrarily small function of class K∞, (16) is mainly a
condition on γu and (17) gives a practical convergence result. In fact, it can be shown that, for any
given functions γu and γx of class K, satisfying :

Id− γu > ρ0 , (19)

for some function ρ0 of class K∞, we can find functions ρ1, ρ2, κu and κx of class K∞ such that (16)
holds. Note also that we do not claim stability in the proposition.

Proposition 1 will be established by showing first the existence of a continuous feedback law ω(x)
assigning appropriate gains to the system :

ẋ = f(x) + G(x) [ω(x) + c] (20)

with c as input and (x, ω(x)) as output. The conclusion will then follow from the Small-Gain Theorem
[JTP, Theorem 2.1].

Lemma 3 (Strong Gain Assignment Theorem) Assume A1 holds. Then for any functions κu

and κx of class K∞, there exists a continuous feedback law ω(x) and functions βu and βx of class
KL, such that, for each initial condition x(0) and for each measurable essentially bounded function
c : IR≥0 → IRp, the corresponding solutions of :

ẋ = f(x) + G(x) [ω(x) + c(t)] (21)

satisfy, for all 0 ≤ s ≤ t,

|ω(x(t))| ≤ βu(|x(s)|, t− s) + (Id + κu)

(
sup

τ∈[s,t)
{|c(τ)|}

)
, (22)

|x(t)| ≤ βx(|x(s)|, t− s) + κx

(
sup

τ∈[s,t)
{|c(τ)|}

)
. (23)
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This result is to be compared with [JTP, Theorem 2.2]. We have here a stronger statement since
not only any gain can be assigned to the relation c 7→ x but also we can limit the gain of the relation
c 7→ ω.

Proof of Lemma 3. Let V and α1 be the functions as in Assumption A1, and let V̇(21) denote the
function :

V̇(21)(x, t) =
∂V

∂x
(x) (f(x) + G(x) [ω(x) + c(t)]) . (24)

With assumption A1, we have :

V̇(21)(x, t) ≤ −W (x) + LGV (x)ω(x)− LGV (x)un(x) + LGV (x)c(t) . (25)

We restrict our attention to feedback laws ω of the form :

ωi(x) = −sign(LgiV (x)) ω̂i(x), ω̂i(x) ≥ 0 , i = 1, 2, . . . , p, (26)

where the functions ω̂i will be defined below. This yields :

V̇(21)(x, t) ≤ −W (x) −
p∑

i=1

|LgiV (x)|
(
ω̂i(x) − |uni(x)| − |c(t)|

)
. (27)

To define ω̂i, we let S be a function of class K∞ such that, for all s and x, we have :

κ−1
u (|un(x)|) ≤ S(V (x)) , κ−1

x ◦ α−1
1 (s) ≤ S(s) . (28)

Such a function exists since V is positive definite and proper. Then we choose ω̂i as :

ω̂i(x) = θi(x) bi(x) , (29)

where :
bi(x) = |uni(x)| + S(V (x)) (30)

and θi is a function introduced to enforce continuity and defined as follows :
For each i, let :

B0i = {x : LgiV (x) = 0, x 6= 0} , (31)

and :
B1i =

{
x : |LgiV (x)|

(
S(V (x)) + |uni(x)|

)
≥ W (x)

2p
, x 6= 0

}
. (32)

Since W is positive definite, B0i and B1i are closed and disjoint subsets of IRn \{0}. It follows that we
can define this function θi : IRn \ {0} → [0, 1] as a continuous function satisfying (see the appendix
for an explicit expression of such a function) :

θi(x) =

{
1 , if x ∈ B1i ,

0 , if x ∈ B0i .
(33)
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To get a definition of θi on IRn we simply add θi(0) = 0. Then, though θi may fail to be continuous
at 0, the function ω̂ is continuous on IRn since bi(0) = 0. Hence, from (27), we get:

V̇(21)(x, t) ≤ −W (x) −
p∑

i=1

|LgiV (x)| [θi(x) (S(V (x)) + |uni(x)|)− |uni(x)| − |c(t)|]

≤ −W (x) +
p∑

i=1

|LgiV (x)| (1− θi(x)) (S(V (x)) + |uni(x)|)

−
( p∑

i=1

|LgiV (x)|
)

(S(V (x))− |c(t)|)

≤ −W (x)
2

−
( p∑

i=1

|LgiV (x)|
)

(S(V (x))− |c(t)|) . (34)

From this latter inequality, by using the fact that W is positive definite, V and S are positive definite
and proper and following the same lines as in the Claims on p. 441 in [S2], we can show the existence
of a function βv of class KL such that, for all 0 ≤ s ≤ t, we have :

V (x(t)) ≤ max

{
βv(V (x(s)), t− s) , S−1

(
sup

τ∈[s,t)
{|c(τ)}|

)}
. (35)

Inequality (23) follows readily with (28) and (2). Then, since we have :

|ω(x)| ≤ (Id + κu) ◦ S(V (x)) , (36)

the conclusion follows.

Remark 4 : If instead of using un, we use us satisfying (6), the control law ω can be made simpler
by modifying (29) and (30) so that :

ωi(x) = usi(x) − θi(x) sign(LgiV (x))S(V (x)) , (37)

and B1i in (32) into :

B1i =
{

x : |LgiV (x)| S(V (x)) ≥ Ws(x)
2p

, x 6= 0
}

. (38)

Remark 5 : The control law ω can be made smooth if one allows the addition of arbitrarily small
positive numbers to the right hand side of (22) and (23) (see [JTP]). More specifically, for any ε0 > 0,
one can always approximate each ωi(x) by a smooth function ω̃i(x) so that, for all x ∈ IRn, we have :

|ωi(x)− ω̃i(x)| < ε0 . (39)

But, with such a choice of ω̃i, it may fail to hold that :

LgiV (x) ω̃i(x) ≤ 0, ∀x ∈ IRn . (40)
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To get a smooth feedback ω̃i satisfying restriction (40), we proceed as follows :
For each m ∈ {1, . . . ,m}, we let B2i denote the open subset of IRn where ωi(x) 6= 0. We define :

σi(x) = min
{ |ωi(x)|

2
,

ε0

2

}
. (41)

so that σi(x) > 0 for all x ∈ B2i. Hence, there exists a function ωi(x) that is smooth on B2i and such
that :

|ωi(x)− ωi(x)| < σi(x) (42)

for all x ∈ B2i (cf. [B, Theorem 4.8, p197]). One can then extends of the domain of ωi to IRn by
letting ωi(x) = 0 for x 6∈ B2i. Note then that ωi(x) is continuous everywhere, and, for all x ∈ IRn,

ωi(x) ωi(x) ≥ 0 . (43)

Now we let θ̃i(x) : IRn → [0, 1] be a smooth function satisfying the following :

θi(x) =

{
0 , if x ∈ B3i ,

1 , if x ∈ B4i ,
(44)

where the two sets B3i and B4i are defined by :

B3i = {x ∈ IRn : |ωi(x)| ≤ ε0/4} , B4i = {x ∈ IRn : |ωi(x)| ≥ ε0/2} . (45)

As before, such a smooth funciton exists because B3i and B4i are two disjoint closed subsets of IRn.
Finally we let :

ω̃i(x) = θi(x) ωi(x) . (46)

Then ω̃i is smooth everywhere, and, for all x ∈ IRn,

ω̃i(x) LgiV (x) ≤ 0 , |ω̃i(x)− ωi(x)| < ε0 . (47)

Consequently, when the controls ω̃i’s are used instead of the ωi’s, (34) becomes :

V̇(21)(x, t) ≤ −W (x)
2

−
( p∑

i=1

|LgiV (x)|
)

(S(V (x))− |c(t)| − ε0) . (48)

It follows that (22) and (23) are replaced by :

|ω̃(x(t))| ≤ βu(|x(s)|, t− s) + (Id + κu)

(
sup

τ∈[s,t)
{c(τ)}+ ε0

)
+ pε0

≤ βu(|x(s)|, t− s) + (Id + κu)

(
sup

τ∈[s,t)
{c̃(τ)}

)
(49)

|x(t)| ≤ βx(|x(s)|, t− s) + κx

(
sup

τ∈[s,t)
{c̃(τ)}

)
, (50)

where c̃ = |c|+ (p + 1)ε0.
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Proof of Proposition 1. By applying Lemma 3 we get a continuous feedback law ω(x) which, when
applied to (1), gives a closed-loop system which can be seen as the interconnection :

ẋ = f(x) + g(x) [ω(x) + y1] , y1 = c(x, z, ω(x)) , (51)

ż = a(y21, z, y22) , y21 = x , y22 = ω(x) , (52)

where, from (7), (22) and (23),

|y1(t)| ≤ c0 + βc(|z(0)|, t) + γu

(
sup

τ∈[0,t)
{|y22(τ)|}

)
+ γx

(
sup

τ∈[0,t)
{|y21(τ)|}

)
, (53)

|y22(t)| ≤ βu(|x(0)|, t) + (Id + κu)

(
sup

τ∈[0,t)
{|y1(τ)|}

)
, (54)

|y21(t)| ≤ βx(|x(0)|, t) + κx

(
sup

τ∈[0,t)
{|y1(τ)|}

)
. (55)

To conclude we could apply [JTP, Theorem 2.1] if :
– the function ω(x) were locally Lipschitz,
– we would have a one channel interconnection instead of the two channels given by y21 and y22 ,
Nevertheless, if the statement of this Theorem is not exactly appropriate, we can follow line by line
its proof. First we can show with (16) that the outputs corresponding to any solutions are bounded
on their maximal interval of definition. In particular, we have (see [JTP, (80)]) :

|y1(t)| ≤ c0 + βc(|z(0)|, t) + γu

(
βu(|x(0)|, 0) + (Id + κu)

(
sup

τ∈[0,t)
{|y1(τ)|}

))

+ γx

(
βx(|x(0)|, 0) + κx

(
sup

τ∈[0,t)
{|c(τ)|}

))
. (56)

With (16), this yields (see [JTP, (83)]) :

sup
τ∈[0,t)

{|y1(τ)|} ≤ (Id + ρ−1
2 )
(

βc

(
|z(0)|, 0

)
+ γu ◦ (Id + ρ−1

1 )
(
βu(|x(0)|, 0)

)

+ γx ◦ (Id + ρ−1
1 )
(
βx(|x(0)|, 0)

)
+ c0

)
. (57)

With the BIBS property of both subsystems, this implies that all the solutions are defined and
bounded on IR≥0. This means that, for each (x(t), z(t)), there exists a positive real number s∞ so
that, for all t in IR≥0, we have :

|(x(t), z(t))| ≤ s∞ . (58)

Second, we get, for all t in IR≥0 (see [JTP, (93)]),

|y1(t)| ≤
[
βc(s∞, t/2) + γu ◦ (Id + ρ−1

1 ) ◦ βu(s∞, t/4) + γx ◦ (Id + ρ−1
1 ) ◦ βx(s∞, t/4)

]
+ (Id + ρ2)−1

(
sup

τ∈[t/4,∞)
{|y1(τ)|}

)
+ c0 . (59)

10



So, with [JTP, Lemma A.1], for any function ρ3 of class K∞, we know the existence of a function β̂
of class KL such that we have, for all t in IR≥0,

|y1(t)| ≤ β̂(s∞, t) + (Id + ρ−1
2 ) ◦ (Id + ρ3)(c0) . (60)

Since, with (58) and (52), (23) gives :

|x(t)| ≤ βx(s∞, t/2) + κx

(
sup

τ∈[t/2,∞)
{|y1(τ)|}

)
, (61)

It follows readily that :

lim sup
t→∞

|x(t)| ≤ κx ◦ (Id + ρ−1
2 ) ◦ (Id + ρ3)(c0) , (62)

for any function ρ3 of class K∞. But the solution (x(t), z(t)) is independent of ρ3, this implies (17). 2

4 Second solution with a dynamic feedback

The solution we have proposed in the previous section relies on the use of high gain. This fact is
hidden in the choice of the function S which has to be sufficiently large and not only for small values.
This may lead to problems if other robustness problems are considered. What is leading to high gain
in the previous approach is the use of the matching assumption and a worst case design. By using
more a priori knowledge on the unmodelled dynamics one may hope high gain to be involved in a
different way. To this purpose, we incorporate assumption A2’ in the following result.

Proposition 6 Assume A1 holds with W a proper function5, i.e. precisely :

α3(V (x)) ≤ 1
2 W (x) , (63)

where α3 is some function of class K∞ . Let us choose a real number µ, functions γvu and γc of
class K and a function κ1 of class K∞ so that :

γvu ◦ (Id + ρ4) ◦ κ−1
1 ◦ (Id + ρ4) ◦ γc ≤ µ Id − ρ5 (64)

for some functions ρ4 and ρ5 of class K∞. We assume that, with such a choice, Assumption A2’
holds with a function γcu satisfying :

γcu ≤ Id− κ1 . (65)

Under these conditions, for any functions κ2, κ3 and κ4 of class K∞, there exists a continuous
dynamic feedback law ω(x, r) with r given by (11) such that all the solutions of the closed-loop
system are bounded and their x-components satisfy :

lim sup
t→+∞

|x(t)| ≤ α−1
1 ◦ (Id + κ−1

3 ) ◦ α−1
3 ◦ (Id + κ−1

4 ) (c0κ2(c0)) . (66)

5With Assumption A1, we can always modify the function V to meet this requirement (see Proposition 13 for
instance).
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Remark 7 : When c0 = 0, we get convergence of the x-component :

lim
t→+∞

|x(t)| = 0 . (67)

When c0 6= 0, since κ2, κ−1
3 and κ−1

4 can be chosen as arbitrarily small functions of class K∞, (66)
gives a practical convergence result.

Proof. First, we remark, with (11), that r(t) is nonnegative for any t in IR≥0. Then, we follow the
same lines as for the proof of Lemma 3. Let V̇(1) denote the function :

V̇(1)(x, u, t) =
∂V

∂x
(x)
(
f(x) + G(x)(u + c(t))

)
, (68)

and let ω be chosen of the form :

ωi = −sign(LgiV (x)) ω̂i , ω̂i ≥ 0 , i = 1, 2, . . . , p , (69)

with functions ω̂i to be defined below. With (10), we get :

V̇(1)(x, ω, t) ≤ −W (x) −
p∑

i=1

|LgiV |
(
ω̂i − |uni(x)|

)

+
p∑

i=1

|LgiV |
(
c0 + β(|z(0)|, t) + γcu(|ω|) + γcx(|x|) + γc(r)

)
. (70)

To define the functions ω̂i, let κ2 be the function of class K∞ chosen in Proposition 6. Let us
also choose a function ` of class K and bounded by `∞. Since, for any positive real numbers a, b, we
have :

ab ≤ κ2(b) b

p
+ κ−1

2 (pa) a (71)

(consider two cases: a ≤ κ2(b)/p and a ≥ κ2(b)/p), we obtain :

V̇(1)(x, ω, t) ≤ −W (x) −
p∑

i=1

|LgiV |
(
ω̂i − γcu(|ω|) − bi(x) − γc(r)

)
+ v0(t)κ2(v0(t)) , (72)

where v0(t) is defined as :
v0(t) = β(|z(0)|, t) + c0 , (73)

and, for each i,
bi(x) = |uni(x)| + γcx(|x|) + κ−1

2 (p|LgiV (x)|) . (74)

Let :
b(x) = max

j∈{1,...,p}

{
bj(x)

}
. (75)

We define ω̂i as :
ω̂i(x, r) = θi(x, r) κ−1

1

(
b(x) + γc(r)

)
, (76)
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where κ1 is chosen in Proposition 6. As in (29), the function θi : IRn × IR → [0, 1] is introduced to
enforce the continuity. It is defined as follows :
For each i, let :

B0i = {(x, r) : LgiV (x) = 0, (x, r) 6= (0, 0)} , (77)

and :
B1i =

{
(x, r) : |LgiV (x)|κ−1

1 (b(x) + γc(r)) ≥
W (x)

2p
+

`(r)
p

, (x, r) 6= (0, 0)
}

. (78)

Since both W and ` are positive definite, it follows that B0i and B1i are disjoint closed subsets of
IRn × IR \ {(0, 0)}. Then, one can define a continuous function θi : IRn × IR \ {(0, 0)} → [0, 1] such
that :

θi(x, r) =

{
1 , if x ∈ B1i ,

0 , if x ∈ B0i .
(79)

To get a definition of θi on IRn × IR we simply let θi(0, 0) = 0. Although θi may fail to be continuous
at (0, 0), the functions ω̂i and ωi are continuous on IRn × IR since b(0) = γc(0) = 0.

Now, since condition (65) implies :

ω̂i(x, r)− γcu(|ω(x, r)|) ≥ (−(1− θi(x, r)) Id + Id − γcu) ◦ κ−1
1 (b(x) + γc(r))

≥ −(1− θi(x, r))κ−1
1

(
b(x) + γc(r)

)
+ b(x) + γc(r) , (80)

inequality (72) becomes, with (63), (76), (75) and the definition of θi,

V̇(1)(x, ω, t) ≤ −W (x) +
p∑

i=1

|LgiV |(1− θi(x, r))κ−1
1 (b(x) + γc(r)) + v0(t)κ2(v0(t))

≤ −1
2 W (x) + v0(t)κ2(v0(t)) + `(r)

≤ −α3(V (x)) + v0(t)κ2(v0(t)) + `(r) . (81)

On the other hand, with the control law given by (76), the equations (11) imply :

ṙ ≤ −µ r + γvu ◦ κ−1
1 (b(x) + γc(r)) + γvx(|x|) . (82)

With condition (64), it follows :

µ r − γvu◦ κ−1
1 (b(x) + γc(r)) ≥ µ r − γvu

(
κ−1

1 ◦ (Id + ρ4) ◦ γc(r) + κ−1
1 ◦ (Id + ρ−1

4 )(b(x))
)

≥ µ r − γvu ◦ (Id + ρ4) ◦ κ−1
1 ◦ (Id + ρ4) ◦ γc(r)

− γvu ◦ (Id + ρ−1
4 ) ◦ κ−1

1 ◦ (Id + ρ−1
4 )(b(x)))

≥ ρ5(r) − γvu ◦ (Id + ρ−1
4 ) ◦ κ−1

1 ◦ (Id + ρ−1
4 )(b(x)) . (83)

Let ρ6 be a function of class K∞ satisfying :

γvx(|x|) + γvu ◦ (Id + ρ−1
4 ) ◦ κ−1

1 ◦ (Id + ρ−1
4 )(b(x)) ≤ ρ6(V (x)) . (84)
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Such a function exists since (2) holds for all x. With (81), we have finally obtained the following
system of differential inequalities :

V̇(1)(x, ω, t) ≤ −α3(V (x)) + v0(t)κ2(v0(t)) + `(r)

≤ −α3(V (x)) + v0(t)κ2(v0(t)) + `∞ ,

ṙ ≤ −ρ5(r) + ρ6(V (x)) .

(85)

Now let (x(t), r(t), z(t)) be a solution of the closed-loop system (1),(11),(69),(76). Such a solution
exists for any initial condition (x(0), z(0)) and has a right maximal interval of definition [0, T ). But
since α3 is of class K∞, V is proper, v0 and ` are bounded, (85) implies that x(t) is bounded on [0, T ).
This, with the fact that ρ5 is of class K∞, implies that r(t) is also bounded on [0, T ). It follows that
the control :

u(t) = ω(x(t), r(t)) (86)

is bounded on [0, T ). So with the BIBS property of the z subsystem, z(t) is bounded on [0, T ).
Hence, by contradiction, one shows that the solution is defined and bounded on IR≥0, i.e., for all t in
IR≥0,

‖(V (x(t)), r(t), z(t))‖ ≤ s∞ < +∞ . (87)

Also, as in the proof of Proposition 1, by following the same lines as in the Claims on p. 441
in [S2], for any functions ρv and ρr of class K∞, with :

ρv ≤ Id , (88)

we can show the existence of class KL functions βv and βr such that, for all 0 ≤ s ≤ t, we have :

V (x(t)) ≤ βv(V (x(s)), t− s) + α−1
3 ◦ (Id + ρv)

(
sup

τ∈[s,t)
{yr(τ)}

)
, (89)

r(t) ≤ βr(r(s), t− s) + ρ−1
5 ◦ 2ρ6

(
sup

τ∈[s,t)
{V (x(τ))}

)
, (90)

where we have introduced the function :

yr(t) = v0(t)κ2(v0(t)) + `(r(t)) . (91)

But since :
lim sup
t→+∞

yr(t) ≤ c0κ2(c0) + `∞ , (92)

by taking s = t/2 in (89) and using (87), we conclude readily that :

lim sup
t→∞

V (x(t)) ≤ α−1
3 ◦ (Id + ρv)(c0κ2(c0) + `∞) , (93)

The facts that function ρv is arbitrary and the solution (x(t), r(t), z(t)) is independent of ρv imply
that

lim sup
t→∞

V (x(t)) ≤ α−1
3 (c0κ2(c0) + `∞) , (94)
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from which it follows :
lim sup
t→+∞

|x(t)| ≤ α−1
1 ◦ α−1

3 (c0κ2(c0) + `∞) . (95)

To show that this bound can be improved, we proceed as follows. Let us choose the function ` not
only of class K and bounded by `∞ but also satisfying :

` ≤ ρ7 , (96)

where ρ7 is of class K∞ and defined by :

ρ7 = (2(Id + κ4))
−1 ◦ α3 ◦ (Id + κ3)

−1 ◦ (2ρ6)
−1 ◦

(
2ρ−1

5

)−1
. (97)

The constraint (96) can always be satisfied and the function ρ7 depends only on known data. Indeed,
– the functions κ3 and κ4 are chosen in Proposition 6,
– the function α3 is obtained, in order to meet (63), from the known function V and W ,
– the functions ρ4 and ρ5 are obtained, in order to meet (64), from the chosen quantities µ, γvu, γc

and κ1,
– the function ρ6 is obtained, in order to meet (84), from the known or chosen functions γvu, ρ4, κ1,

un, γcx, κ2, g, γvx and V .
Then, from (89), (91) and (90), we can consider the interconnection of a fictitious system with state
x, input yr and output V (x) with a fictitious system with state r, input V (x) and output `(r).
Although the systems are fictitious, the proof of the Small-Gain Theorem [JTP, Theorem 2.1] still
applies. This can be seen by writing, in a way similar to (59),

V (x(t)) ≤ βv(s∞, t/2) + α−1
3 ◦ (Id + ρv) ◦ (Id + κ−1

4 ) (v0(t/2)κ2(v0(t/2)))

+ α−1
3 ◦ (Id + ρv) ◦ (Id + κ4) ◦ `(2βr(s∞, t/4))

+ α−1
3 ◦ (Id + ρv) ◦ (Id + κ4) ◦ ` ◦ 2ρ−1

5 ◦ 2ρ6

(
sup

τ∈[t/4,+∞)
{V (x(τ))}

)
. (98)

So, with (88) and (96), we can again apply [JTP, Lemma A.1] to conclude that :

lim sup
t→∞

V (x(t)) ≤ (Id + κ−1
3 ) ◦ (Id + ρ8) ◦ α−1

3 ◦ (Id + ρv) ◦ (Id + κ−1
4 )(c0κ2(c0)) (99)

holds for any functions ρ8 and ρv of class K∞ with (88) satisfied. From this we get (66). 2

5 Comparison between the static and dynamic feedback designs

Two common features of the designs we have proposed are that they require a similar small gain
condition and, when c0 6= 0, they provide practical stability for the closed-loop system with a residual
set which can be made smaller at the price of introducing a high gain feature for small values :

– Indeed, condition (16) of Proposition 1 and (64),(65) of Proposition 6 are approximately equivalent.
In (16), since ρ1, ρ2 and κx are arbitrary, this condition can be interpreted as mainly requiring
that the function Id − γu be bounded below by a function of class K∞. Similarly in (64), since
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ρ4 and ρ5 are arbitrary, this condition is mainly that the real number µ and the functions γvu, κ1

and γc should be chosen such that the function κ1 −
(
γcu ◦ 1

µ γvu

)
is bounded below by a function

of class K∞. Then, (65) is mainly requiring that the function Id −
(
γcu + γc ◦ 1

µ γvu

)
is bounded

below by a function of class K∞. Our remark follows with (12).

– Concerning the size of the residual set, in the static case, i.e. in the context of Proposition 1, the
solutions can be made to converge to a smaller neighborhood of the origin by choosing a smaller
function κx. In the dynamic design, i.e. in the context of Proposition 6, one does so by choosing
a smaller function κ2. In both cases, this causes the “high gain” phenomenon at least for small
values : in the static design, one needs to choose a bigger function S (see (28)), while in the
dynamic design, the same problem occurs with the term κ−1

2 (p|LgiV (x)|) in (74).

Two significant differences between the designs are that the dynamic design requires more a priori
knowledge and that, when c0 is known to be 0 and the unmodelled effect is more dynamic, and if
we do not take into account the effects of the functions θi’s presented in both designs, the dynamic
design is less demanding high gain than the static design :

– While in the static design, one only needs to know that Assumptions A1 and A2 hold, in the
dynamic design one needs the knowledge of the real number µ and the functions γvx, γvu, γcx and
γc so that Assumption A2’ holds.

– In the static design, we cannot use the a priori knowledge c0 = 0. Indeed, in any case, the
function S, involved in bi defined in (30), needs to satisfy the “high gain” inequality (28). But,
in the dynamic design, the function κ2, involved in bi defined in (74), is completely arbitrary. For
instance, we can take κ2 = p Id in (76) and (74). This yields :

bi(x) = |uni(x)| + γcx(|x|) + |LgiV (x)| , (100)

where every term is a “raw” data of the problem. When there is no static unmodelled effect,
that is, when γcu = 0, the gain function κ−1

1 in (76) can be taken as the identity function, so the
high gain feature is only caused by the function θ(x, r) used to make the feedback smooth. This
difference between the two designs follows from the fact that the static one is definitely a worst
case design using very little a priori knowledge.

To better understand the difference beween our two designs, we consider the following system:

ẋ = x2 + u + c(z, u) (101)

where the function c is assumed to satisfy :

|c(z, u)| ≤ cu |u| + cz |z| (102)

and the unmodelled dynamics are given by :

ż = −δ z + u , (103)

for some δ > 0.
Assumption A1 is satisfied with V (x) = x2 by taking :

un(x) = −x |1 + x| . (104)
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Assumption A2 is satisfied with :

c0 = 0 , γu(s) =
(

cu +
cz

δ

)
s , γx(s) = 0 . (105)

Finally, by choosing :

γvx(s) = γcx(s) = 0 , γvu(s) = s , γc(s) = h s , (106)

Assumption A2’ is satisfied with :

c0 = 0 , γu(s) = cu s , (107)

if we have :
µ ≤ δ , h ≥ cz . (108)

Our static feedback is :
u(x) = −x

(
|1 + x|+ 1

k
(1 + |x|)

)
, (109)

with the parameter k to be chosen. It is obtained by taking :

S(s) =
1
k

(√
s + s

)
. (110)

To obtain boundedness of the solutions and global attractivity of the origin, it is sufficient for the
system to meet :

cu +
cz

δ
< 1 (111)

and, for the controller parameter k to meet :

k <
1−

(
cu + cz

δ

)(
cu + cz

δ

) . (112)

This shows that an upperbound for cu + cz/δ is needed for the design.

Our dynamic feedback is, if continuity is not enforced,

ṙ = −µ r + |u(x, r)| , u(x, r) = − 1
k1

(x |1 + x|+ x + h r sign(x)) , (113)

with the parameters µ, k1 and h to be chosen. It is obtained by taking :

κ1(s) = k1 s , κ2(s) = s , (114)

where, according to (64) and (65), k1 should satisfy :

h

k1
< µ , cu ≤ 1 − k1 . (115)

To obtain boundedness of the solutions and global attractivity of the origin, it is sufficient for the
controller parameters (µ, h, k1) to meet :

µ ≤ δ , h ≥ cz ,
h

µ
< k1 ≤ 1 − cu . (116)
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This shows that a lower bound for δ and upperbounds for cu and cz are needed. Also the system
must satisfy :

cu +
cz

δ
< 1 . (117)

We conclude that the restrictions on the system are the same with both controllers. But the imple-
mentation of the dynamic controller requires more a priori knowledge.

Concerning the gains 1/k1, used in the dynamic feedback, and 1/k, used in the static feedback, we
see, with (116) and (112), that their need to be high depends on cu and cz

δ . Notice, however, that the
high gain occurs in different ways in the two methods: when the unmodelled effect is more static, the
gain 1/k in the static feedback is lower than the gain 1/k1 used in the dynamic feedback; when the
unmodelled effect is more dynamic, the gain 1/k1 is lower than the gain 1/k. This can be observed
in two extreme cases when cz = 0 and when cu = 0. When cz = 0, that is, when the unmodelled
effect is purely static, the static gain 1/k = cu/(1− cu), and the dynamic gain is 1/k1 = 1/(1− cu).
If cu gets close to 1, both 1/k and 1/k1 become high gain, but clearly, 1/k is lower than 1/k1. This
suggests that when the unmodelled effect is more static, the static feedback is more suitable than the
dynamic one. When cu = 0, that is, when the unmodelled effect is purely dynamic, the static gain is
1/k = c1/(1− c1), where c1 = cz/δ, and the dynamic gain 1/k1 can be taken as any number between
1 and µ/h. When c1 gets close to 1, the static gain k becomes a high gain, while the dynamic gain
1/k1 remains to be bounded. With more detailed analysis, it can be shown that if cu is bounded
away from 1, then the dynamic unmodelled effect will cause the high gain in the static design, while
the gain used in the dynamic design remains bounded as long as cu remains bounded. This is what
should be expected, because the dynamic feedback was introduced mainly to deal with the dynamic
unmodelled effect. But to be able to carry out the dynamic design, one needs more data on how the
unmodelled dynamics affects the system.

Finally, since in this example x is in IR and the functions a and c are linear, we can compare
our second design method with the one proposed in [KSK]. This method leads to the dynamic state
feedback :

ṙ = −µ r + |u(x, r)| , u(x, r) = −x |1 + x| − k x (1 + hr + |x||1 + x|) , (118)

with the parameters µ, h and k to be chosen. It guarantees boundedness of the solutions and
convergence of x to the set {

x : |x| ≤ max{cu, cz/h}
k(1− cu)

}
provided that the controller parameters h and µ satisfy :

cz

1− cu
< µ ≤ δ ,

h

µ
<

1− cu

cu
. (119)

Hence the system should be such that :

cu +
cz

δ
< 1 . (120)

This shows that a lower bound for δ and an upperbound for cu are needed for the design. So, in this
case, as opposed to our second design method, cz plays no explicit role in the control design. But
the convergence of the solutions to the origin is not guaranteed without a further restriction.

An interesting topic for future research would be to find a way to combine the two designs leading
to a dynamic controller retaining the advantages of both.
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6 Extension to one-sided IOpS and one-sided exp-IOpS

In the case of linear systems, designs of static state feedback providing infinite gain margin are known.
From Propositions 1 or 6, we get that u can be changed into k u with k in [ε, 2 − ε], with a chosen
ε > 0. Nevertheless the property that k can be in [ε, +∞[ is recovered by noting that, in fact, our
results still hold if, in A2, IOpS is replaced by one-sided IOpS, and in A2’, exp-IOpS is replaced by
one-sided exp-IOpS where :

one-sided IOpS : is the same as IOpS except that (7) is replaced by :

max
i∈{1,...,p}

{csidedi
(t)} ≤ c0 + βc(|z(0)|, t) + γu(U(t)) + γx( sup

τ∈[0,t)
{|x(τ)|}) ,

(121)
where :

csidedi
(t) = max

{
−sign(ui(t)) ci(x(t), z(t), u(t)) , 0

}
. (122)

one-sided exp-IOpS : is the same as exp-IOpS except that (10) is replaced by :

max
i∈{1,...,p}

{csidedi
(t)} ≤ c0 + β(|z(0)|, t) + γcu(|u(t)|) + γcx(|x(t)|) + γc(r(t)) .

(123)

Such a fact can be proved by following exactly the same lines as for the two-sided case with, in
particular, the fact that Lemma 3 still holds if in (22) and (23), we replace c(τ) by c+(τ) defined as :

c+(τ) = max
i∈{1,...,p}

{c+i(t)} , (124)

where :
c+i(t) = max

{
ci(t)sign (LgiV (x(t))) , 0

}
. (125)

With such one-sided properties, we see that if u is changed into into ku then c is given by :

c(x, z, u) = (k − 1) u . (126)

It follows that we have, for all i,

csidedi
= max{1− k, 0} |ui| . (127)

In this case, we get :

γx = γcx = γc = 0 , γu(s) = γcu(s) = max{1− k, 0} s . (128)

So, given ε > 0, we can design our controller so that we can allow k ∈ [ε, +∞).
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7 On the equivalence of the IOS and exp-IOS properties

Let us study now the relation between IOS and exp-IOS properties. We have already mentioned that
exp-IOS implies IOS. For finite dimensional observable linear systems, the converse is true. Indeed,
in this case IOS implies that the eigen-values of any appropriate realization have strictly negative
real part. For nonlinear systems, we replace observability by the strong unboundedness observability
(SUO) property introduced in [JTP], i.e.

SUO : There exist a function βo of class KL, a function γo of class K and a nonnegative real number
do such that, for each initial condition z(0) and each measurable function (x, u) : [0, T ) → IRn×IRp,
with 0 < T ≤ ∞, the corresponding solution z(t), right maximally defined on [0, T ′), with T ′ in
(0, T ], satisfies, for all t in [0, T ′),

|z(t)| ≤ βo(|z(0)|, t) + γo

(
sup

τ∈[0,t)
{|(x(τ), u(τ), c(x(τ), z(τ), u(τ))|}

)
+ do . (129)

Indeed, by following exactly the same arguments as in the proof of [JTP, Proposition 3.1], we see
that IOS and SUO, with do = 0, imply ISS, and if in addition c(0, 0, 0) = 0, then exp-ISS implies
exp-IOS. Therefore if ISS and exp-ISS are equivalent properties, IOS and exp-IOS are also equivalent
properties under the extra assumptions SUO, with do = 0, and c(0, 0, 0) = 0.

To study this equivalence of ISS and exp-ISS, let us consider the following system :

ẋ = f(x, u) , (130)

with x in IRn and f : IRn × IRp → IRn a locally Lipschitz function satisfying f(0, 0) = 0. We assume
this system is ISS, i.e.

ISS : There exist a function β of class KL and a function γ of class K such that, for each initial
condition x(0) and each measurable essentially bounded function u : IR≥0 → IRp, the corresponding
solution x(t) satisfies, for all t in IR≥0,

|x(t)| ≤ β(|x(0)|, t) + γ(U(t)) (131)

where U(t) is defined in (8).

In this context, the exp-ISS property is :
exp-ISS : Given µ > 0, there exist a function β of class KL, a function γc of class K which is C1

on IR>0, and a function γv of class K which is C1 on IR≥0, such that, for each initial condition z(0)
and each measurable essentially bounded function u : IR≥0 → IRp, the corresponding solution x(t)
satisfies, for all t in IR≥0,

|x(t)| ≤ β(|x(0), t) + γc(r(t)) , (132)

where r(t) is the solution of the following initial value problem :

ṙ = −µ r + γv(|u|) , r(0) = 0 . (133)

Clearly exp-ISS implies ISS with γ in (131) given by γc ◦ 1
µγv. The converse is also true. Precisely,

we have :
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Proposition 8 System (130) is ISS if and only if it is exp-ISS. This result still holds if we impose
that γc be concave and γv be convex.

To establish this statement, we need to recall the definition of ISS-Lyapunov functions introduced
in [SW].

Definition 9 A smooth function V : IRn → IR≥0 is called an ISS-Lyapunov function for system (130)
if there exist functions α1 and α2 of class K∞ and α3 and χ of class K such that, for all x,

α1(|x|) ≤ V (x) ≤ α2(|x|) (134)

and
|x| ≥ χ(|u|) =⇒ ∂V

∂x
(x)f(x, u) ≤ −α3(|x|) . (135)

One of the main results in [SW] provides the following Lyapunov characterization of ISS :

Lemma 10 The system (130) is ISS if and only if it admits an ISS-Lyapunov function.

In fact, the property for a system to have an ISS-Lyapunov function can be strengthened as
follows :

Lemma 11 If a system admits an ISS-Lyapunov function V satisfying (134) and (135), then, for
any µ > 0, there exists a C1 function V and functions α̃1 and α̃2 of class K∞ such that, for all x,

α̃1(|x|) ≤ V(x) ≤ α̃2(|x|) (136)

and
|x| ≥ χ(|u|) =⇒ ∂V

∂x
(x) f(x, u) ≤ −µV(x) . (137)

Note that if V is smooth, then V is again an ISS-Lyapunov function with an associated function
α3 equal to −µV.

Proof. First of all, observe that, by renaming by α3 the function 2
µα3 ◦ α−1

1 which is still a function
of class K, (135) becomes :

|x| ≥ χ(|u|) =⇒ 2
µ

∂V

∂x
(x) f(x, u) ≤ −α3 (V (x)) . (138)

Now consider a C1 function a of class K with the property6 :

a(τ) ≤ min{τ, α3(τ)} , a′(0) = 0 . (139)

For instance, we can take:

a(τ) =
2
π

∫ τ

0

min{s, α3(s)}
1 + s2

ds . (140)

6a′ denotes the first derivative of the real function a.

21



Then, let ρ be the function defined as :
ρ(τ) = exp

(∫ τ

1

2ds

a(s)

)
, ∀τ ∈ IR>0 ,

ρ(0) = 0 .

(141)

This function is continuous on IR>0. And, since the integral inside the exponential function diverges
to −∞ as τ tends to 0, and diverges to +∞ as τ tends to +∞, one sees that ρ is of class K∞.
Furthermore, we have the following :

Lemma 12 The function ρ can be extended as a C1 function on IR≥0.

Before proving this Lemma, we remark that the function V, defined as :

V = ρ ◦ V , (142)

allows us to prove Lemma 11. Indeed, in this case, (136) holds with :

α̃1 = ρ ◦ α1 , α̃2 = ρ ◦ α2 . (143)

And we get :

|x| ≥ χ(|u|) =⇒ ∂V
∂x

(x)f(x, u) =
2

a (V (x))
V(x)

∂V

∂x
(x)f(x, u) ≤ −µV(x) . (144)

Proof of Lemma 12. Clearly ρ is a C2 function on IR>0. So it is enough to show :

ρ′(0) = 0 , lim
τ→0+

ρ′(τ) = 0 . (145)

First note that, for τ small enough, we have the estimation :

ρ(τ) = exp
(
−
∫ 1

τ

2ds

a(s)

)
≤ exp

(
−
∫ 1

τ

2ds

s

)
= exp(ln τ2) = τ2 . (146)

It follows that ρ′(0) exists and :
ρ′(0) = 0 . (147)

To show the second point of (145), we proceed as follows :
For τ 6= 0, we get readily :

ρ′(τ) =
2

a(τ)
ρ(τ) , ρ′′(τ) =

(
4

a2(τ)
− 2a′(τ)

a2(τ)

)
ρ(τ) . (148)

Since a′(0) is 0, it follows that there exists some strictly positive real number δ such that :

0 < τ < δ =⇒ 0 < a′(τ) < 1 . (149)

We conclude:
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• The function ρ′ is positive and strictly increasing on (0, δ). This implies that limτ→0+ ρ′(τ)
exists and is non negative.

• The function ρ′′ is bounded below by
ρ′(τ)
a(τ)

on (0, δ).

Now to get a contradiction, we assume that limτ→0+ ρ′(τ) is strictly positive. In this case, there
exists some strictly positive real number c such that :

τ ∈ (0, δ) =⇒ ρ′(τ) ≥ c , (150)

=⇒ ρ′′(τ) ≥ c

a(τ)
≥ c

τ
. (151)

But, with

ρ′(τ) = ρ′(δ) −
∫ δ

τ
ρ′′(s) ds , (152)

this implies :
lim

τ→0+
ρ′(τ) = −∞ . (153)

This contradicts the fact that ρ′ is positive on IR>0. So ρ′ must be continuous on IR≥0.

In proving Lemma 11, we have also reestablished the following statement which can be found for
example in [LL, Theorem 3.6.10] but is rarely used :

Proposition 13 If a system ẋ = f(x) admits a C1 Lyapunov function V , that is, there exist
functions α1 and α2 of class K∞ and α3 of class K, such that we have, for all x,

α1(|x|) ≤ V (x) ≤ α2(|x|) ,
∂V

∂x
(x) f(x) ≤ −α3(|x|) , (154)

then, for each µ > 0, the system also admits a C1 Lyapunov function V satisfying, for all x,

α̃1(|x|) ≤ V(x) ≤ α̃2(|x|) ,
∂V
∂x

(x) f(x) ≤ −µV(x) , (155)

for some functions α̃1 and α̃2 of class K∞.

We are now ready to prove Proposition 8.

Proof of Proposition 8. We know already that exp-ISS implies ISS. We now show that ISS implies
exp-ISS. Assume that system (130) is ISS. Then by Lemma 11, there exists some C1 function V
satisfying (136) and (137). We define on IR≥0 the function γv as follows :

γv(s) = s + max
|x|≤χ(|u|), |u|≤s

{
∂V
∂x

(x)f(x, u) + µV(x)
}

. (156)

It is of class K∞ and, from (137), we get readily (see also [SW] for more detailed reasoning), for all
(x, u),

∂V
∂x

(x) f(x, u) ≤ −µV(x) + γv(|u|) . (157)
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Now pick any measurable essentially bounded function u : IR≥0 → IRp and any initial condition x(0)
in IRn. By (157), the corresponding solution x(t) satisfies, for all t in IR≥0,

˙︷ ︷
V(x(t)) ≤ −µV(x(t)) + γv(|u(t)|) . (158)

It follows :
V(x(t)) ≤ exp(−µt)V(x(0)) + r(t) , (159)

where r(t), defined here as :

r(t) =
∫ t

0
exp(−µ[t− s]) γv(|u(s)|) ds , (160)

is the unique solution of the initial value problem (133). With (136), we have obtained :

|x(t)| ≤ α̃−1
1 (exp(−µt)V(x(0)) + r(t)) ≤ β(s, t) + γc(r(t)) , (161)

where :
β(s, t) = α̃−1

1 (2 exp(−µt)α̃2(s)) , γc(s) = α̃−1
1 (2s) , (162)

To complete the proof of the proposition, we need to show that γc and γv can be restricted to be
concave and convex respectively, with the desired continuous differentiability. To this purpose, we
need the following :

Lemma 14 For any function γ of class K, there exist a convex function γv, of class K and C1 on
IR≥0, and a concave function γc, of class K and C1 on IR>0, such that :

γc ◦ γv ≥ γ . (163)

Proof. Let [0, S), (where S ≤ +∞), be the image by γ of IR≥0 and let :

s0 = min{1, S/2} . (164)

We define :

γ−1
c (s) =


∫ s

0
γ−1(τ)dτ , ∀ s ≤ s0 ,

γ−1
c (s0) + (s− s0) γ−1(s0) , ∀ s0 < s .

(165)

Since γ−1 is increasing and continuous on [0, s0], the function γ−1
c is convex, of class K and C1 on

IR≥0. So the function γc is concave, of class K and C1 on IR>0. Also we have :

γ−1
c (s) ≤ s γ−1(s) ≤ γ−1(s) ∀ s ≤ s0 . (166)

This implies :
γc(s) ≥ γ(s) ∀ s ≤ γ−1(s0) . (167)

Now we define a function γv as :

γv(s) =
γ−1(s0)

s0

∫ 2s

0
γ(τ)dτ + s . (168)
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This function γv is convex, of class K and C1 on IR≥0 and we have :

γv(s) ≥ γ−1(s0)
s0

s γ(s) + s . (169)

Then, for s ≤ γ−1(s0), we have, with (167) and (169),

γc(γv(s)) ≥ γc(
γ−1(s0)

s0
sγ(s) + s) ≥ γ(s) . (170)

And, for s ≥ γ−1(s0), we have, with (166) and (169),

γv(s) ≥ γ−1(s0) ≥ γ−1
c (s0) . (171)

So, in this case, we can use the second definition in (165) to evaluate γc(γv(s)). With (169), this
yields :

γc(γv(s)) ≥
(γ−1(s0)

s0
sγ(s) + s) + γ−1(s0)s0 − γ−1

c (s0)
γ−1(s0)

≥
γ−1(s0)

s0
sγ(s)

γ−1(s0)
≥ γ(s) . (172)

Lemma 15 For any functions γ2 and γ3 of class K, there exist a convex function γv, of class K
and C1 on IR≥0, and a concave function γc, of class K and C1 on IR>0, such that :

γ2

(∫ t

0
exp(−µ(t− τ))γ3(|u(τ)|)dτ

)
≤ γc

(∫ t

0
exp(−µ(t− τ))γv(|u(τ)|)dτ

)
. (173)

Proof. From Lemma 14, we know the existence of functions γv3 and γc3 with the desired properties
so that :

γ3 ≤ γc3 ◦ γv3 . (174)

Let
f(t) =

1− exp(−µt)
µ

≤ 1
µ

. (175)

Then, with Jensen’s inequality and concavity, we get :∫ t

0
exp(−µ(t− τ))γ3(|u(τ)|)dτ ≤ f(t) γc3

(
1

f(t)

∫ t

0
exp(−µ(t− τ))γv3(|u(τ)|)dτ

)

≤ 1
µγc3

(
µ

∫ t

0
exp(−µ(t− τ))γv3(|u(τ)|)dτ

)
. (176)

But again there exist functions γv2 and γc2 with the desired properties so that :

γ2 ◦ 1
µγc3 ≤ γc2 ◦ γv2 . (177)
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So we get :

γ2

(∫ t

0
exp(−µ(t− τ))γ3(|u(τ)|)dτ

)
≤ γ2 ◦ 1

µγc3

(
µ

∫ t

0
exp(−µ(t− τ))γv3(|u(τ)|)dτ

)

≤ γc2 ◦ γv2

(
µ

∫ t

0
exp(−µ(t− τ))γv3(|u(τ)|)dτ

)

≤ γc2 ◦ µ f(t)γv2

(
1

f(t)

∫ t

0
exp(−µ(t− τ))γv3(|u(τ)|)dτ

)

≤ γc2

(
µ

∫ t

0
exp(−µ(t− τ))γv2 ◦ γv3(|u(τ)|)dτ

)
. (178)

Hence, we can take :
γc(s) = γc2(s) , γv(s) = γv2 ◦ γv3(s) . (179)

Proof of Proposition 8 (Continued). From (161), one gets :

|x(t)| ≤ β(|x(0)|, t) + γc

(∫ t

0
exp(−µ(t− τ))γv(|u(τ)|)dτ

)
. (180)

By Lemma 15, there exist a concave function γ̃c of class K and a convex function γ̃v of class K with
all the desired properties such that :

γc

(∫ t

0
exp(−µ(t− τ))γv(|u(τ)|)dτ

)
≤ γ̃c

(∫ t

0
exp(−µ(t− τ))γ̃v(|u(τ)|)dτ

)
. (181)

The conclusion of Proposition 8 follows readily. 2

The advantage of the exp-ISS is that it allows to replace the L∞ norm with a memory fading L1

norm in the ISS estimation. However, one may worry if the exp-ISS will lead to more conservative
results. Our objective of the following example is to show that this is not necessarily the case if some
care is taken in choosing the real number µ the functions γc and γv.

Consider the system :
ẋ = −ax3 + γ0(|u|) , a > 0 , (182)

where γ0 is a function of class K. This system is ISS and its gain function γ can be taken as any
function of class K satisfying :

γ >

(
γ0

a

)1/3

. (183)

To get an estimation on γv and γc, we let, for each integer k strictly larger than 3a and µ/2,

Vk(x) = αk(|x|) , (184)

26



where, for each k, αk is a C1 function of class K∞ defined as :

αk(s) =


exp

(
k

a

[
1− 1

s2

])
, if 0 ≤ s ≤ 1 ,

s2k/a , if s > 1 .

(185)

Then, for |x| in (0, 1], we have :

V̇k (182)(x) = −µVk(x) − (2k − µ) Vk(x) +
2kVk(x)

a|x|3
γ0(|u|)

≤ −µVk(x) + max
|x|≤χk(|u|)

{
2kVk(x)

a|x|3
γ0(|u|)

}
≤ −µVk(x) + (2k − µ) Vk(χk(|u|)) , (186)

where χk is a function of class K defined as :

χk(s) =
(

2k

2k − µ

)1/3

γ(s) >

[
2k γ0(s)

(2k − µ)a

]1/3

, (187)

with γ given in (183). To get (186), we used the fact that Vk(x)/|x|3 is an increasing function in |x|
for all k strictly larger than 3a.
When |x| is in (1,+∞), by applying the same arguments, we have :

V̇k,(182) = −µx2 Vk(x) − (2k − µ) x2 Vk(x) +
2kx2Vk(x)

a|x|3
γ0(|u|)

≤ −µVk(x) + (2k − µ) χ2
k(|u|) Vk(χk(|u|)) . (188)

Thus, for any solution x(t) of (182), one has :

Vk(x(t)) = Vk(x(0)) exp(−µt) + r(t) , (189)

with r(t) solution of :
ṙ = −µ r + γvk(|u|) , r(0) = 0 , (190)

where, for each k,

γvk(s) =

 (2k − µ) Vk(χk(s)) , if χk(s) ≤ 1 ,

(2k − µ) χ2
k(s) Vk(χk(s)) , if χk(s) > 1 .

(191)

From (189), one gets :
|x(t)| ≤ βk(|x0|, t) + γck(r(t)) , (192)

for some function βk of class KL and with γck given as :

γck(s) = α−1
k

(
2k

2k − µ
s

)
. (193)
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Let us now prove that, as k is going to +∞, the function γck ◦ 1
µγvk approaches γ.

When χk(s) is in (1,+∞), Vk(χk(s)) is strictly larger than 1. Thus we have :

γck ◦
1
µ

γvk(s) ≤ α−1
k

(
2k

µ
χ2

k(s) Vk(χk(s))
)

≤
(

2k

µ

)a/2k

χk(s)(1+a/k)

≤
(

2k

µ

)a/2k ( 2k

2k − µ

)(1/3) (1+a/k)

γ(s)(1+a/k) . (194)

When χk(s) is in [0, 1] but
2k

µ
[Vk(χk(s))] is still strictly larger than 1, we have :

γck ◦
1
µ

γvk(s) ≤ α−1
k

((
2k

µ

)
Vk(χk(s))

)
(195)

≤
(

2k

µ

)a/2k
√√√√exp

(
1− 1

χ2
k(s)

)

≤
(

2k

µ

)a/2k

χk(s) (196)

≤
(

2k

µ

)a/2k ( 2k

2k − µ

)1/3

γ(s) . (197)

When both χk(s) and
2k

µ
[Vk(χk(s))] are in [0, 1], we have :

γck ◦
1
µ

γvk(s) ≤ α−1
k

(
2k

µ
Vk(χk(s))

)
(198)

≤ 1√
1− a

k ln
(

2k
µ Vk(χk(s))

) (199)

≤ 1√
1− a

k ln
(

2k
µ

)
− a

k ln(exp(k
a(1− 1

χ2
k
(s)

)))
(200)

≤ χk(s)√
1− a

kχk(s)2 ln
(

2k
µ

) (201)

≤ 1√
1− a

k ln
(

2k
µ

) ( 2k

2k − µ

)1/3

γ(s) . (202)
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Combining (194), (197) and (202), we see that, for any strictly positive real number ε, there exists
some integer K such that, for any k ≥ K,

γck ◦
1
µ

γvk(s) ≤

 (1 + ε)γ(s) , if γ(s) ≤ 1 ,

(1 + ε) (γ(s))1+ε , if γ(s) > 1 .
(203)

With (203), we conclude that, for the system (182), see that, by working with the exp-ISS gain
function instead of the ISS gain function, we can get results which are as equally conservative as we
want on any compact set.

8 Conclusion

Consider the system : 
ẋ = f(x) +

p∑
i=1

gi(x) [ui + ci(x, z, u)] ,

ż = a(x, z, u) .

(204)

Under the following conditions
– the system :

ẋ = f(x) +
p∑

i=1

gi(x) ui (205)

is globally asymptotically stabilizable by a feedback law (uni(x)) (see A1),
– the system : {

ż = a(x, z, u)
yi = ci(x, z, u)

(206)

has appropriate input-to-state and input-to-output properties (see A2 or A2’),
we have shown how to modify the feedback un into a static or a dynamic feedback in order to
guarantee that all the solutions of (204) are bounded and their x-components are captured by an
arbitrarily small neighborhood of the origin. This result belongs to the broad class of results known on
uncertain systems (see [C] for a survey and [Q1, Q2, KSK, KK, JMP] for some recent developments).

The modifications we have proposed for the control law un are based on Lyapunov design and
gain assignment techniques as introduced in [JTP]. The analysis of the properties of the closed loop
system is based on the application of the Small-Gain Theorem [JTP, Theorem 2.1]. The assumptions
on the z-subsystem are written in terms of the notion of input-to-output stability (IOS) introduced
in [JTP] which is an extension of the notion of input-to-state stability (ISS) as introduced by Sontag
in [S2].

To carry out our design of a dynamic feedback, we have been led to introduce a new notion
of ISS systems called exp-ISS. We have shown that for finite dimensional systems the two notions
are equivalent. For this we have used the link between the ISS property and the existence of an
appropriate Lyapunov function which has been established in [LSW, SW].

An important feature of the system (204) is that the unmodelled effects are in the “range” of the
input. This is the well known matching assumption. By using arguments similar to those used for
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propagating the ISS property through integrators in [JTP, Corollary 2.3], this matching assumption
can be relaxed for systems and uncertainties having a recurrent so called feedback structure.
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Appendices

A On the non existence of a stabilizing feedback for (13).

We prove that there is no control law u(t) that can drive to zero the x-component of any solution
of (13), starting from (x0, 1) with x0 > M exp(1). To do this, let us assume that such a control
exists. By the uniqueness property, the corresponding solution (x(t), z(t)) of (13) remains in IR2

>0 for
all positive time. Moreover, since

x(t) = exp
(∫ t

0
(x(s)− u(s) + γ(z(s))) ds

)
x0 , ∀ t ≥ 0, (207)

we have, necessarily :

lim
t→∞

∫ t

0
(u(s)− γ(z(s))− x(s))ds = +∞ . (208)

On the other hand, we have :
dz

z2
= (u(t)− z(t)) dt . (209)

With (14) and the fact that z(t) is strictly positive, (209) yields :

− 1
z(t)

+ 1 =
∫ t

0
(u(s)− z(s))ds ≥

∫ t

0
(u(s)−M − γ(z(s)))ds , (210)

and :
1

z(t)
≤ 1 −

∫ t

0
(u(s)− γ(z(s))− x(s))ds −

∫ t

0
x(s)ds + M t . (211)

Now let us define :
t1 = inf

{
t ≥ 0 :

∫ t

0
(u(s)− γ(z(s))− x(s))ds ≥ 1

}
. (212)

This real number is well defined (see (208)) and is positive. By continuity, we get :

x(t1) = x0 exp(−1) , (213)

1
z(t1)

≤ 1 −
∫ t1

0
(u(s)− γ(z(s))− x(s))ds −

∫ t1

0
x(s)ds + M t1

≤ − x0 t1
exp(1)

+ M t1 . (214)

By the choice of x0, this yields that 1
z(t1) < 0 which contradicts the fact that z(t) > 0 for all positive

t.

B An explicit expression for θi.

Working within the context of the proof of Lemma 3, we propose here an explicit expression for the
function θi.
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First of all, we define a function θ̂i as :

θ̂i(x) =



√(
W (x)

2p

)2
+ 3 (|LgiV (x)|ϕi(x))2 − W (x)

2p

|LgiV (x)|ϕi(x)
, if |LgiV (x)| 6= 0 ,

0 , if |LgiV (x)| = 0 ,

(215)

where :
ϕi(x) = S(V (x)) + |uni(x)| . (216)

According to the arguments in the proof of [S1, Theorem 1], this function is continuous on IRn \ {0}.
Moreover, we have :

x ∈ B1i =⇒
(

W (x)
2p

)2

+ 3 (|LgiV (x)|ϕi(x))2 ≥
(

W (x)
2p

+ |LgiV (x)|ϕ(x)
)2

. (217)

It follows that θ̂i(x) is larger than 1 on B1i. This allows us to define θi on IRn\{0} as :

θi(x) = sat
(
θ̂i(x)

)
, (218)

where sat : IR≥0 → [0, 1] is the saturation function :

sat(r) =

 r , if r ∈ [0, 1] ,

1 , if r > 1 .
(219)
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