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Stabilization in the braid groups I: MTWS

JOAN S BIRMAN

WILLIAM W MENASCO

Choose any oriented link type X and closed braid representatives XC; X� of X ,

where X� has minimal braid index among all closed braid representatives of X . The

main result of this paper is a ‘Markov theorem without stabilization’. It asserts that

there is a complexity function and a finite set of ‘templates’ such that (possibly after

initial complexity-reducing modifications in the choice of XC and X� which replace

them with closed braids X 0
C; X 0

� ) there is a sequence of closed braid representatives

X 0
C DX 1!X 2! � � � !X r DX 0

� such that each passage X i !X iC1 is strictly

complexity reducing and non-increasing on braid index. The templates which define

the passages X i!X iC1 include 3 familiar ones, the destabilization, exchange move

and flype templates, and in addition, for each braid index m � 4 a finite set T .m/

of new ones. The number of templates in T .m/ is a non-decreasing function of m .

We give examples of members of T .m/; m� 4 , but not a complete listing. There are

applications to contact geometry, which will be given in a separate paper [6].

57M25, 57M50

1 Introduction

1.1 The problem

Let X be an oriented link type in the oriented 3–sphere S3 or R
3 D S3 n f1g:

A representative X 2 X is said to be a closed braid if there is an unknotted curve

A � .S3 nX / (the axis) and a choice of fibration H of the open solid torus S3 nA

by meridian discs fH� I � 2 Œ0; 2��g, such that whenever X meets a fiber H� the

intersection is transverse. We call the pair (A; H) a braid structure The fact that X

is a closed braid with respect to H implies that the number of points in X \H� is

independent of � . We call this number the braid index of X , and denote it by the

symbol b.X /. The braid index of X , denoted b.X /, is the minimum value of b.X /

over all closed braid representatives X 2 X .

Closed braid representations of X are not unique, and Markov’s well-known theorem

(see the book by Birman [3], and the papers by Birman and Menasco [12], Lam-

bropoulou and Rourke [22], Markov [23], Morton [28] and Traczyk [31]) asserts that
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any two are related by a finite sequence of elementary moves. One of the moves is

braid isotopy by which we mean an isotopy of the pair (X; R
3 nA) which preserves the

condition that X is transverse to the fibers of H. The other two moves are mutually

inverse, and are illustrated in Figure 1. Both take closed braids to closed braids. We call

them destabilization and stabilization where the former decreases braid index by one

and the latter increases it by one. The ‘weight’ w denotes w parallel strands, relative

to the given projection. The braid inside the box which is labeled P is an arbitrary

.wC 1/–braid. Later, it will be necessary to distinguish between positive and negative

destabilizations, so we illustrate both now.
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destabilize

stabilize

P
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w

1

P
A

w
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�

destabilize

stabilize

P
A

w
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Figure 1: The two destabilization moves

Theorem 1 (Markov’s Theorem (MT) [23]) Let XC; X� be closed braid representa-

tives of the same oriented link type X in oriented 3–space, with the same braid axis A.

Then there exists a sequence

(1–1) XC DX1!X2! � � � !Xr DX�

of closed braid representatives of X such that, up to braid isotopy, each XiC1 is

obtained from Xi by a single stabilization or destabilization.

It is easy to find examples of subsequences Xj ! � � � !XjCk of (1–1) in Theorem 1

such that b.Xj / D b.XjCk/, but Xj and XjCk are not braid isotopic. Call such

a sequence a Markov tower. The stabilization and destabilization moves are very

simple, but sequences of stabilizations, braid isotopies and destabilizations can have

unexpected consequences. In the braid groups these moves are ‘site dependent’, unlike

the stabilization–destabilization move in the Reidemeister–Singer Theorem. (For an

example the reader should refer ahead to the specified site of the stabilization in the

sequence in Figure 5.) Until now these moves have been predominately used to develop

link invariants, but the Markov towers themselves have been ‘black boxes’. One of
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the main motivating ideas of this work is to open up the black box and codify Markov

towers.

Markov’s Theorem is typical of an entire class of theorems in topology where some

form of stabilization and destabilization play a central role. Other examples are:

(1) The Reidemeister–Singer Theorem [30] relates any two Heegaard diagrams of

the same 3–manifold, by a finite sequence of very simple elementary changes

on Heegaard diagrams. The stabilization–destabilization move adds or deletes a

pair of simple closed curves a; b in the defining Heegaard diagram, where a\b

= 1 point and neither a nor b intersects any other curve ai ; bj in the Heegaard

diagram.

(2) The Kirby Calculus [21] gives a finite number of moves which, when applied

repeatedly, suffice to change any surgery presentation of a given 3–manifold

into any other, at the same time keeping control of the topological type of a 4–

manifold which the given 3–manifold bounds. The stabilization–destabilization

move is the addition-deletion of an unknotted component with framing ˙1 to

the defining framed link.

(3) Reidemeister’s Theorem (see Burde–Zieschang [15]) relates any two diagrams

of the same knot or link, by a finite sequence of elementary moves which are

known as RI, RII, RIII. The stabilization–destabilization move is RI. It is easy

to see that Markov’s Theorem implies Reidemeister’s Theorem.

These theorems are all like Markov’s Theorem in the sense that while the stabilization

and destabilization moves are very simple, a sequence of these moves, combined

with the appropriate isotopy, can have very non-trivial consequences. Here are other

examples in which the stabilization move is not used, at the expense of restricting

attention to a special example:

(4) W Haken proved that any Heegaard diagram for a non-prime 3–manifold is

equivalent to a Heegaard diagram which is the union of two separate Heegaard

diagrams, one for each summand, supported on disjoint subsets of the given

Heegaard surface. See Scharlemann–Thompson [29] for a very pleasant proof.

(5) Waldhausen [32] proved that any two Heegaard diagrams of arbitrary but fixed

genus g for the 3–sphere S3 are equivalent.

In the course of an effort which we began in 1990 to discover the theorem which will

be the main result of this paper (see Theorem 2 below) the authors made several related

contributions to the theory of closed braid representatives of knots and links:
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(40 ) A split (resp. composite) closed n–braid is an n–braid which factorizes as a

product XY where the sub-braid X involves only strands 1; : : : ; k and the sub-

braid Y involves only strands kC 1; : : : ; n (resp. k; : : : ; n). In the manuscript

[7] the authors proved that if X is a closed n–braid representative of a split or

composite link, then up to (braid-index preserving) isotopy and exchange moves,

as in Figure 2, X may be assumed to be a split or composite closed braid.

w

1

P
Q

w

1

P
Q

Figure 2: The exchange move

(50 ) In the manuscript [9] the authors proved that if X is a closed braid representative

of the �–component unlink X , then a finite sequence of braid isotopies, exchange

moves and destabilization can be found which change X to the closure of the

identity braid in the braid group B� .

(6) In the manuscript [11] the authors discovered that there is another move, the

3–braid flype (see Figure 3) with the property that if X is a closed 3–braid

representative of a knot or link type X which cannot be represented by a 1–braid

or 2–braid, then either X has a unique conjugacy class or X has exactly two

conjugacy classes, and these two classes are related by a 3–braid flype. They

also showed that the exchange move can be replaced by braid isotopy for prime

links of braid index 3.
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Figure 3: The two flype moves

The authors also established two fundamental facts which gave strong evidence that a

more general result might be true:
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(7) In [8] the authors introduced a complexity function on closed braid representatives

of X and proved that, up to exchange moves, there are at most finitely many

conjugacy classes of representatives of minimum complexity.

(8) In [10] the authors proved that if a link type X has infinitely many conjugacy

classes of closed braid representatives of the same braid index, then, up to

exchange moves, they fall into finitely many equivalence classes.

The goal of this paper is to generalize examples (4 0 ), (5 0 ) and (6), taking into account

(7) and (8), to arbitrary closed braid representatives of arbitrary oriented knots and

links. We call our main theorem Markov’s Theorem Without Stabilization (MTWS),

because it is a direct modification of Markov’s Theorem, but with his stabilization

move replaced by other moves which allow one to jump from one isotopy class in the

complement of A to another, while keeping the braid index constant or decreasing it.

1.2 Block-strand diagrams and templates

Before we can state our main result, we need to introduce new concepts. Our moves

will be described in terms of certain pairs of ‘block-strand diagrams’ which we call

‘templates’. Examples are the block-strand diagram pairs which make up the templates

in Figures 1, 2 and 3. The reader may wish to look ahead to the boxed pairs of block-

strand diagrams in Figures 8, 9 and 10 for examples of more complicated templates.

A block B in R
3 �A is a 3–ball having the structure of a 2–disk � crossed with

an interval Œ0; 1� such that (i) for any fiber H� 2H the intersection H� \B is either

∅ or �� f�g for some � 2 Œ�1; �2�, and (ii) there exists some � 2/0; 2�/ such that

H� \B D ∅. The disc t D B \H�1
is the top of B and the disc b D B \H�2

is

the bottom of B . A strand l is homeomorphic to an interval Œ0; 1� or a circle S1 . It

is oriented and transverse to each fiber of H such that its orientation agrees with the

forward direction of H. When l is homeomorphic to an interval, @l D l0[ l1 , where

l0 is the beginning endpoint of l and l1 is the ending endpoint of l . A block-strand

diagram D is a collection of pairwise disjoint blocks fB1; : : : ; Bkg and pairwise

disjoint strands fl1; : : : ; l lg which together have the following structure:

(1) If l i \Bj 6D∅ then l i \Bj D .l i
1
\ tj /[ .l i

0
\ bj / where tj is the top of Bj

and bj is the bottom of Bj . (We allow for the possibility that either .l i
1
\ tj /

or .l i
0
\bj / is empty.)

(2) For each l i
0

(resp. l i
1

) there is some bj �Bj (resp. tj �Bj ) such that l i
0
� bj

(resp. l i
1
� tj ).

(3) For each block Bj we have jtj \ .[1�i�ll
i
1
/j D jbj \ .[1�i�ll

i
0
/j � 2.
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The fact that for each j D 1; : : : ; k there is a fiber which misses Bj shows that, by

rescaling, we may find a distinguished fiber H�0
which does not intersect any block.

We define the braid index b.D/ of the block-strand diagram D to be the number of

times the strands of D intersect the distinguished fiber H�0
. Condition (3) above

makes b.D/ well defined. For a specified block Bj � D we define its braid index

b.Bj /D jtj \ .[1�i�ll
i
1
/j. Continuing the definition of a block-strand diagram, we

assume:

(4) If Bj �D then the braid index b.Bj / is strictly less than the braid index b.D/,

with one exception. The exception occurs when D is the block strand diagram

that results after a destabilization has been performed, as in Figure 1.

A template T is a pair of block-strand diagrams .DC;D�/, both with blocks B1; : : : ; Bk

and an isotopy which takes DC to D� , in such a way that for every fixed choice of

braiding assignments to the blocks B1; : : : ; Bk the resulting closed braids X; X 0

represent the same oriented link type X . The diagrams DC and D� are the initial

and final block-strand diagrams in the pair. The fixed blocks and fixed strands in

T D .DC;D�/ are the blocks and strands where the isotopy is pointwise the identity.

All other blocks and strands are moving. For example, in Figure 3 the blocks P and Q

are fixed blocks, whereas R is a moving block. A braiding assignment to a block-strand

diagram D is a choice of a braid on mj strands for each Bj 2D . That is, we replace

Bj with the chosen braid, so that Bj with this braiding assignment becomes a braided

tangle with mj in-strands and mj out-strands. In this way a block strand diagram

gives us a closed braid representative of a link X .

Let X be a closed m–braid. We say that X is carried by D if there exists a braiding

assignment for the blocks in D such that the resulting closed braid is braid-isotopic to

X .

When we first began to understand that templates were the appropriate settings for our

work on the MTWS we wondered whether our definition was so broad (because the

diagrams in question support so many knot and link types) as to be content-free! In

this regard, the following fact is fundamental:

Proposition 1.2.1 Let D be a block-strand diagram of braid index n. Then there exist

n–braids that D does not carry.

Proof Up to conjugation, a block-strand diagram may be described by a word

V1W1V2W2::::VkWk in the standard elementary braid generators �1; : : : ; �n�1 of

the n–strand braid group, where each Vj represents a word which describes the braid

carried by the j th block (after making a braiding assignment to the block) and each Wi
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is a braid word on n strands which describes the strands that connect the blocks. By

hypothesis no block has more than n�1 strands entering or leaving it, so by modifying

the Wi ’s we may assume without loss of generality that each Vj is a braid on the

first qj –strands, where qj < n. After this modification, the only places where the

elementary braid generator �n�1 appears is in the braid words that describe the strands

that join the blocks, ie the words W1; : : : ; Wk .

Now let jWi j be the number of times �n�1 occurs in Wi . The jWi j
0s are fixed

numbers since we were handed a block-strand diagram. For an arbitrary conjugacy

class fC g of n–braids, let jC j be the minimum number of times the generator �n�1 is

used, in all possible words which represent fC g. Our block diagram can only carry

closed n-braids C such that (up to conjugacy) jC j � jW1j C jW2j C :::C jWk j. But

there are closed n-braids X such that jY j is arbitrarily large for all Y 2 fX g. An

example is X D .�1�2 : : : �n�1/nN for a large positive integer N . For, the braid

word .�1�2 : : : �n�1/n is a full twist of the braid strands. It generates the center of the

n-string braid group. It cannot be represented by any braid word that does not use all

the elementary braid generators. Therefore it’s N th power uses the generator �n�1 at

least nN times.

Having Proposition 1.2.1 on hand, we proceed to define the templates that we will

use in the statement of the MTWS. Our main theorem begins with an arbitrary closed

n–braid representative XC of an arbitrary oriented knot or link type X in 3–space. Let

X� be a second such representative, where b.X�/D b.X /. Our goal in the subsections

which follow is to describe some of the templates that we need, and at the same time

to describe the building blocks of all of them. Note that we regard braid isotopy as

a trivial move, sometimes even forgetting to mention it. By a result of Morton [26,

Theorem 1] braids ˇ; ˇ0 in the n–string braid group Bn are conjugate if and only if the

associated closed braids are isotopic in the complement of the braid axis. In keeping

with our motivating idea of codifying Markov towers, the names that we give some of

our templates T D .DC; D�/ correspond to the name of the isotopy that is used to

move DC to D� .

1.2.1 The two destabilization templates Our two destabilization templates were

defined in Figure 1. We distinguish the cases of positive and negative destabilization

because the strands which join the fixed blocks are different, and so the templates are

different. The destabilization templates do not have any moving blocks. They occur at

every braid index.

1.2.2 The admissible flype templates Flypes first enter the picture when the braid

index is 3, and we already illustrated the two 3–braid flype templates in Figure 3. There
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is an obvious way to generalize it to any braid index n, namely declare the strands

to be weighted strands. See Figure 4(a), which shows the support of the flype with

weighted strands. From now on, the term flype will always have this meaning. The

sign of a flype is the sign of the single crossing (possibly weighted) which is not in the

braid block. Both positive and negative flypes are illustrated in Figure 3. They have

distinct templates.

R

w w0

k
k0

C
R

C

k

w

k0

w0

(a)

P

Q

P

Q

(b)

Figure 4: (a) The support of a positive flype with weighted strands. (b)

Example of an inadmissible flype. Notice the extra twists introduced because

of the weighted strands.

There is a subtle point: Let XC and X� be the closed braid before and after a flype,

which we shall consider (for the purpose of describing our moves) as acting left to

right. The flype motion is supported in a 3–ball B3 . In Figure 4(a) observe that the

fiber H� at � D �=2 intersects XC\B3 in w0 points, but intersects X� in k points.

Observe that wCw0 D kC k 0 . We have shown that

b.XC/� b.X�/D w0� k D k 0�w:

Thus flypes with weighted strands are non-increasing on braid index if and only if

w0� k D k 0�w � 0. We will refer to a flype which is non-increasing on braid index

as an admissible flype. An example of an inadmissible flype is given in Figure 4(b).

While we are obviously interested in the admissible flypes, it will turn out that the

inadmissible flypes are important too, as they lead to additional, more complicated

templates.

By Markov’s Theorem, the left and right braids in every admissible flype template

must be related by a Markov tower. Figure 5 shows such a 2–step tower, in the case

when the braid index is 3. The moves used in the sequence are (up to braid isotopy) a

single stabilization and a single destabilization. Thus flypes arise in a very natural way

in the study of stabilization in the braid groups: they replace a sequence stabilization,
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destabilization by a single braid-index preserving (or possibly reducing) move. Notice

that when R is a negative half-twist, the tower can be replaced by an exchange move.

Observe that since flypes are replacements for Markov towers, we are now free to use

Braid isotopy

Stabilization Braid isotopy

Destabilization

Flype or exchange move

R

R

R R

R

C C
C C

C

C C

Figure 5: A very simple Markov tower

them to construct more general Markov towers.

1.2.3 The exchange move template and sequences of exchange moves The ex-

change move template was defined by the block-strand diagram in Figure 2. It was

proved in our earlier paper [11] that for n� 3 it is equivalent to braid isotopy, and by

Fiedler [18] that for n� 4, and generic choices of the braids P and Q, the exchange

move cannot be replaced by braid isotopy.

Figure 6 shows how exchange moves, together with braid isotopy, can lead to infinitely

many conjugacy classes of closed braid representatives of the same knot or link (see our

earlier paper [9]). Indeed, in [10] the authors proved that if a link has infinitely many

conjugacy classes of closed m–braid representatives for any fixed value of m then all

but finitely many of them are related by exchange moves. This fact will shape the form

of our main theorem. More precisely, our main theorem shows exactly how far one

may go, using only exchange moves and destabilizations, and then identifies the finitely

many moves which are needed in addition to exchange moves and destabilizations, to

take one closed n–braid representative of a knot to another of the same braid index.

The sequences of exchange moves which we next define are very useful and important.

Figure 7 shows how we unfold a piece of a closed braid to reveal that it has the structure

of a ‘rooted block and strand tree’, and then ‘loop’ a distinguished subarc of the braid

(always of weight 1) over the tree. (These concepts will be defined in Section 5.6. See
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1
exchange
move and
braid
isotopy

exchange
move and
braid
isotopy

exchange
move

braid
isotopy

exchange
move

braid
isotopy

P

Q

P

Q

P

Q

P

Q

P

Q

B

Figure 6: The exchange move can lead to arbitrarily many distinct braid

isotopy classes of closed n–braid representatives of a single knot type, n� 4 .

unfold
tree

sequence
of exchange
moves

collapse
tree

B1 B2

B
00
1

B 00
2

B0

Figure 7: A sequence of exchange moves passes a distinguished strand (the

thick black one) over a block-strand tree

Figure 59 and the nearby text. We hope the reader will be patient. Our initial goal is

to state our main result.) Notice that, while the unlooping process does not preserve

closed braids, we have retained the closed braid structure by the device of cutting the

braid axis into 4 little ‘axis pieces’. Of course the fibers of H are arranged radially
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around these little axis pieces, in a sufficiently small neighborhood, so that when we

open up the tree we can retain a local picture of the braid structure. During the looping

motion the distinguished strand cuts each axis piece twice.

1.2.4 The cyclic templates Figure 8 gives an example of the cyclic template. We
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D
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B B B
B

EC

E C

BD

D

isotopy exchange isotopy exchange

iso
to

p
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estab

ilize

folding
unfolding

st
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iz

e
ex

ch
an

g
e

Figure 8: Example of a 4–braid cyclic template, and the Markov tower

(stabilize, exchange, exchange, exchange, destabilize) that it replaces

have singled it out because it shows an interesting way in which stabilization introduces

flexibility into the manipulation of closed braids, by allowing us to permute the blocks

in a rather special and highly symmetric block-strand diagram. The associated closed

braid diagrams have been unfolded to make it easier to follow the sequence of moves.

A more general Markov tower for a cyclic template uses weighted strands, the entire

tower being equivalent to permuting the blocks and weighted strands in a cycle. The

resulting move on closed braids will be referred to as the cyclic move.

1.2.5 The G–flype and G–exchange templates The moves that we next describe

are gathered together into the set of templates that we call T .m/; mD 4; 5; : : : , where

m is the braid index b.XC/ of XC .

A G–flype template (for ‘generalized’ flype template) is a block-strand diagram, the

support of which is the replacement for a Markov tower in which (i) the first move
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X1!X2 is an inadmissible flype; (ii) more generally adjacent terms in the sequence

differ by destabilizations, exchange moves and not necessarily admissible flypes; (iii)

b.Xj / > b.X1/ for every j D 2; : : : ; k � 1; and (iv) b.Xk/ � b.X1/. An example

is the boxed pair of 6–braid block-strand diagrams at the bottom of Figure 9. It can

be understood by running around the diagram clockwise. As can be seen, the first

step in that sequence is an inadmissible flype which increases the braid index by 1.

The intermediate steps are exchange moves and the final step is an admissible flype

that reduces braid index. In more general examples the final step could also be a

destabilization. See Section 5.5 for a definition which shows precisely how G–flypes

arise and describes the fixed and moving blocks that always occur.

A G–exchange move is the template that results from a sequence of k interrelated

exchange moves, each of which moves a distinguished subarc f˛1; : : : ; ˛kg of the

closed braid across A and has the property that the exchange move on ˛i cannot be

completed before at least part of the exchange move on some other j̨ is started, for

1 � i � k . See Section 5.6 for a definition which shows precisely how G–exchange

moves arise and shows the fixed blocks that always occur.

The boxed pair of block-strand diagrams in the bottom row of Figure 10 are an ex-

ample of a template for a G–exchange move on a 6–braid. There are 6 braid blocks:

A; B; C; D; E; F . Running around the figure clockwise we show how a coordinated

sequence of partial exchange moves, each of which can be completed as soon as enough

of the other arcs are moved out of the way, achieves the same goal. In the first passage

we have pushed strand a under the braid blocks A and B and across A, to a position

just to the right of braid block C . We have also lifted strand b above the braid blocks

A and B and pulled it across A to a position just to the left of braid block D . Then

we begin our G–exchange move on arc c . In the fourth sketch we complete it. In the

fifth sketch we begin the G–exchange move on arc d and complete the G–exchange

move on arc a. In the final sketch we complete the G–exchange moves on arcs b and

d . This example was discovered in the course of our proof. It illustrates the ideas

developed in Section 5.6. Observe that, since exchange moves preserve link type and

braid index, it follows that G–exchange moves do too.

1.3 Statement of results

We are finally ready to state our main result, the Markov theorem without stabilization.

Let B be the collection of all braid isotopy classes of closed braid representatives

of oriented knot and link types in oriented 3–space. Among these, consider the

subcollection B.X / of representatives of a fixed link type X . Among these, let

Bmin.X / be the subcollection of representatives whose braid index is equal to the braid

index of X .
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move and
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Figure 9: Example of a G–flype on a 6–braid
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G–exchange
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Figure 10: Example of a G–exchange move on a 6–braid

Theorem 2 (Markov’s Theorem Without Stabilization (MTWS)) Choose any XC 2

B.X / and any X� 2 Bmin.X /. Then

� there is a complexity function with values in ZC �ZC �ZC which is associated

to XC; X� , and

� for each braid index m there is a finite set T .m/ of templates, each determining

a move which is non-increasing on braid index,
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such that the following hold:

First, there are initial modifications in the choices of XC and X� , which replace them

by X 0
C and X 0

� :

X� DX 1
�! � � � !X p

� DX 0
�(1–2)

XC DX 1
C! � � � !X

q
C DX 0

C(1–3)

In (1–2) and (1–3) each passage X j
�!X jC1

� and X
j
C!X

jC1
C is strictly complexity-

reducing. In (1–2) each passage is realized by an exchange move, so that b.X jC1
� /D

b.X j
�/. In (1–3) each passage is realized by either an exchange move or a destabiliza-

tion, so that b.X
j
C/� b.X

jC1
C /.

After these initial modifications, there is another sequence taking X 0
C to X 0

� :

(1–4) X 0
C DX q! � � � !X r DX 0

�

In (1–4) each passage X j ! X jC1 is strictly complexity-reducing, and is realized by

either an exchange move, a destabilization, an admissible flype or a move defined by

one of the templates T 2 T .m/, where mD b.X j /. The inequality b.X j /� b.X jC1/

holds for each j D q; : : : ; r � 1.

Remark 1.3.1 We explain why we refer to Theorem 2 as Markov’s Theorem without

Stabilization. Setting X j DX
j
C when j D 1; : : : ; q� 1, we have the combination of

sequences (1–3) and (1–4):

XC DX 1! � � � !X q! � � � !X r DX 0
�

In this combined sequence b.X j / � b.X jC1/ for each j D 1; : : : ; q; : : : r: On the

other hand, b.X�/ D b.X 1
�/ D b.X 2

�/ D � � � D b.X p
� / D b.X 0

�/, so that the braid

index of the second representative remains fixed during all of our modifications. Thus

Theorem 2 is, indeed, a version of Theorem 1 which avoids stabilization. }

Remark 1.3.2 The sequence (1–2) deals with the phenomenon which was exhibited

in Figure 6. It must be treated separately because if we only allowed modifications

to XC then the complexity would be forced to increase as XC approached X� , if

X� happened to be wound up as on the left in Figure 6. Since (1–2) and (1–3) are

inter-related, we treat (1–3) (which uses a limited subset of the moves in (1–4)) and

(1–4) separately. }

Remark 1.3.3 When a passage X j !X jC1 is realized by a template T , there are

braiding assignments to the blocks in T such that the initial and final diagrams of T
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carry the pair .X j ; X jC1/. However, the template T also carries infinitely many other

knots and links, for other braiding assignments to the blocks. }

Remark 1.3.4 The templates in the sets T .m/; m 2 Z
C , are precisely the additional

moves which were not needed for the work in our earlier papers [8]–[10], but are needed

for our particular proof of the MTWS. We discuss them briefly, starting with mD 2.

(1) The 2–string braid group is an infinite cyclic group. Let �1 denote its generator.

An arbitrary element is then �k
1

; k 2 Z. It is easy to see that links which are

closed 2–braids are either (i) the 2–component unlink (k D 0), or (ii) the unknot

(kD˙1) or (iii) the type .2; k/ torus knots and links (jkj�2). It is clear that the

2–component unlink and the type .2; k/ torus knots and links have unique closed

2–braid representatives. The unknot has exactly 2 closed 2–braid representatives,

with �1 (resp. ��1
1

) admitting a positive (resp. negative) destabilization. Since

the set T .m/ does not include the two destabilization templates, it follows

that T .2/D∅. In our paper [6], which contains applications of Theorem 2 to

transverse knots, we will prove that, as a consequence of the main theorem in

our paper [11], T .3/D∅.

(2) It was proved by Fiedler [18] that closed 4–braids include infinitely many in-

equivalent 4–braid representatives of the unknot. His basic one is the example

discovered by Morton [27], with the others obtained from it by the winding

process which we illustrated in Figure 6. Fifteen other families of 4–braid unknot

examples were uncovered in the paper by Birman, Boldi, Rampichini and Vigna

[13], in the course of a computer implementation of the unknot recognition

algorithm of Birman and Hirsch [5]. All of them can be simplified to braids

which admit a destabilization with the help of exchange moves. We do not know

whether more general 4–braids are too complicated to be simplified with the

use of the 2 destabilization templates, the exchange move template, the cyclic

templates and the admissible flype templates.

(3) Note that, given any template T of braid index m, other templates for braid

index > m may be obtained from it by declaring the strands to be weighted, and

also by replacing some of the blocks by other templates. From this it follows

that the cardinality jT .m/j of T .m/ is an increasing function of m. However,

we do not have a precise description of T .m/ for any m > 3, although we do

not expect any fundamental difficulty in doing the actual enumeration for, say,

mD 4; 5 and perhaps 6. For the special case mD 6 two examples were given

in the boxed pairs of block-strand diagrams at the bottom of Figures 9 and 10.

The general picture seems to be quite complicated. }
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1.4 Plan of the paper

In Section 2 we set up the topological construction which will be the basis for our work.

We will show that there is a very special isotopy that takes us from XC to X� . The

trace of the isotopy will be seen to be an immersed annulus CA whose double point set

is the union of finitely many pairwise disjoint clasp arcs. We call it a ‘clasp annulus’.

The principle tool in our proof of Theorem 2 is the study of certain ‘braid foliations’

of the immersed annulus CA and its preimage PA. Braid foliations were used by

the authors in earlier work [8]–[10], but always in the setting of embedded surfaces.

In Section 3 we review the ideas that we need from the literature on braid foliations.

Readers who are familiar with the literature will probably want to pass quickly over

Section 3, referring to it instead, as needed, later in the paper. In Section 4 we study

braid foliations of our immersed annulus. We will need to do hard technical work

to arrange things so that the clasp arcs are close to or contained in a union of leaves

and have nice neighborhoods (we call them normal neighborhoods) on the preimage

annulus PA.

In Section 5 we learn how to translate data in the braid foliation of CA and the induced

foliation of PA into data about the passage from the closed braid XC to the closed

braid X� . The tools that are needed become increasingly complicated as we proceed.

First, we ask how far we can get with exchange moves and destabilizations. Flypes

enter the picture next, but in the form of very rudimentary examples which we call

‘microflypes’. A rather surprising use of stabilization becomes apparent in Section

5.3. Briefly, we learn that stabilization is the tool for creating flypes with weighted

strands and complicated braiding assignments in the moving blocks out of microflypes.

G–exchange come into play next. There are hints in this part of the work about the

need for G–flypes, however the reasons for needing G–flype templates will not become

clear until we are part way through the proof of the MTWS.

The proof of Theorem 2 is given in Section 6. We will see how G–flype templates

arise. The most difficult part of the argument will be the proof that for each fixed braid

index mD b.XC/ the cardinality jT .m/j is bounded. The finiteness can, perhaps, be

understood by appreciating that the ‘infinite parts’ are pushed into the blocks in the

block-strand diagrams of the templates in T .m/. This is, perhaps, the key point about

block-strand diagrams and templates: they are at the same time both very flexible and

very inflexible. A given template supports a huge family of knots and links, because

there are no restrictions on the braiding assignments in the blocks, but on the other

hand a template always supports at most a special family of links.
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The paper ends, in Section 7 with a discussion of open problems suggested by the

MTWS and by its proof. In a separate paper [6] several applications will be given to

the study of transversal knot types in the standard contact structure on R
3 .

Conventions Results which will be used explicitly in the proof of the MTWS are

highlighted by calling them ‘propositions’ rather than ‘lemmas’. There are many

remarks, scattered throughout the paper. Most of them are guides to the reader. The

end of a remark is indicated by the symbol }.
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2 Getting started

In this section we develop the basic construction which will allow us to prove Theorem

2. For ease in presentation, we give our construction first for the special case when

X is a knot. After that it will be easy to modify it in the more general case when we

begin with a link. The section will end with a key example.

2.1 The basic construction for knots

Lemma 2.1.1 Let XC; X� be arbitrary disjoint closed braid representatives of the

same knot type X . Then there is an intermediate representative X0 of X such that the

following hold:
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(1) X0 is the braid connected sum of XC and k closed braid representatives of the

unknot, for some k � 0. These k representatives of the unknot bound pairwise

disjoint discs.

(2) X0�X� (resp. XC�X0 ) is the boundary of an embedded annulus A� (resp.

AC ). It will be seen from the construction that X0 is the boundary of a Seifert

surface F0 , and A� is a collar neighborhood of X0 on F0 .

(3) The intersections AC\A� are precisely k clasp arcs. See Figure 11.

positive clasp negative clasp

clasp
intersection

Figure 11: Clasp intersections

Remark 2.1.1 A word is in order on the basic construction. There are very simple

constructions which yield everything in Lemma 2.1.1 except the fact that A� � F0 .

Astute readers will notice that F0 plays an almost invisible role in the pages that lie

ahead, and ask why we needed it? Our reasoning was that in our earlier papers we

had developed extensive machinery regarding braid foliations of Seifert surfaces for

knots and links, including the case of discs bounded by unknots. In this paper we need

related braid foliations of the immersed annulus of Lemma 2.1.1. The easiest way to

develop the tools that we need seemed to be to make one of our annuli (ie A� ) a subset

of a Seifert surface, and arrange that the other (ie AC ) is a finite family of foliated

discs banded together with narrow strips to form a second annulus that intersects the

first in a controlled fashion. That will allow us to make full use of the existing braid

foliation machinery for Seifert surfaces and discs, rather than to develop everything

anew. This issue will become clear in Section 3 and Section 4 below. }

Proof Without loss of generality we may assume that XC � R
3
C and X� � R

3
� , with

XC far above R
2 D R

3
�\R

3
C , and X� a little bit below R

2 . We may further assume

that XC; X� are closed braids with respect to the same braid structure .A; H/. Our

first task is to construct a series of knots X 0
�; X 00

�; X0 , all representing X , with X0

the braid-connected sum of XC and k pairwise disjoint and pairwise unlinked copies

U1; : : : ; Uk of the unknot.
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Choose a Seifert surface F� for X� . Let X 0
� � F� be a preferred longitude for X� ,

chosen close enough to X� , so that the annulus that they cobound in F� does not

intersect A, and so that X 0
� is also a closed braid. The knots X� and X 0

� will have

algebraic linking number 0, but X�[X 0
� will not be a split link unless X is the unknot.

Therefore, if we try to push X 0
� out of R

3
� and into R

3
C it will get stuck, ie there will

be a finite number of ‘undercrossing hooks’ where X 0
� is forced to dip back into R

3
�

to pass under X� , as in Figure 12(a).

Our first change is to modify X 0
� (holding X� fixed) to a new closed braid X 00

� which

has the same knot type as X 0
� and is entirely in R

3
C . This can be accomplished by

pushing X 0
� across pairwise disjoint discs D1[� � �[Dk , as in Figure 12(b) to X 00

� . By

placing X� very close to R
2 and choosing the discs to be very ‘thin’ we may assume

that each subarc ˇi is in braid position and in R
3
C . By construction X 00

� is a closed

braid (because X 0
� is a closed braid and the isotopy X 0

�! X 00
� is arbitrarily small),

also it represents X , and it is entirely in R
3
C .

(a) (b) (c)

(d) (e) (f)

R
2

R
2

R
2

R
2

Ri

X 0
�

X�

˛i

ˇi

Di;C

Di;�

X 00
�

ˇi

Di;C

Di;�

ˇ0
i

XC

g
.D

i;
C

/

ˇ0
i XC

Di;�

XC
X0

X�

X0

X�

Figure 12: Constructing X0

We are now ready to bring XC into the picture. The fact that X 00
� and XC both represent

X and are both in the interior of R
3
C shows that we may find a homeomorphism

gW R
3
C!R

3
C which is the identity on R

2 with g.X 00
�/DXC . Extend g by the identity

on R
3
� to a homeomorphism GW R

3!R
3 . Let RiDG.Di;C[Di;�/Dg.Di;C/[Di;�:

The facts that (i) G is a homeomorphism which is the identity in R
3
� and (ii) if i 6D j

then Di \Dj D∅ tell us that the R0
is are pairwise disjoint embedded discs, and also
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that X� pierces each Ri exactly once. The fact that XC was well above R
2 shows

that we may assume that each Ri intersects XC in a single arc ˇ0
i D g.ˇi/.

Let X 0
0

be the knot which is obtained from XC by replacing each ˇ0
i �XC by @Ri nˇ

0
i .

Then X 0
0

is the connected sum of XC and k copies of the unknot, the i th copy being

@Ri . By construction the k discs R1; : : : ; Rk are pairwise disjoint, so that our k

unknots represent the k –component unlink. It may happen that X 0
0

is not a closed

braid. The only subarcs which might not be in braid position are the 2k ‘vertical’ arcs

in each @g.Di;C/. To overcome this problem, recall that J W Alexander [1] introduced

a very simple way to change an arc ı which is not in braid position to one that is. See

Figure 13(a). Alexander showed that whenever a knot X is not transverse to the fibers

of H it can be divided into small segments which can then be pushed across the braid

axis, one at a time, avoiding unwanted intersections with the rest of X , to change X

to a closed braid. Using this construction, we change all the wrongly oriented subarcs

of the 2k vertical arcs in the boundaries of the ‘ribbons’ R1[ � � �[Rk to subarcs that

are everywhere transverse to the fibers of H. We have proved (1).

ı ı0

X0

(a)

clasps

X0

X�

XC

(b)

A

Figure 13: (a) Alexander’s trick (b) A fragment of the preimage PA of

AC[A�

There is an important aspect of our construction, which will give us the part of (2) that

relates to A� :

� X�[X0 has the same link type as X�[X 0
� . For, by construction, the home-

omorphism G�1W R
3 ! R

3 , being the identity on R
3
� , sends X� [ X0 to

X�[X 0
� .
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This simple fact gives us the annulus A� , in the following way: Since X 0
� is a preferred

longitude for X� , and since X�[X0 has the same link type as X�[X 0
� , it follows

that X0 is also a preferred longitude for X� . From this it follows that X� is also a

preferred longitude for X0 . Choose a Seifert surface F0 for X0 . Holding X0 and

X� fixed, isotope the interior of F0 until X� lies on F0 as a preferred longitude. Let

A� � F0 be the annulus in F0 which X0 and X� bound. This annulus is embedded

because F0 is embedded. Thus we have proved the part of (2) that relates to A� .

In fact, a small modification in X0 also gives us AC . The discs R1[ � � � [Rk have a

natural order which is determined by the order of the subarcs ˇ0
1
[ � � � [ˇ0

k
along XC .

Using this order, and the framing provided by F0 , join the discs R1[ � � � [Rk by k

very narrow bands in F0 , each having one edge on XC . Modify X0 by pushing it a

little bit into F0 along the bands and along the Ri ’s. (By an abuse of notation, we use

the same names for the modified R0
i s and the modified X0 ). The union of the new R0

i s

and the bands is our annulus AC . The annulus AC is embedded because the R0
i s are

disjoint and embedded, and the bands are too. We have proved (2). Since X� � @A�

and since X� pierces each Ri �AC once, it follows that A�\AC always contains

k clasp arc intersections. Thus we have also proved (3), and the proof of Lemma 2.1.1

is complete.

We establish conventions that will be used throughout this paper. The symbol CA

denotes the immersed annulus AC[A� . We shall refer to it as a clasp annulus. We

will also be interested in its preimage PA under the immersion. Figure 13(b) is a

schematic that illustrates our basic construction, as described in Lemma 2.1.1. The

knot X0 will only be needed in the beginning of our argument, therefore we show it as

a dotted curve. The closed braid XC will be the primary focus of our attention, and

so we show it as a thick black line. We will eventually modify it to X� , which we

illustrate as a thick grey line (to suggest that it is a distant goal). To avoid clutter in

our figures we will, whenever the meaning is unambiguous, suppress the labels XC

and X� . Most of the time the black-grey convention will enable us to recognize them

without labels.

Remark 2.1.2 The reader may wonder why the isotopy which we constructed from

XC to X� in Lemma 2.1.1 required us to increase the braid index of XC by connect-

summing it with some number of closed braid representatives of the unknot, because

one expects these to have braid index greater than 1. This does indeed sound wrong,

in view of the fact that our goal is to have the braid index go down and not up, but

in fact it is to be expected because we are attempting to prove the MTWS, and for

that we first need to have in hand a proof of the MT. Indeed, in [12] we showed that

a variation on the construction given here in Lemma 2.1.1 and Proposition 2.2.1 (but
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without taking any note of the clasp arcs) can be used to give a new proof of Markov’s

classical result. When we began the work in this paper we started with that new proof

of the Markov theorem and proceeded to modify the Markov tower that it gave to us.

Later, we realized that it was not necessary to literally prove the Markov theorem, all

we needed was the isotopy encoded by CA. We hope that explains the logic. }

2.2 The general case

Proposition 2.2.1 Choose any �–component oriented link type X in oriented R
3 .

Let XC; X� be closed braid representatives sharing a braid structure .A; H/. Then an

intermediate closed braid representative X0 2 X exists such that the following hold:

(1) Each component X i
0

of X0 is the braid connected sum of X i
C and ki closed

braid representatives of the unknot. These k D k1C � � �C k� representatives of

the unknot bound k pairwise disjoint discs.

(2) There is a pairing of the components of XC and X� such that for each pair

.X
j
C; X j

�/ there exists a closed braid X
j
0

which represents the same component

of X . Moreover, for each j D 1; : : : ; � the following holds: X
j
C �X

j
0

(resp.

X
j
0
�X j

� ) is the boundary an embedded annulus A
j
C (resp. Aj

� ). The union of

these � embedded annuli forms an embedded surface AC (resp. A� ).

(3) The intersections AC\A� are a finite collection of pairwise disjoint clasp arcs.

These intersections can be clasp intersections between the annuli Ai
C and Ai

�

associated to a single component X i of X and also clasp intersections between

the annuli Ai
C and Aj

� associated to distinct components X i ;X j of X .

(4) Moreover, without loss of generality we may assume that X is a non-split link.

If, instead, X is a split link, then the basic construction may be applied to each

non-split component.

Proof We leave it to the reader to check that, except for (4), the proof is a minor

adaptation of the argument that we gave in the proof of Lemma 2.1.1. As for (4), we

note that in the manuscript [7] the authors used tools that are closely related to the

tools that will be used in this paper to prove that if X is an arbitrary closed n–braid

representative of a split (resp. composite) link, then there is a complexity function

C.X / with values in ZC which is associated to X such that after a strictly complexity-

reducing sequence of exchange moves, all of which preserve braid index, X can be

changed to a split (resp. composite) closed n–braid representative of X . Thus, for split

(resp. composite) links, the proof of the MTWS can be preceded by applying the results

in [7] to find the non-split (resp. prime) summands. However, we note that non-prime
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knots and links do not require any special consideration in our work. Therefore there

would not be any point in making the assumption that X is prime. On the other hand,

there are two places where the assumption that X is not split simplifies our work a

little bit, so in what follows we make the assumption (4) that X is non-split.

2.3 A key example of the basic construction

The reader is referred to Figure 14. It is a key example, and we will study it in full

detail during the course of this manuscript. We explain those features which can be

understood at this time.

In our example X is a knot, and the isotopy from XC to X� is realized by a flype.

The top sketch shows PA as the union of two discs which are identified along bands

which join the arcs ab and a0b0 , and also cd and c0d 0 . Figure 14 depicts the disc

neighborhood of one of its clasp arcs. The black (resp. grey) boundary is XC (resp.

X� ). To avoid clutter we do not show X0 . There is one clasp arc whose two preimages


� and 
C are shown. The clasp arc 
�; where � D˙, has one endpoint on X� and

the other in the interior of the annulus, at the point where X�� pierces the annulus.

The bottom sketch illustrates the clasp annulus CA. To visualize CA in 3–space, first

clasp arc

clasp arc

clasp arcA


�


C

� C
C � C�
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Figure 14: A key example

give each of the discs in the top sketch a half-twist, as in the leftmost and rightmost

bottom sketches. Then identify the two half-twisted discs along the clasp arc, as in the

middle bottom sketch. The passage from XC (the black boundary) to X� (the grey
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boundary) is realized by a push of XC across the immersed annulus CA to X� . While

the annulus is immersed, there are no self-intersections of the boundary braid as it is

pushed across the annulus.

In fact, our example illustrates a (negative) 3–braid flype, as in the passage from the

3rd to the 4th sketch in Figure 3, in the special case when

XC D �
p
1

��2
2 �

q
1

��1
2 ; X� D �

p
1

��1
2 �

q
1

��2
2

with p and q integers, also p C q odd (so that we get a knot) and absolute value

at least 3 (so that, by the work in our paper [11], we know that the flype cannot be

replaced by braid isotopy). Notice that in the passage from the left to the right sketch

in Figure 3 the isotopy is supported in a 3–ball B3 whose boundary intersects XC in

4 points. These are the endpoints of the 2 subarcs of XC in the bottom middle sketch

in Figure 14. The 3–ball B3 contains in its interior the braid box R (which is our case

is a single negative full twist), a little subarc of the braid axis and the single crossing

to its right (which in our case is also negative). The signs of the singular points were

chosen to correspond to the fact that the exponents of �2 in the braids which represent

XC and X� are both negative. The braiding in those blocks depends, of course, on the

choices of the exponents p and q . They are examples of the ‘fixed blocks’ which are

formed from the ‘braiding of bands of s–arcs’. (See the proof of Proposition 5.3.2).

It should be clear to the reader that (except in very special cases) the braiding of the long

thin bands will lead to geometric linking between XC and X� , and this implies that

there will be additional ‘short clasp arcs’ in the bands. That matter will be discussed in

Section 4.2.

We remark that the puncture endpoints of the two clasp arcs in Figure 14 are illustrated

as being signed, but their signs have not been defined or discussed. We will need them

later, so we define them now. The puncture point on a clasp arc is said to be a positive

puncture point (resp. negative puncture point) according as the orientation of X� at the

puncture agrees (resp. disagrees) with the orientation of the outward drawn normal,

when the surface has the orientation induced by the orientation on XC . We will see

later that the sign on one of the punctures determines the sign on the other. In Figure

14 we illustrated the case when the left puncture is negative and the right puncture is

positive, but the opposite choices are also possible.

3 Introducing braid foliations

Theorem 2 is about the relationship between two closed braid diagrams which represent

the same link. However, the method we use to prove it will not be in the setting of
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link diagrams. Rather, we will be working with the immersed annulus CA, and with

certain ‘braid foliations’ of CA. Foliated surfaces have been used before, in our earlier

papers [8]–[10]. In this section we will review and describe the machinery which we

use from these other papers. The reader who has seen these foliations before will be

able to omit this section and go directly to Section 4, possibly pausing to refer back to

this review to refresh his/her memory of details. A more detailed review may be found

in the review article by Birman and Finkelstein [4].

3.1 Braid foliations of Seifert surfaces

We are given X 2 B.X / with b.X /D n and with braid structure .A; H/ in R
3 . To

make this review as simple as possible, we assume that X is a knot. Choose a Seifert

surface F of minimal genus for X . After modifying F we will show that it supports a

special type of singular foliation which was studied and used by the authors in [8]–[10].

We call it a braid foliation.

There are choices of orientation which determine the sign conventions in braid foliations.

First, we assign the standard orientation to R
3 and choose the braid axis A to be the

positively oriented z–axis. Using cylindrical coordinates, this determines a sense of

increase of the polar angle coordinate � . Next, the closed braid X is oriented so that it

points in the direction of increasing � at each point of X \H� . The orientation on X

induces an orientation on F, and so determines a positive normal at each interior point

on F.

Since X D @F is a closed braid, A\ F is non-empty. The intersections of H with

F may be assumed to be (a) radial in a neighborhood of each point of A\F and (b)

transverse to the boundary in a neighborhood of @F. See Figure 15.

A

C vertex � vertex

viewed on the surface

C side
of surface

� side
of surface

viewed in 3–space near the boundary

(a) (b)

Figure 15: (a) Foliation of surface near a vertex (b) Foliation of surface

near the boundary
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Vertices in the foliation are points where A pierces F. We call a vertex positive or

negative, according as A intersects F from the negative or positive side of F respectively.

The sketches in Figure 15 illustrate the positive side of F, so that the flow induced by

the fibration is anticlockwise (resp. clockwise) about a positive (resp. negative) vertex.

Singularities in the foliation occur at points where F is tangent to one of the fibers of

H. The singularities may be assumed to be finite in number and to occur on distinct

fibers of H. By Morse’s classification theorem every singularity may be assumed to

result from a local maximum or minimum or a saddle point tangency between F and

a fiber of H. Let s be a singular point of the foliation of F, and let H� be the disc

fiber which contains s . We say that the singularity s is positive if the outward-drawn

oriented normal to the oriented surface F coincides in direction with the normal to H�

in the direction of increasing � . Otherwise s is negative.

Leaves in the foliation are components of intersection of H� with the surface F. A

singular leaf is a leaf which contains a singularity of the foliation. Every other leaf is a

non-singular leaf.

A very basic property of our braid foliations of Seifert surfaces is that non-singular

leaves may all be assumed to be arcs. We review the reasons (which goes back to

Bennequin [2]). Suppose that there is a simple closed curve ˛.�/ in F\H� for some

non-singular polar angle � . The fact that F is pierced non-trivially by the braid axis,

and that the foliation is transverse to the boundary, shows that F cannot be foliated

entirely by simple closed curves, so if we follow the sequence of arcs ˛.�/ as �

increases or decreases we must arrive at a singularity. Let H�0
be the singular fiber.

The singularity may be assumed to be either be a center or a saddle point, but if it is

a center, then by following ˛.�/ in the opposite direction we will arrive at another

singularity, and that one cannot also be a center because F is not a 2–sphere, so it must

be a saddle point, and the singularity must be a homoclinic point (a singularity which is

formed when a generic leaf has a saddle point singularity with itself), as illustrated in

Figure 16(a). Note that the singular leaf ˛.�0/ lies in both F and H�0
, and necessarily

bounds a disc � in the latter. Assuming that � is innermost, we surger F along � as

in Figure 16.

The surgered surface has two components. By assumption F has maximal Euler

characteristic, which implies that one of the two components is a 2–sphere. Discarding

it, and smoothing the new F, we can eliminate the singularity.

It remains to consider the case when the interior of the disc � intersects F. Since s0 is

the only singularity in H� , there are no singularities in the interior of �. But then each

component of F\ int.�/�H� must be a simple closed curve. Let c be an innermost

such simple closed curve. Then we can surger F along c , and then smooth the surgered

Geometry & Topology, Volume 10 (2006)



440 Joan S Birman and William W Menasco

(a)

(b)

surgery + isotopy

surgery + isotopy

�.�0/

˛.�0/

Figure 16: In this sketch the fibers of H are to be thought of as horizontal

planes. (a) Surgering F along the disc � removes the singularity. (b) The

change in foliation on F .

surface by an isotopy. This will introduce center singularities but no additional saddles.

Any S20
s that are formed we discard. (We leave it to the reader to draw appropriate

pictures). After a finite number of such surgeries we obtain a new surface F0 which

has the same homoclinic point in its foliation, but does not meet the disc �. We then

do the surgery which is illustrated in Figure 16, reducing the number of saddle point

singularities. In this way all leaves which are simple closed curves can be eliminated.

Since each non-singular leaf is an arc, one of its endpoints could either be at a vertex

of the foliation or a point on the boundary, however we now claim that non-singular

leaves which have both endpoints on the boundary do not occur. For, suppose there is

a leaf l which has both endpoints on the boundary. Let N.l/ be a neighborhood of the

leaf on F. Thinking of N.l/ as a rectangle, it will have a pair of opposite edges on

the boundary, and the orientation on these edges will be consistent with the orientation

on N.l/. However, l also lies in a fiber H� of H, and the boundary of F is a closed

braid. But then, the orientation on one of the edges of N.l/ will agree with that of the

normal to H� and (since l is by hypothesis non-singular) the orientation of the other

must disagree with the that of the normal, but that is impossible because the boundary

curve is a closed braid.

It follows from this that the non-singular leaves have two types: those which have one

endpoint on the boundary and the other at a vertex (we call them a–arcs) and those
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which have both endpoints being vertices of the foliation (we call them b–arcs). See

Figure 17.

A

A A

X

a
b

C

C �

Figure 17: Non-singular leaves in the foliation of F

Singularities fall into three types, which we call types aa; ab and bb , the notation

indicating that just before an aa–singularity (resp. ab , bb–singularity) the non-singular

leaves were both type a (resp. types a and b , resp. both type b ). We shall refer to the

2–cells which are foliated neighborhoods of the singular leaves as ‘tiles’. See Figure

18.

1

2

3

4
�

�

C C
s

type bb

1 3

4

s
C C

�

type ab

X

1 3

s
C C

X

X

type aa

Figure 18: Tiles of type bb; ab; aa

The foliation may be used to decompose the surface F into a union of foliated 2–cells,

each of which contains exactly one singularity of the foliation. Each 2–cell is a regular

neighborhood on F of a singular leaf. These foliated 2–cells are our tiles and the

resulting decomposition of F is a tiling. See the three sketches in Figure 18. The tile

vertices are the points where the braid axis A intersects the surface F. (There are also

other vertices on @F, but we prefer to exclude them when we refer to tile vertices.) The

tile edges are arbitrary choices of a–arcs or b–arcs. (There are also other tile edges

which are subarcs of X , but it will be convenient to ignore those, just as we ignored

the vertices which are on X .)
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Assume that the vertices and singularities in the braid foliation of F have been labeled.

The combinatorial data which is associated to the foliation is a listing of the signed

vertices, in the natural cyclic order in which they occur on A, and a listing of the

signed singularities, in the natural cyclic order in which they occur in the fibration. The

following proposition is very natural, because leaves in the foliation of F are level sets

for the embedding of F:

Proposition 3.1.1 (Birman–Menasco [10], Birman–Finkelstein [4, Theorem 4.1])

Let T be any tile in the braid foliation of F. Label the vertices and singularities of

T by their signs and their cyclic orders as above. Then this decorated braid foliation

determines the embedding of T . More globally, the embedding of all of the aa and ab

tiles in the foliation of F determines the embedding of X in R
3 nA.

We illustrate in Figure 19 the embeddings of the three tiles in Figure 18, for one of the

finitely many choices of the combinatorial data on these tiles.

A A A

X

X

X
s

s s

1
1 1

2
2

3

3 3
4

type bb type ab type aa

Figure 19: Embeddings of tiles of type bb; ab; aa in 3–space

3.2 Control over the foliations

Braid foliations are not unique, and in this section we describe some of the ways

we have discovered to modify them. This is an essential part of the argument in the

proof of the MTWS, because the vertices of valence 1 and 2 that we use to recognize

destabilizations and exchange moves may not be present initially, but after a change in

foliation they may be present. The existence of a vertex of valence 1 or 2 will be one

of our ways to learn when the complexity can be reduced.

The foliation of F depends upon the choice of half-planes H� in the fibration of R
3nA.

A change in fibration is the choice of a new set of half-planes HD fH� W 0� � � 2�g.
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Equivalently, one could fix the fibers of H and the link, and move the surface. This

induces a change in foliation.

The changes which we shall make are always very controlled and very local in terms of

changing the tiling. In particular they do not change the braid, and are supported in a

neighborhood in R
3 of subarcs of singular leaves. The question of when such changes

are possible has been studied. They were used in earlier papers by the authors, and we

use those results as needed here. We describe two changes in foliation. For details, see

Birman–Finkelstein [4].

Figure 20: The first change in foliation, in the case when both tiles have type

bb . There are two other cases, obtained from the one which is illustrated by

deleting part of the bb–tile and adding one or both dotted arcs as boundary,

to convert to an ab–tile. The 3 cases are: case (1), two bb–tiles; case (2),

one ab and one bb–tile; case (3), two ab–tiles.

Lemma 3.2.1 (First change in foliation) Let s1 and s2 be singularities of the same

sign ı D ˙ in tiles D1 and D2 , where D1 and D2 intersect in a common leaf vw

of type b . For example, see the left sketch in Figure 20, which relates to the case

when both tiles have type bb . Then after a change in foliation which is supported on a

neighborhood in 3–space of an arc 
 which joins the two singular points, the foliation

of D1 [D2 changes in one of the two ways which are illustrated in Figure 20. In

particular, the valence of the vertices v and w decreases as a result of the change.

Proof See [4, Theorem 2.1] for a very detailed proof of the Lemma. We note the

following feature of the proof. There are 6 vertices in D1[D2 , labeled v; a; y; w; z; b .
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The proof in [4] shows that they remain fixed during the change in foliation. There are

also singular leaves vy (resp. vz ) with one endpoint at the vertex v in the region of

interest and the other at y (resp. z ). In the passage from the left to the middle (resp

right) sketch in Figure 20 there is, at every point in the isotopy, a singular leaf vy

(resp. vz ) which contains one of the two singularities. This justifies our labeling that

singularity s0
1

(resp. s0
2

) in the middle (resp. right) sketch, because it evolves directly

from s1 (resp. s2 ) during the isotopy which realizes the change. We call the other

singularity s0
2

(resp. s0
1

). In fact (see [4]) if s1 and s2 occur in an angular interval

Œ�1; �2�� Œ0; 2�� in the fibration H, with s1 < s2 in this interval, then after the change

in foliation the new singularities will still be in the same angular interval, only now, in

both cases, we will have s0
1

> s0
2

.

We will need one more change in foliation. It is similar to that of Lemma 3.2.1, except

that it holds without restriction as to the signs of the two singularities which are involved.

We call it the second change in foliation. The reader may find Figure 21 helpful in

understanding what it says.

1
2

3
4

5

6

1
2

3
4

5

6

1

23

4
5

6

s1 s2




p

s0
1

s0
2




p

˛




p

s1

s2

�

(a)

(b)

Figure 21: Sketch (a) shows the second change in foliation. Sketch (b) shows

N , embedded in 3–space, before the change, illustrating the position of � .

The move is a push downward of s1 along � .

Lemma 3.2.2 (Second change in foliation) Let 
 be an arc which is located in a

foliated disc N which is a subset of a foliated surface. Assume that the foliation of

N contains exactly two singular points s1 and s2 . Let li be the singular leaf through
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si ; i D 1; 2. Let H�i
be the fiber of H which contains si ; i D 1; 2. Suppose that there

is a disc � in 3–space, such that:

(i) The interior of � has empty intersection with F.

(ii) @�D ˛[ 
 , with �\N D 
 and �\H�2
D ˛ .

(iii) � is trivially foliated, ie there are no vertices or singularities in �.

(iv) 
 \ l1 D s1 and 
 \ l2 D fpg, where p is a point.

Then after a change in foliation which is induced by pushing N along �, changing the

order of s1 and s2 , we may assume that 
 \ l1 D s0
2

and 
 \ l2 D∅: Moreover, the

change in the foliation of F may be assumed to be supported on an arbitrarily small

neighborhood on N of the subarcs Œs1; p� � 
 and Œp; s2� � l2: There could also be

several singularities s1; s2; : : : sk , with associated neighborhoods, and if the conditions

are met for each of them in turn then the disc � may be used to push s1 past many

singularities, one at a time.

Proof Figures 21(a) shows the foliated disc N before and after the change which we

propose to make. The arrows which are attached to the leaves indicate the direction of

increasing � . Using the foliation of N , and knowing the signs of the singularities, one

may construct an embedding of N in 3–space, and we have done so in Figure 21(b) in

the case when the signs of the singularities at s1 and s2 are different. (The other case

is similar). In Figure 21(b) fibers of H are to be thought of as horizontal planes. The

auxiliary disc �, is also illustrated. The move which we make to realize the change in

foliation in Figure 21(a) is to push N down along the disc �. To understand how this

changes the foliation of N , we have labeled certain endpoints on @N with numbers

1,2,3,4,5,6. There are non-singular leaves which we call 12, 34, 56, each with arrows

directed inward (to illustrate the direction of increasing � ) and joining 1 to 2, 3 to

4 and 5 to 6 respectively. In the left picture the first singularity occurs when leaf 12

approaches leaf 34, but in the right picture the first singularity occurs when leaf 12

approaches leaf 56.

3.3 Using braid foliations to detect destabilizations and exchange moves

In this section we will show how to recognize, from the foliation of F, when a closed

braid admits a destabilization or an exchange move.

Destabilizations are easy. It is shown in [4] that XC admits a destabilization if the

foliation has a vertex of valence 1, as in Figure 22(a). The embedding of a tile which

contains the vertex of valence 1, for one of the two possible choices of the sign of the

singularity, is illustrated in sketch (b).
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+ + +

X

X

(a)

(b)

new X

new X

vv w

w

v

v

Figure 22: Destabilization along a valence 1 vertex, viewed (a) on the foliated

surface and (b) in 3–space

Lemma 3.3.1 Destabilizations which are predicated on the existence of a valence 1

vertex reduce the number of singularities (resp. vertices) in the foliation of F by 1 (resp.

1).

Proof Clear. See Figure 22(a).

Before we can describe our exchange moves, a new concept is needed. We observe that,

intuitively, b–arcs in the foliation of F arise when there are ‘pockets’ in the surface,

and we are now interested in the case when a ‘pocket is empty’ and so can be removed.

We now make this precise. A b–arc ˇ in the foliation is an inessential b–arc if it joins

a pair of vertices v; w which are consecutive vertices in the natural cyclic ordering of

vertices along A. We use the term ‘inessential’ because, if we think of a fiber H� of H

as a disc with the braid axis A as its boundary, then an inessential b–arc will cut off a

disc ��H� which has the property �\FD ˇ . The disc � cannot be pieced by X ,

for if it were there would be an a–arc ˛ which either intersected our inessential b–arc,

which is impossible because F is embedded, or ˛ has a vertex endpoint between v

and w , which is impossible because v and w are consecutive vertices on A. The disc

� can be used to push ˇ (and nearby leaves in nearby disc fibers) across A, reducing

the number of vertices in the foliation of F. Peek ahead to the right sketch in Figure

24 for examples of b–arcs which are inessential and also essential. An essential b–arc

is one which is not inessential.

Exchange moves were defined in Figure 2 as a move on a block-strand diagram. Our

task now is to detect them in the foliation. The complexity function mentioned in
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Theorem 2 will include the number of singularities in the foliation of a clasp annulus

which is bounded by the given braids. As will be seen shortly, exchange moves always

reduce this complexity function. However, the exchange moves that are used in this

paper come in two flavors, and it’s necessary to check both.

The ab–exchange move: In Figure 23(a) we have illustrated v , a type ab valence

+

-
-

+(a)

(b)

X
w

vq

s

p

t

˛

new X
˛0

A

˛ X

X

v

w

A

˛0

X

new X

Figure 23: The type ab–exchange move

2 vertex. The left and right sketches in (a) (resp. (b)) show the configurations on

the foliated surface F (resp. in 3–space), the left sketches being before and the right

sketches being after the exchange move. In both (a) and (b) the vertex v is adjacent to

two type ab singularities, and these singularities have opposite signs. The ab–exchange

move occurs in the passage from the left to the right sketch. One pushes the subarc

˛�X across the shaded disc to ˛0 . If we choose ˛0 so that it is everywhere transverse

to leaves of the foliation (as is clearly possible) the move takes closed braids to closed

braids. Figure 23(b) illustrates the embedding for one particular choice of signs and

orderings.

Note that if the b–arcs which end at the vertex v are all essential, then X must encircle

the subarc vw of the braid axis which is inside the pocket. The braid changes we make

can then be understood by looking at the projection onto a plane orthogonal to the

braid axis. After the exchange move the shaded disc will have vanished. Peering down

the braid axis (as we did in Figure 2) we see that the projection has changed in the

predicted manner. For full details, consult [4].
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The bb–exchange move: In Figures 24 and 25 we have illustrated v , a type bb valence

2 vertex. The non-singular leaves which have an endpoint at v are all type b . The left

and right sketches show the changes in 3–space. The changes in the braid projection

can be understood by looking down the axis onto a plane orthogonal to the braid axis.

The foliation does not change at all after a bb–exchange move, however there is a

A

X

X

X

k

v

w

m

u

A

X

X
u

kCm

�.�/

X

X

H�

inessential
b–arc ˇ.�/

essential
b–arc ˇ0.�/

Figure 24: The type bb–exchange move, followed by an isotopy of F

change in the order of the vertices along the braid axis. The ‘pocket has been emptied’

and after the exchange move, the empty pocket can be collapsed by pushing every

b–arc ˇ.�/ across its disc �.�/, as in Figure 25. Remark: The pocket could of course

have much more complicated braiding inside it. The proof that it can always be emptied

in this way is non-trivial; details may be found in our earlier paper [7] or the article by

Birman and Finkelstein [4]. The passage from the left to right sketches in Figure 25

shows the change in the foliation, after the removal of all inessential b–arcs.

++ +−

+

-

p0

pq

s

v w1w2

p0

pw2

Figure 25: Changes in foliation after the removal of inessential b–arcs

Lemma 3.3.2 Suppose that the foliation of F has a vertex v of valence 2 and type

ab or bb . Assume that the adjacent singularities have opposite signs. Then the closed

braid X D @F admits an exchange move. After the move, there is a surface F
0

, isotopic

to F, with a decomposition containing two fewer vertices and two fewer singularities

than the decomposition of F.
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Proof See Figures 22(a), 24 and 25.

3.4 Using braid foliations to detect stabilizations

As elaborated on in the introduction to this paper, one of the questions that motivated

our work was a desire to understand why stabilization played such an important role

in the classical Markov Theorem. Having braid foliations of Seifert surfaces bounded

by knots and links in hand, one answer to that question became clear: they allow

one to simplify a Seifert surface by eliminating negative vertices and their associated

singularities. The first sketch in Figure 26 shows how: When there is an ab–singularity

- -

l

+ + + +

-

(a) (b)

stabilize stabilize

negative
singularity

positive
stabilization

vi vj

˛0

˛p q K p q

vi vj

K K K

Figure 26: Stabilization along an ab–tile, viewed (a) as a move on the foliated

surface, and (b) concentrating on how it alters the boundary

in the foliation, we may push X across the associated negative vertex and its singularity,

in a neighborhood of the singular leaf, to a new position which is again everywhere

transverse to the foliation. It follows that after we do this move we will have a new

closed braid representative. This moves simplifies F because it eliminates a vertex and

a singularity. The right sketch shows why the move is actually a stabilization. Figure

27 shows our stabilization move on the embedded surface in 3–space. If one looks

carefully one can see the half-twist which has been introduced in the course of the

push. We note that the pictures of ab–tiles in Figure 27 are deformations of the picture

in Figure 18: we stretched out the top sheet to make visible a neighborhood of the

singular leaf.

4 Braid foliations of the immersed annulus

We are now ready to investigate braid foliations of the clasp annulus CA which we

constructed in Section 2. We will need to confront two new aspects of the geometry:
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Figure 27: Stabilization along an ab–tile, viewed in 3–space

(1) There is a (basically trivial) new aspect to our geometry, which unfortunately will

lead to new bookkeeping: The clasp annulus CA has two boundary components,

XC and X� . By the basic construction, the X� boundary is a curve in the

interior of the chosen Seifert surface F0 for the closed braid X0 . As was shown

in the previous section, F0 admits a braid foliation. Clearly X� can cut through

the tiles in that foliation in any way as long as it is always transverse to the

leaves of the foliation. Therefore we will allow for new tile types, to account for

the partial tiles at the X� boundary of CA.

(2) The second new aspect of the geometry is central to the work in this paper. Our

annulus CA is not embedded.

A preliminary modification in the clasp arcs will be helpful in what follows:

Lemma 4.0.1 We may assume that the k clasp arcs are transverse to fibers of H, and

so also to the leaves in the braid foliation of CA and PA.

Proof Let � D 
1 [ � � � [ 
k be the union of the clasp arcs. Then the graph XC [

X0 [X� [ � is embedded in CA, which is a subset of R
3 . We focus now on that

graph. By our earlier construction, its subsets XC; X0 and X� are in braid position,

but in general � is not in braid position, ie the interior of some clasp arc may not be

transverse to the fibers of H.. From the proof of Lemma 2.1.1 we employ Alexander’s

braid trick to every wrongly oriented subarc of � , doing it so as to avoid intersections

with XC; X0 and X� . The construction allows us to find an orientation-preserving

PL homeomorphism f W S3 ! S3 which changes � to braid position. A classical

result of Gugenheim (see Hempel [19, Theorem 1.5]) then tells us that we may assume

that f is isotopic to the identity. Replacing CA by f .CA/, and using the fact that f

leaves XC; X0 and X� invariant, it follows that we may assume that every subarc of

the graph XC[X0[X�[� � CA is in braid position.

Geometry & Topology, Volume 10 (2006)



Stabilization in the braid groups I: MTWS 451

4.1 Tile types in PA

Our work begins with the two closed braid representatives XC and X� of X . Our

basic construction in Section 2 gave us the immersed annulus CADAC[A� and the

clasp arcs. We begin by studying the braid foliations of the two annuli. The key point

which will allow us to apply the machinery of Section 3 is that each is embedded. The

really new feature is the presence of the clasp arcs. We first make the clasp arc as nice

as possible (we change them to ‘tabs’). After that we will remove ‘short clasp arcs’,

ie ones which do not pass through any singular leaves. Then we will create ‘normal

neighborhoods’ about the doubly modified clasp arcs, which will isolate them from

the rest of CA. Our device for isolating them is to introduce lots of inessential b–arcs,

which will give us the freedom we need to modify the clasp arcs when we need to do

so.

In this section we are interested in the foliation of AC and A� which are induced by

intersections of these annuli with the half-planes of our braid structure. The closed

braids XC; X0; X� are all oriented so that they point in the direction of increasing �

at each point of intersection with an H� . We choose an orientation on the annulus AC

in such a way that it induces the given orientation on its boundary component XC .

Notice that this means that the orientation on X0 does not agree with that induced

by the chosen orientation on AC . Similarly, we choose an orientation on the annulus

A� in such a way that it induces the given orientation on its boundary component

X0 , which implies that the orientation on X� does not agree with that induced by the

chosen orientation on A� .

As in the situation of Seifert surfaces, the foliation may be assumed to be radial in

a neighborhood of each point of A \A˙ (see Figure 15(a)) and transverse to the

boundary in a neighborhood of @A˙ (Figure 15(b)). The braid axis A pierces A˙

from either the negative or the positive side at each pierce point, and we have indicated

this by attaching positive or negative signs to the pierce points on A˙ . As before,

leaves in the foliation are singular if they contain a singularity of the foliation, otherwise

they are non-singular. The singularities may be assumed to be finite in number and to

occur on distinct fibers of H.

We now show that, as in the situation of Seifert surfaces, we may assume that there

are no leaves in the foliation of CADAC[A� which are simple closed curves. See

Figure 28. There are new issues to settle. The first question we ask is whether a simple

closed curve c could intersect both AC and A� ? Assume that the homoclinic loop

determined by c is innermost in H� , and also innermost in the foliation of CA. Then

c bounds a disc on AC[A� which is foliated by simple closed curves, so it would

intersect X0 twice if it intersects it at all. This would force a tangency between X0
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and a fiber of H, but X0 is in braid position, so this cannot happen. Therefore any leaf

in the foliation which is a simple closed curve must lie in the interior of A� , � DC or

�.

Next, for simplicity assume that the foliation of AC contains the homoclinic loop c

and refer to Figure 28. Our leaf c bounds a disc �� in the fiber H� which contains c .

See Figure 28(a). (If c is homologically nontrivial in AC then, since it bounds a disc

in H� , XC would have a component that was the unknot.) If c is not intersected by

any clasp arcs then we can apply the argument of Section 3 (see Figure 16). Since both

�� and �c are embedded their union �� [c �c is an embedded 2–sphere.

�0

�c

surgery + isotopy

surgery + isotopy

(a)

(b)

Figure 28: The elimination of a homoclinic singularity and associated simple

closed curves, in the presence of clasp arcs. Sketch (a) is the geometric

realization. Sketch (b) shows the preimage in PA .

Now consider a clasp arc that intersects c . Since clasp arcs are transverse to the

foliation of CA, any clasp arc that intersects c intersects it exactly once. Thus, any

clasp arc that intersects c must have a puncture endpoint in �c , where X� intersects

AC . (Referring to Figure 28(a), the gray braid strands represent X� .) Since any braid

that enters the 2–sphere �� [c �c must puncture �� , and can only exit by puncturing

�c , we conclude that only X� can intersect �� .
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Next, we consider the intersection of �� \ .AC [ A�/ � �� . In principle, this

intersection set can contain three types of arcs/curves: arcs that have an endpoint on

both X� and c ; arcs that have both endpoints on c ; and simple closed curves. Notice

that there can be no arcs that have both endpoints on X� because this would violate

the orientation of X� . Since we are assuming that c is innermost for the moment

we ignore the issue of simple closed curves. Referring to Figure 28(b) notice that for

every puncture point in �c there is a point on c that is an intersection with a clasp

arc. But, also for every puncture point of X� with �c there must be a puncture point

of X� with �� . So the second type of arc of intersection—having both endpoints

on c—cannot occur. If we then perform the surgery illustrated in Figure 28(a), we

see that this corresponds to a truncation of the clasp arcs. That is, this surgery on

a simple closed curve in the homoclinic leaf replaces the immersed annulus with a

new immersed surface which is union of an annulus and a 2–sphere, where the latter

can be discarded. It replaces a clasp intersection with a clasp intersection and ribbon

intersection on the discarded 2–sphere. Afterwards, clasp intersections are still in

braid position. This surgery eliminates at least one saddle singularity (and, possibly

some points of CA\A). Reiterating this procedure we will arrive at a point where the

foliation of CA has no leaves that are simple closed curves, except in one situation.

The situation where we will not be able to perform the surgery illustrated in Figure 28

is when the homoclinic point involves a singularity between an s–arc (see Figure 29)

and a simple closed curve where the disc �� contains the endpoints of the resulting

singular leaf which are in XC and X� . However, we can alter the foliation of CA

in the following manner to eliminate the leaf c . Let 
� be any clasp arc that has an

endpoint e�� � �c . Let ˛ � CA be an arc that starts at e�� and ends at X� such

that int.˛/ does not intersect any clasp arcs. It is convenient to take the support of ˛

to be in a union of �c and a regular neighborhood of the homoclinic singular leaf;

and it can be assumed that ˛ is transverse to the foliation of CA except at a single

point in �c near e�� . We now perform Alexander’s braid trick on ˛ to make ˛[ 
�

transverse to H. In the resulting new foliation of CA the path ˛[ 
� cannot intersect

any leaf that is a simple closed curve for reasons of orientation. It is easily seen that

once the homoclinic point is eliminated for 
� it will be eliminated for all clasp arcs

that intersect �c . No new homoclinic points are introduced.

Finally, if c is not innermost and �� \ .AC[A�/��� does contain other simple

closed curves, we can achieve the assumption that c is innermost by first performing

a surgery which is similar to that illustrated in Figure 28 on all of the simple closed

curves in �� , starting with the innermost. Such surgeries may or may not eliminate

any saddle singularities, but they will create center points in the foliation. But, then we

can perform the surgery to eliminate the homoclinic saddle singularity on c .
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We have learned that we may assume that every leaf is an arc. The situation is a little

bit more complicated than it was in the case of Seifert surfaces. Consult Figure 29.

There are now 5 possible types of non-singular arcs in the foliation of AC and A� :

(i) arcs which have both endpoints at vertices (type b ); (ii) arcs which have exactly

one endpoint at a positive vertex (type aC ); (iii) arcs which have exactly one endpoint

at a negative vertex (type a� ); (iv) arcs which have one endpoint on one boundary

component and the other on the opposite boundary component (type s ); and (v) arcs

which have both endpoints on the same boundary component. As for type (v), the exact

argument that we used in the case of Seifert surfaces applies, because XC; X0; X� are

all closed braids, so type (v) does not occur.

+

+-

-

type a�

type aC

type b

type s

X�

XC

Figure 29: Non-singular leaves in the foliation of AC [A� , as viewed in

the preimage of CA

Remark 4.1.1 With regard to Figure 29 we may need to reinterpret the boundary com-

ponents, temporarily, as .XC; X0/ or .X0; X�/ instead of .XC; X�/. This ambiguity

will be removed shortly. See Remark 4.3.1 below. }

The annulus AC[A� is said to be trivially foliated or trivial if it is foliated without

clasp arcs and the leaves in its foliation are all s–arcs.

An exhaustive list of the singularities which could, in principle, occur in the foliation

of AC and A� are types aCaC; aCb; aCs; aCa�; a�a�; a�b; a�s; sb; ss; and

bb , where the notation is consistent with that used in Section 3. However, we have:

Lemma 4.1.1 Singularities of type ss do not occur in either AC or A� .

Proof There is an oriented flow on AC [A� that is transverse to the foliation. In

particular, we have arranged that the foliation is transverse to the boundary in small

neighborhoods of XC and X� , so that the flow will be parallel to the boundary and

oriented to agree with the orientations on XC and X� , both of which are oriented

closed braids. On the other hand, the fact that every singularity in the foliation is a

saddle point implies that every singularity in the associated flow is hyperbolic. Suppose
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that there was a singularity of type ss at polar angle 0. Then, for an arbitrarily small

negative polar angle �� there must be a pair of type s non-singular leaves s1; s2

moving toward one another on a collision course. However, a type s leaf separates the

annulus and as we just noted the flow near the two endpoints of both s1 and s2 is in

the direction of the orientation of XC and X� . It is then impossible for the images of

s1 and s2 in the flow to approach one-another, as the flow evolves.

Lemma 4.1.2 If a singularity of type a�a� or a�s occurs, then the associated singular

leaf is always intersected by a clasp arc.

Proof Suppose that a singularity of either type a�a� or a�s occurs, and that no clasp

arc intersects the associated singular leaf. See Figure 30. Notice that there is an arc,

˛
ˇ

Figure 30: Type a�a� and a�s singularities do not occur

˛ , contained in the singular leaf which has both of its endpoints on X� and which,

together with one of the two subarcs ˇ of X� n .X�\@˛/ forms a simple closed curve

C which bounds a disc D�A� . Since C bounds a disc it represents the unknot. Now

observe that if we perturb the endpoints of ˛ slightly along X� we may change ˛ to an

arc ˛0 which is transverse to fibers of H. Thus, after an arbitrarily small perturbation,

we may change C to C 0 D ˛0[ˇ , where C 0 is a closed braid and where ˇ �X� is

a subarc of the closed braid X� . Let b be the braid index of C 0 . The fact that C 0 is

everywhere transverse to fibers of H guarantees that b � 1. But then, we may reduce

the braid index of X� by at least one without changing its knot type by replacing ˇ

by ˛0 . However that is impossible because by hypothesis the braid index of X� is

minimal.

4.2 Preliminary modifications in the clasp arcs

We assume from now on that our clasp annulus CA supports a braid foliation, so that

its preimage PA supports the lifted foliation. We continue to use the symbols CA and

PA, but from now on CA means the foliated clasp annulus and PA means its foliated

preimage. Each clasp arc 
 in CA will have two preimages 
C and 
� in PA, where
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aCaC aCb aCs a�aC

a�a� a�b a�s sb bb

Figure 31: Possible tile types in the foliation of AC[A� . The black (resp.

grey) arcs always represent subarcs of XC (resp. X� ), with one exception:

when we construct the tabs we will be working in A� and X0 will enter the

picture as a (dotted) grey arc.


� indicates the preimage of 
 which begins on X� in the boundary of PA and ends

at its puncture endpoint on X�� in the interior of PA.

We say that a clasp arc is short if 
C or 
� does not cross any singular leaves. Since

our ultimate goal is to push XC across CA to X� , every clasp arc will ultimately

become short.

Lemma 4.2.1 After a braid isotopy, we may assume that there are no short clasp arcs.

Even more, suppose that 
� is a short clasp arc in PA. Suppose further that the only

non-singular leaves that 
� intersects are s–arcs and a� –arcs (without dividing the

vertices of any a�a� –singular leaves). Then we may eliminate 
� .

Proof Since a short clasp arc does not cross any singular leaves and has one endpoint

on XC it must be in the boundary of a region in PA which is near XC and foliated

entirely by a–arcs and s–arcs (call it an a=s–region). See Figure 32. Let eC and e�

be the endpoints of the clasp arc 
C , where eC 2XC . Then e� is on an a=s–arc, and

running along that arc to XC we obtain a point p 2XC . Modifying e�p slightly, we

make it transverse to the fibers of H. The ‘triangular’ region eCe�p , shaded in Figure

32, is foliated entirely by subarcs of a=s–arcs. Rescale XC in such a way as to shrink

the shaded region, pulling eC to p and 
C into the arc pe� .
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eC p

e� e�

eC

Figure 32: Eliminating short clasp arcs

The clasp arc is still in an a=s–region, as in the right sketch of Figure 32, which shows

the local picture in 3–space. The black (resp. grey) boundary arc is XC (resp. X� ).

We now push XC along eCe� to eliminate the short clasp arc, changing the geometric

linking between XC and X� in the process. Note that while it looks as if we are

‘unlinking’ the two curves, what we are really doing is to correct the geometric linking

between XC (which started out by being geometrically unlinked from X� ) and X�

by putting it into the position of X0 .

Remark 4.2.1 By our basic construction, the only way that CA will fail to have clasp

arcs is if X 0
� , the pushoff of X� onto a Seifert surface which was constructed during

the proof of Lemma 2.1.1, is geometrically unlinked from X� . The only way that can

happen is if X is the unlink. So, if X is not the unlink, then clasp arcs occur. Short

clasp arcs arise in the basic construction in situations where we could have arranged

for XC to have the correct linking with X� locally by a braid isotopy. If it happened

that every clasp arc was short, then we would know that, after a braid isotopy of XC , it

could be assumed that X� is a preferred longitude for XC , ready to be pushed across

A� , an embedded annulus. }

4.3 Construction of the tabs

In this section we modify the discs R1; : : : ; Rk which we constructed in Section 2 to

special foliated discs T1
C; : : : ; Tk

C containing the clasp arcs.

We say that Ti
C � PA is a tab associated to the clasp arc 
 i

C if the following hold:

� 
 i
C � Ti

C .

� @Ti
C D ˛[ˇ where ˛ �XC and ˇ is an arc that is transverse to the foliation

of PA.
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� There is a simple path lC which is contained in a union of singular leaves in

Ti
C . The path lC starts on XC , ends at a negative vertex, and contains all the

negative vertices in Ti
C .

� The arc 
 i
C is the only clasp arc which intersects Ti

C . It is everywhere transverse

to the leaves in the foliation of PA. The arc 
 i
C intersects each of the singular

leaves in the induced foliation of Ti
C exactly once.

----

e�
X0


 i
C

ı4 ı2 ı1
eC

Figure 33: An example of a tab

Lemma 4.3.1 We may assume that each Ri is a tab Ti
C .

Proof We focus on a single Ri�PA, where Ri is one of the discs that we constructed

in Section 2. We construct the tab Ti
C as a subset of the disc Ri in the basic construction.

Going back to Section 3, recall that the boundary of Ri is a union of 4 arcs:

� a subarc of the modified X0 ,

� a subarc of XC , and

� two modified s–arcs which join them.

It contains 
 i
C in its interior. Using the methods described in Section 3, we may assume

that Ri supports a braid foliation. Initially, the foliated disc Ri will not look anything

like a tab. What we wish to do is to rechoose the discs R1; : : : ; Rk so that they are as

simple as possible. The new discs that we choose will be subsets of the old ones, with

possibly modified foliations. In the course of the construction we will, in effect, be

making a new choice of the separating curve X0 which divides PA into the embedded

annuli A� and AC . We note that right after the completion of this proof we will

discard X0 , as we will have no further use for it.

The arc 
 i
C has one of its endpoints at a point ei

C on XC and its other endpoint

ei
� 2X� in the interior of Ri . In between, it winds around the vertices of the foliated
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(a)

(b) (c)

v


 i
C

eC

Figure 34: Rechoosing the disc Ri . In sketches (a) and (b) the dark area is

in R0
i . The passage from left to right shows how we modify R0

i to eliminate

positive vertices.

disc Ri , constrained to remain transverse to the leaves of the foliation. We may assume

without loss of generality that the point ei
� where X� pierces the interior of Ri is not

on a singular leaf. Therefore ei
� belongs to a non-singular leaf of type s; aC; a� or b .

Let ˛ �Ri n 
 i
C be a simple path that starts at ei

� and ends at a point p 2XC . Then


 i
C [ ˛ �Ri is a simple path that joins ei

C to p in the interior of Ri . Without loss

of generality we may assume that this simple path is in braid position. For, if it is

not, apply Alexander’s braiding trick to wrongly oriented subarcs. This will change

the interior of Ri by an isotopy in 3–space. The changes will modify the foliation of

Ri by introducing new vertices and singularities which allow ˛ to avoid the points of

non-transversality. After these modifications, let R0
i �Ri be the foliated subdisc that


 i
C[˛ splits off in Ri . Reapply the argument for eliminating leaves that are circles in

the foliation of R0
i , so that R0

i supports a braid foliation. Therefore we may assume

that R0
i supports a braid foliation.

We are now in position to re-choose 
 i
C; ˛ and X0 so that every vertex in R0

i is negative.

See Figure 34. If the induced foliation of R0
i contains a positive vertex v then this

sub-foliation must also contain a singular leaf that has its endpoint on 
 i
C[˛ and is

adjacent to a (possibly different) positive vertex v0 . We can then push 
 i
C[˛ along

the singular leaf and across v , staying transverse to the foliation, as in Figure 34(a),

moving v out of R0
i . Inducting on the number of positive vertices in the foliation of

R0
i , we have arranged that the foliation of R0

i contains only negative vertices.
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Now the graph of singular leaves in R0
i is either a linear tree, or it is a tree with

branches. In the latter case, since ei
� can be adjacent to only one negative vertex, either


 i
C or ˛ intersects a singular leaf in the foliation of Ri twice. We can then find a

valence one vertex, as in Figure 34(b), with either 
 i
C or ˛ in its boundary. After a

‘destabilization’ we can eliminate this negative vertex from Ri . Iterating this procedure,

we alter 
 i
C[˛ , until R0

i is changed to a tab.

There is only one more problem. It may happen that near the XC boundary of R0
i ,

either 
 i
C or ˛ or both run along a band which is foliated without singularities by a

and/or s–arcs, as depicted in Figure 34(c) in the case of 
 i
C . If so, we simply ‘rescale’

XC , as we did in the proof of Lemma 4.2.1 to pull the long arcs back into the single

a�s–tile which forms the base of the tab.

Remark 4.3.1 We make an important remark about simplified notation and simplified

tile types. Having standardized the tabs, we will not have further use for X0 . This

eliminates the dual meanings of the boundary arcs in Figure 31 and allows the following

simplification. If � D˙, an a� –arc has its interior endpoint on a vertex of sign � and

has its boundary endpoint on X� . At the same time, we will no longer need to depict

X0 in our figures, and will be free to use dotted arcs in other settings as we proceed

through the proof of the MTWS. }

Remark 4.3.2 Notice that the work in this section uses the braid foliation of Ri . If

we had braid foliations on hand as a tool, during the basic construction, we could have

arranged at that time for each Ri to be a tab. }

Remark 4.3.3 In Figure 14 we gave an example of a tab with the clasp arc on one

side of the singular leaves. Soon we will develop the ability to move it so that it is

transverse to the foliation and to one side or the other of a sequence of singular leaves,

or alternatively to position it in a union of leaves (singular and/or non-singular), at the

expense of introducing many new b–arcs into the foliation. See Section 4.5 below. }

4.4 The two finger moves

We need tools that will allow us to modify neighborhoods of the clasp arcs in CA in a

controlled manner, keeping track of the foliation on the two branches and making sure

that no new self-intersections are introduced. The ‘finger moves’ will help us to do

that. See Figures 35 (and eventually 36). To begin, we explain the pictures in Figure

35 The first column shows foliated neighborhoods N of a subarc of one of the clasp

arcs. We give separate pictures of the two foliated branches, N1 (the first branch) and

N2 (the second branch). They intersect transversally. By hypothesis the clasp arc (and
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Figure 35: Controlled local changes in the clasp arc in a neighborhood of a

singularity after the first and second finger moves
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Figure 36: The 4 possible choices of the signs of the pair (vertex,singularity)
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so also its preimages 
C and 
� ) is transverse to the leaves of H. We have oriented

the clasp arc (arbitrarily).

We are interested in modifying the position of one of the clasp arcs in a neighborhood

of a singular leaf on one of two branches N1 or N2 . Since singular leaves correspond

to places where one of the two branches is tangent to a fiber of H, and since the two

branches intersect transversally along a clasp arc, we may assume that there is a neigh-

borhood of the singular point in which the other branch is foliated without singularities.

The neighborhood has been chosen so that N2 is foliated without singularities, but N1

contains a singularity, together with the vertex endpoint of one of the branches of the

singular leaf. There are two sign choices: the sign of the vertex and the sign of the

singularity. We have chosen these to be .C;C/, but in a moment we will consider the

4 possible sign choices. There are also little ‘+’ signs next to the two components of

the clasp arcs. They indicate which side of N2 (resp. N1 ) is the positive side, at 
�

(resp. 
��/.

Selected fibers H�i
have labels i D 1; 2; 3. The labels on the fibers and the way that


 intersects them and the little + signs next to 
� and 
�� completely determine the

position of N in 3–space, relative to the coordinate system provided by the fibers

of H. We are ready to describe our two controlled changes in the clasp arc, and the

corresponding changes in the foliation of N1 and N2 and in the way that 
� and 
��

intersect the leaves in the foliation.

We now define the moves precisely:

(1) Our first finger move, illustrated in the middle column of Figure 35, pushes 


across the horizontal branch of the singular leaf in the first branch, creating two

points where it is not transverse to the fibers of H, one on fiber 1 and the other

on fiber 3. This move is always possible, because it occurs within an arbitrarily

small neighborhood of the singularity. The corresponding change in the second

branch can be understood by noticing that before the change 
� intersected

fibers 1,2,3 transversally in that order. After the change there are two points of

tangency with fibers of H, the first with fiber 3 and the second with fiber 1. This

explains the doubling back of 
�� after the first finger move.

(2) Let ˛ denote the subarc of the clasp arc which is between the two points of

non-transversality, and let p 2 ˛ \ fiber 2 be the point which is closest to the

singularity on 
� . The second finger move, illustrated in the right column of

Figure 35, pushes a neighborhood N.p/ of p on ˛ across the singularity and

across the vertex, staying within a neighborhood of the singular leaf. The foliation

on the first branch is unchanged. The foliation of the second branch changes in

an arbitrarily small neighborhood of p on the second branch. Two new vertices
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of opposite parity and two new singularities of opposite parity are created, as

illustrated in the bottom row sketch.

See Figure 36 for the local changes with the four possible sign choices for the pair

(vertex,singularity).

Remark 4.4.1 The two finger moves are always possible because of their local nature

and because of our control over the geometry. We have illustrated the case when the

singularity and vertex are both positive. The other three cases differ from this one by

local symmetries. Observe that we have given a great deal of detailed data in Figures 35

and 36, including the cyclic order of leaves in the fibration, the signs of the singularities

and the signs of the vertices. Fibers of H are level sets for positioning the two branches

of the immersed surface in 3–space. The test for whether the finger moves are realizable

in 3–space is to examine them on a sequence of fibers of H, and the data in Figures 35

and 36 suffices for that purpose.

If braid foliations had been available as a tool during the basic construction, we could

have used the two finger moves then. We stress this because later we will use an

inductive argument and we need to know that, after many changes, we are still in the

situation of the basic construction. }

4.5 Creating symmetric normal neighborhoods of the clasp arcs

In Section 4.3 we modified the discs R1; : : : ; Rk which had been constructed as part

of the basic construction to very special foliated discs which we called tabs. Thus we

now know that each clasp arc 
 i
C is contained in a tab. In this section we study 
 i

C and


 i
� and arrange that they are contained in much larger neighborhoods which support a

canonical foliation. We will call them normal neighborhoods. The modifications will

be made with the help of the finger moves of Section 4.4, at the expense of adding

new b–arcs (see Section 3.3). Intuitively, the new b–arcs add pouches to the surface,

and so give additional ‘room to move around’. The normal neighborhoods which we

will construct will give us choices, which can be made one way or another as it is

convenient. For example we will be able to regard a clasp arcs as being on either side

of its associated chain of singular leaves and in braid position, or as being contained in

a union of leaves and so lying in a union of fibers of H. Let 
� � PA be a clasp arc

with the property that 
C crosses k singular leaves. A neighborhood N� of 
� is a

normal neighborhood (Figure 37, which gives an example, should be helpful) if the

following conditions hold:

(1) N� � 
� . Also N� intersects no other clasp arcs.
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Figure 37: Normal neighborhoods of 
� and 
C in PA . The left (resp.

middle and right) sketch shows NC (resp. N�; N� ). The arc 
� ends near

XC in the middle sketch and in the interior of PA in the right sketch. In all

3 sketches the foliation is defined up to reflection about a vertical axis which

joins X� and XC .

(2) N� contains 2k disjoint ‘horizontal’ paths %�
1
; : : : ; %�

2k
, each contained in the

singular leaves of N� and each containing two vertices and two singularities.

Traversing 
� , starting at the X� endpoint, each %�
i is crossed once. The vertices

on %�
2i�1

(resp. %�
2i

) have sign � (resp. �� ). For 1 � i � k , the singularities

on %�
2i�1

have parity �ıi and the singularities on %�
2i

have parity ��ıi , where

ıi D˙.

(3) @N� D '1['2['3['4 where:

(a) '1 �X� .

(b) '2 is a path contained in one arc of type a� and k singular leaves. It contains

k vertices of sign � .

(c) '3 is transverse to the foliation of PA.

(d) '4 is a path contained in k singular leaves and one arc of type b (or type a� ,

in the special case when the puncture point on 
� is near X�� ). It contains

k vertices of sign �� .

(e) Traversing '1 �X�\@N� , beginning at the point '1\'4 , we pass through

the endpoint of a type a�b singular leaf, and end at the X� endpoint of an

a� leaf.

We say that .NC; N�/ is a normal neighborhood pair if each N� is a normal neighbor-

hood of 
� . Our main result in this section will be very important in the detailed work
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we will need to do to push XC across CA to X� , and to prove the MTWS. We stress

this by calling in a ‘proposition’.

Proposition 4.5.1 For each clasp arc pair .
C; 
�/ D .
 i
C; 
 i

�/ we may assume

that there is a normal neighborhood pair .NC; N�/. Moreover, within the normal

neighborhoods, we may assume that instead of being transverse to the foliation each

clasp arc is positioned in a finite union of leaves in its normal neighborhood pair.

Proof The proof of Proposition 4.5.1 will occupy the rest of this section. Our work

begins with the tab neighborhoods of 
 1
C; : : : ; 
 k

C which we constructed earlier, when

we simplified the discs R1; : : : ; Rk of the basic construction. The tab neighborhood

construction told us nothing about the other sheet of CA, and our first goal is to modify

it so that we have related tab neighborhoods of 
 1
�; : : : ; 
 k

� . See Figure 38 for an

example. After that we will iterate the construction to produce normal neighborhoods.
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Figure 38: Tab neighborhood pair in PA

Let 
 be a clasp arc and let 
C; 
� , be its preimages in PA. We say that .TC; T�/ is

a tab neighborhood of 
 in PA if the following hold:

(i) @T� D ˛[ˇ where ˛ �X� and ˇ is an arc that is transverse to the foliation of

PA.

(ii) There is a simple path l� � T� , contained in singular leaves. It starts on X� ,

contains all k vertices and all k singularities. If the singularities on lC have sign

ı1; ı2; : : : ; ık on TC , then the singularities on l� have sign �ı1;�ı2; : : : ;�ık .

(iii) The arc 
� � T� is the only clasp arc which intersects T� . It intersects each of

the k singular leaves in the induced foliation of T� exactly once.
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(iv) Let eCe0; e0e00; : : : ; e0:::0e� � 
C � TC be a subdivision of 
C into k subarcs

such that each subarc crosses one singular leaf. Then the corresponding induced

subdivision of 
� in T� given by the immersion CA also has the property that

each subarc crosses one singular leaf.

Lemma 4.5.1 We may assume that each pair of clasp arcs 
 has a tab neighborhood

.TC; T�/ for its associated pair .
C; 
�/� PA.

Proof To prove the lemma we will make repeated use of the first and second finger

moves. Consult Figure 39, which shows the changes we will make as they appear on

TC , and Figure 40, which depicts the corresponding changes on PA in a neighborhood

of 
� . After the sequence of changes 
C will have moved to the other side of the

chain of singular leaves in TC , but the key features will not have changed.

(a) (b) (c) (d) (e) (f) (g)

e�

p


C

p0

e0

p

p0
p0

�

e0

p0

p00

e0

p0

p00

e0

p0

p00

�0

e0

p0

e00

p00

Figure 39: Local changes, as they appear on TC

By Lemma 4.3.1 we may assume that 
C is already contained in a tab neighborhood

TC . Since we have not changed the fact that 
 is transverse to fibers of H, it follows

that in a sufficiently small foliated neighborhood of 
� in PA the arc 
� will also be

transverse to the leaves of the foliation of PA. Some of the leaves intersecting 
� may

be singular. Label them l1; : : : ; lt , as in Figure 40. The first change we introduce is to

perform the first finger move on a small subarc of 
 which is just below the singular

leaf in the end-tile of TC , pushing 
 across the singular leaf, as in the passage from

sketch (a) to (b) in Figure 39(a) ! (b). This will induce a corresponding change in


� , as illustrated in Figure 40(a) ! (b).

We next perform the second finger move as shown in the passage Figure 39(b) !39(c)

and the corresponding alteration 40(b)!40(c). It will be helpful to label the two new
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(a) (b) (c)

(d) (e)
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�
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s2 v1

s1
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l1

e

m

s1

v1

v2

s2

v2

v1

e0

s1

s2

e

modified 
�

Figure 40: Local changes, depicted in a neighborhood of 
� on PA

vertices and singularities introduced by this second finger move as v1 and v2 (the

vertices) and s1 and s2 (the singularities). This second finger move creates a disc � in

the tab TC whose interior is necessarily embedded because it is on a tab-neighborhood

of 
C and there is only one clasp arc on each such tab-neighborhood. We use it to

do the second change in foliation (see Lemma 3.2.2 and Figure 21). The notation has

been chosen so that s1 in Figure 40(c) and � in Figure 39(c) correspond to s1 and �

in Figure 21. The singularity s2 of Figure 21 is not shown in Figure 40(c), also the

singularity s2 of Figure 40(c) is similarly not part of the geometry of Figure 21. After a

series of such changes in foliation the singular leaf which is labeled m in Figure 40(c)

will have exchanged order with the singularities in the leaves l1; : : : ; lt as illustrated

in Figure 40(d). (Note that this implies that each of the leaves l1; : : : ; lt has one of its

endpoints at v2 ). After the change in foliation the clasp arc can be tightened, resulting

in the picture we see in Figure 40(e).

From the tab neighborhood definition, condition (ii) on the signs of the vertices follows

from the fact that the vertex endpoint of a singular leaf of the foliation of PA which

begins at X� necessarily has sign �� . But then, the tiles which make up T� are all

type a��a�� and never type a�a� .

The point e0 in Figure 39(d) is defined to be the point where the deformed clasp arc

is tangent to a fiber of H. Figures 39(d) !39(e) ! 39(f) !39(g) show how the

argument can be iterated. If there are k tiles on TC , then after k iterations—finger

move 1 followed by finger move 2 followed by the second change in foliation, or as
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we shall call it, the FFF move, we will have created a tab neighborhood on PA for


� . The subdivision of the tabs described in condition (iv) is achieved automatically

via the iteration of the FFF sequence. Since we have not moved 
C outside of TC

and since after the final iteration of our second change in foliation 
C will again be

transverse to the foliation, we will have created a tab neighborhood pair .TC; T�/ for


 as its associated pair .
C; 
�/.

We refer the reader back to the discussion in Section 4.4, where we introduced the two

finger moves, to verify that the parity information of condition (ii) is satisfied. The

proof of Lemma 4.5.1 is complete.

We are ready to complete the proof of Proposition 4.5.1 By repeating the procedure of

Lemma 4.5.1 we can replicate another TC neighborhood inside the TC neighborhoods

of Figure 38. This places 
C inside a normal neighborhood NC . Since NC contains a

tab neighborhood TC which belongs to a tab neighborhood pair, we can interchange

the roles of 
C and 
� to produce a corresponding normal neighborhood for 
� . The

main point is that the application of our FFF procedure does not move 
C outside

the tab neighborhood that is nested inside TC . The key properties of the normal

neighborhoods follow.
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Figure 41: Positioning the clasp arc 
� into a finite number of leaves (singu-

lar and/or non-singular)

We now claim that our procedure for creating .NC; N�/ also creates the conditions

necessary for pushing the associated clasp intersection arc into a union of leaves. To
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see this let us review our construction of the normal neighborhood pair. See Figure 38.

Recall the notation: eCe0; e0e00; : : : ; e0:::0e� � 
� � T� is a subdivision of the clasp

arc into k subarcs such that each subarc crosses one singular leaf. Observe that each

of the subarcs eCe0; e0e00; : : : ; e0:::0e� � 
� � T� has a neighborhood which has the

foliation of one of the tiles in Figure 31. So except for a neighborhood around each

e0; e00; : : : ; e0:::0 in 
� , we can push 
� into a finite number of leaves. The parity of each

of these singular leaves is the same as the parity of the pierce end-point of 
� . (See the

end of Section 2 for the definition of the sign). Figure 41(b) illustrates an example of a

clasp arc having a positive pierce end-point that has been partially pushed into singular

leaves. In the example which is illustrated the pierce point is positive, and since there

is a negative singularity on the ‘vertical’ chain of singular leaves the clasp arc is forced

to bend in the manner that is illustrated in sketch (b). Figure 41(c) illustrates that,

after a change in fibration which introduces singular leaves that have two singular

points (Figure 41(a)) it is possible to push our clasp arc into a finite union of leaves by

pushing the remaining arc neighborhoods of the points e0; e0; : : : ; e0:::0 into leaves of

the foliation. These two-singularity tiles arise naturally during the change of fibration

of Figure 20 in the following way: as we perform the change of fibration in Figure 20

we must pass through a tile having six sides and a two-singularity singular leaf. (This

is explained carefully in Birman–Finkelstein [4, Figure 2.2]). The two singular points

will always have common parity. In the example, after the change we can reposition

the clasp arc so that it only passes through positive singularities, as in sketch (c). Once

we allow the use of such tiles in the foliation of PA, the final assertion in the proof of

Proposition 4.5.1 follows.

Remark 4.5.1 When we push the clasp arcs into a union of leaves, we lose some of

the symmetry of normal neighborhoods. In this regard we note the following. The

symmetry will be needed in one place: for the construction of ‘thin annuli’ in Section

5.3.1. The building blocks for those annuli are the regions which are illustrated in

Figure 43. To construct those regions, all we need is a normal neighborhood of that part

of a positive clasp arc 
 i
C which begins on XC , follows an aC arc and along 
C to a

little bit after it crosses the first singular leaf, together with the corresponding segment

on 
 i
� . In such a subset of a normal neighborhood, the required symmetry will always

be present, even when it does not extend to a more global symmetry.

5 Pushing across CA

The machinery has been set up. In this section we learn how to use the foliation of CA

and PA to push XC across the clasp annuli CA to X� . That is, we show how we use
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the foliation to look inside the black box of Markov towers. Here is an overview of the

work in this section:

In Section 5.1 we learn how to produce the sequences (2) and (3) of Theorem 2. Those

sequences use the simplest moves of the MTWS, exchange moves and destabilization,

to simplify the foliation outside the normal neighborhoods of the clasp arcs, to find the

modified braids X 0
� and X 0

C . We alert the reader to Remark 5.1.1, where the connection

between sequences (1) and (2) of the MTWS and the ‘winding’ phenomenon that was

illustrated in Figure 6 is explained.

In Section 5.2 we introduce a new basic move, the ‘microflype’, which generalizes

the example of a microflype which we gave earlier in Section 2.3 and Figure 14. In

particular, we identify microflype ‘regions’ in the foliated annulus PA. In Section 5.3

we construct more complicated regions which we call ‘thin annuli’ and learn how to

use sequences of microflypes, stabilizations and destabilizations, which can then be

amalgamated into admissible flypes, to push XC across the thin annuli. At the same

time we show how to construct a template that represents the push across a thin annulus.

In Section 5.4 we generalize this construction, setting up one of the main tools that

will be used in the proof of the MTWS.

In Section 5.5 we describe the foliation that CA must have so that the Markov tower

corresponds to a G–flype, and work out the foliation of CA and PA that gave us the

G–flype template of Figure 9. In Section 5.6 we describe the foliation CA and PA

must have so that the Markov tower corresponds to a G–exchange move, working out in

detail the explicit foliation that yielded the G–exchange template of Figure 10. Lastly,

in Section 5.7 we discuss the isotopy associated with cyclic templates, and in particular

the example that we gave earlier in Figure 8.

5.1 The complexity function c.XC; X�; CA/

By Proposition 4.5.1 we may assume that each clasp arc pair is contained in a normal

neighborhood pair, and can be pushed into the union of leaves. Assume from now on

that has been done. Define the complexity c.XC; X�; CA/ to be the lexicographically

ordered pair .c1; c2/, where c1 is the number of singular points on the clasp arcs and

c2 is the number of singular points that are outside normal neighborhoods. Note that

if the clasp arcs are transverse to the fibers of H, then c1 can be interpreted as the

number of singular leaves crossed by 
C and 
� .

The reader may wonder why we do not include a count of vertices in the foliation?

The reason is simple: the vertex count is determined by the singularity count, using the

Euler characteristic of the annulus. See the argument at the beginning of the proof of

Lemma 6.3.1.
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The reader may also wonder why our complexity function ignores all the singularities

that are in normal neighborhoods but not on the clasp arcs. The reason is again simple:

when we constructed normal neighborhoods we created lots of inessential b–arcs. If

we omit them, we will be forced to give up normal neighborhoods, and we don’t want

to do that now.

Finally, the reader may wonder why we are not including braid index in our complexity

function. That is a more subtle matter. At this stage in the work it suffices to say that

we will introduce it later (see the augmented complexity function of Section 6.)

In the manuscript [9] the authors proved that when X is the �–component unlink,

exchange moves and destabilization suffice to reduce any closed braid representative

XC to the identity braid in the �–strand braid group. In this section we see how far we

can go in the simplification of our clasp annulus CA with the help of exchange moves

and destabilization. The moves that we use here will create the two subsequences (1)

and (2) of the MTWS. The reason that we had to separate the sequences (1) and (2) in

the statement of the MTWS from the sequence (3) is that it may happen that the given

braid X� does not have minimum complexity with respect to exchange moves, for

example it may be wound up in the manner illustrated in Figure 5. If so, then if we

simply tried to modify the given XC to X� , it might not be possible to do it without

increasing complexity at some point.

We shall regard changes in foliation and braid isotopy to be ‘trivial moves’. On the other

hand, in general exchange moves modify the braid isotopy class and destabilizations

change the braid index too. Our goal will be to minimize the complexity, using all four

moves: braid isotopy, changes in foliation, exchange moves and destabilizations.

One expects the singular leaves to contain key information about a foliation. In the

case of braid foliations more is true, because the singular leaves divide nicely into

subsets which are characterized by the signs of their vertices and singularities. Let G�;ı ,

where � and ı are ˙, be the set of all singular leaves which pass through only vertices

of sign � and singularities of sign ı . We consider the four subgraphs of the graph

of the singular leaves GC;C; G�;�; GC;�; G�;C . By definitions G�;ı \G��;�ı D∅.

See Figure 42, which illustrates how the 4 graphs intersect a bb–tile. Similar graphs

appeared in Bennequin [2], in connection with his studies of the characteristic foliation

of surfaces bounded by knots.

The intersection of a clasp arc 
� with a subdisc � of PA is good if .�\ 
�/ �

.�\G�;ı/ for some .�; ı/ 2 f.C;C/; .C;�/; .�;C/; .�;�/g and if no component of

�\ 
� includes the puncture endpoint of 
� . A subdisc � of PA is good if every

component of intersection of � with a clasp arc 
� is good. A subdisc that is disjoint
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Figure 42: The graph G�;ı includes all singular leaves through vertices of

sign � and singularities of sign ı . The thick edges in this example illustrate

the passage of GC;C; G�;�; GC;�; G�;C through a bb–tile.

from the clasp arcs is, of course, good. A disc that contains a puncture endpoint of a

clasp arc is not good.

A vertex is said to be near X� , where � D˙, if it is the endpoint of a leaf of type a�

in the foliation of PA. A vertex v is said to be an interior vertex it is not near either

XC or X� . In both cases we define link.v/ to be the closure of the union of all b–arcs

and a� –arcs which meet v .

To begin our work, we study ab and bb–exchange moves and changes in foliation in

the presence of clasp arcs, under the hypothesis that the moves are supported in good

discs:

The .ab/? exchange move Let v be a vertex of valence 2 in the foliation of PA

which is near X� and is the endpoint of a b–arc. Assume that �D link.v/ is a good

disc which has non-empty intersection with a clasp arc 
� . Consult Figure 23(a), which

illustrates the case when v is a positive vertex. The disc � is the closed disc bounded

by the singular leaves wqp and wst in Figure 23(a) and by the subarc pt of XC . If

� D� all vertex signs are reversed and the roles of XC and X� are interchanged, but

the underlying phenomena are unchanged. We are interested in whether we can push

XC across � in the presence of the clasp arc 
 ?

Notice that all 4 graphs GC;C; GC;�; G�;C and G�;� intersect � in Figure 23(a).

By our definition of a good disc, 
 \� is a subset of some G�;ı , however the case

� DC is impossible. The reason is: GC;˙ ends at v in the interior of � (because the

two singularities in � have opposite signs), also by hypothesis � is a good disc, so

that 
 cannot have its puncture endpoint in �. Therefore .
� \�/�G�;C or G�;� .

Both cases can occur, and the two cases are essentially the same. In both cases � is

embedded, because 
� lies in a normal neighborhood and so its partner 
�� cannot
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intersect �. In fact normal neighborhoods tell us more: 
� is the only clasp arc that

can intersect �. So 
 begins at, say, p 2 XC and passes through q to w , always

in @�. Just as in the embedded case, we can push XC across a neighborhood of �,

removing two vertices and two singularities from the foliation. This is the ‘light bulb’

move of Figure 23(b). It shortens 
� and so also shortens its partner 
�� , reducing

the entry c1 in c.XC; X�; CA/. The second sheet of PA is unchanged by the move,

except for the fact that its clasp arc is shortened by pulling in its puncture endpoint.

The link XC remains embedded throughout the move. The argument is identical if

XC is replaced by X� . This is the move that we call the .ab/? exchange move. It is

exactly the same as the ab–exchange move, but in the presence of clasp arcs and with

the assumption of good discs.

The .bb/? exchange move Let v be an interior vertex of valence 2 in the foliation of

PA. Assume that �D link.v/ is a good disc which has non-empty intersection with a

clasp arc 
 . Consult Figure 25, which illustrates the case when v is a negative vertex.

The disc � is the closed disc bounded by the singular leaves w1sw2 and w1qw2 . All

vertex signs could be reversed, it will not matter, so we assume they are as illustrated.

We are interested in whether we can do the bb–exchange move and collapse of the

pocket, as illustrated in the passage from the left to right sketches in Figure 25, in the

presence of the clasp arc 
 , when � is a good disc?

As in the case of the .ab/? move, the intersection of our clasp arc with � is assumed

to be a subset of the intersection of one of the 4 graphs with �. Since the puncture

point of 
 cannot be in � the only possibilities are the graphs GC;C or GC;� , because

the other two possibilities lead to a puncture point in the interior of �. Assume

without loss of generality that 
 � GC;C , for example 
 might pass through the

points pw1sw2p0 in the left sketch in Figure 25. Using the hypothesis that 
 is in a

normal neighborhood, we can (by Proposition 4.5.1) push 
 to a new position which

we call pw0
1
s0w0

2
p0 where it is transverse to the leaves of the foliation. But then the

bb–exchange move goes through as before, as described in full detail in sketches

2.15–2.19 and the accompanying text of Birman–Finkelstein [4]. Since that argument

is long and technical, and since a complete reference is available, we do not repeat it

here. After the move the ‘pocket may be collapsed’, as illustrated in the passage from

the left to the middle sketch in Figure 24 of this paper, and also in the passage from the

left to the right sketch in Figure 25. The clasp arc can then be pushed back into a union

of leaves, ie to the position pw2p0 in the right sketch. The complexity c.XC; X�; CA/

has been reduced because the singularity s is no longer on 
 . This is the move that we

call the .bb/? exchange move. It is exactly the same as the bb–exchange move, but in

the presence of clasp arcs and with the assumption of good discs.
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The change of foliation of Lemma 3.2.1 in the presence of clasp arcs As in the

case of the ab and bb–exchange moves, we will refer to the manuscript by Birman

and Finkelstein [4] for all details, since the required changes in foliation were justified

very carefully there, in the proof of Theorem 2.1 of that paper, under the hypothesis

that the surface in question was embedded. But the immersed case is really no different

from the embedded case because the changes in foliation that we need here can always

be thought of as being induced by changes in the choice of disc fibers for the fibration

H of 3–space minus the braid axis, and not by any change in the position of CA in

3–space. See Figure 20, which illustrates the case when we are interested in changing

the foliation on two bb–tiles which meet in a common b–arc. The sketches show the

changes when there are no clasp arcs. The fact that the clasp arcs have been positioned

in normal neighborhoods shows us that we can change the foliation in one of the sheets

without changing the other sheet. Assume that the union of our two bb–tiles is a good

disc. There are three cases:

(i) Both s1 and s2 are contained in a single normal neighborhood as consecutive

singularities, on a clasp arc. After the change of foliation, the path of the clasp

arc contains one fewer singularity, so c.XC; X�; CA/ is reduced. In particular,

if �DC and we have a symmetric clasp arc then the resulting change of foliation

is the one that is labeled (ii) in Figure 20. In this case the clasp arc contains

the two right-most positive vertices and the right-most singular point. If � D�,

then the resulting change of foliation is the one that is labeled (i) in Figure 20,

and the clasp arc contains the two left-most negative vertices and the left-most

singular point.

(ii) One of the two singularities, say s1 , is contained in a normal neighborhood of

a clasp arc, but not on the clasp arc. After the change in foliation, the path of

the clasp arc is unchanged. For example, if � DC and the clasp arc contains s1

(resp. s2 ) then we have a change of foliation that takes us to (i) (resp. (ii)).

(iii) The two singularities are contained in disjoint normal neighborhoods of different

clasp arcs. The path of the two clasp arcs is unchanged by the change in foliation.

For example, if �DC and the bottom singularity was contained in the clasp arc

for the beginning tilings in the sequences in Figure 20 then the resulting change

of foliation is (ii) in all three cases.

Armed with this knowledge, we are now able to adapt [4, Theorem 3.1] to our clasp

annulus CA and its foliated preimage PA. We will use the symbol N� for a normal

neighborhood of the clasp arc 
� and the symbol N for the union of all normal

neighborhoods of all clasp arcs.
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Proposition 5.1.1 Each of the following holds for all four graphs GC;C; G�;�; G�;C

and GC;� :

(1) G�;ı \G��;�ı D∅.

(2) Every singular point and every vertex in the foliation of PA is in GC;C or G�;�

(and also in GC;� or G�;C ).

(3) G�;ı has no interior isolated vertex v .

(4) G�;ı n .G�;ı \N / has no interior endpoint vertex v .

Assume that all clasp arcs are positioned in normal neighborhoods, and that initially

they have been pushed into unions of leaves of the foliation. Then after some number of

exchange moves (combined with changes in foliation and isotopies in the complement

of the axis) the following holds for all four graphs at once:

(5) G�;ı contains no closed loop l which bounds a good disk �� PA.

After some number of exchange moves and destabilizations, the following also holds

for all four graphs at once:

(6) There is no closed loop l which is the union of an edgepath E1 �G�;C and an

edgepath E2 �G�;� which bounds a good disc �� PA nN .

(7) Let E1; E2; E3 be connected arcs, with E1 �G�;�; E2 �G�;��; E3 �X�: Then

there is no closed loop l D E1 t E2 t E3 or E2 t E3 or E1 t E3 which bounds a

good disc � on PA.

Proof The proof is almost identical with the proof of [4, Theorem 3.1]. Outside

normal neighborhoods of the clasp arcs it is identical. Inside normal neighborhoods the

key concepts which makes it possible to carry over arguments used in [4] are good discs.

In the presence of clasp arcs we simply use the exchange moves .ab/? and .bb/?

instead of ab and bb and the complexity function c.XC:X�; CA/. An application of

.ab/? can shorten the length of a clasp arc 
� , reducing the number of singular leaves

it intersects. It will necessarily shorten the length of 
�� and decrease the number of

tiles of PA that are in N�� . Thus, there may be some inessential b–arcs that are now

away from normal neighborhoods, and they can be eliminated.

Also, an application of .bb/? can shorten the length of a clasp arc 
� , reducing the

number of singular leaves it intersects. But, it does not immediately reduce the number

of singular leaves 
�� intersects. Moreover, neither 
� nor 
�� may be in normal

neighborhoods anymore. To re-establish the symmetry between the the lengths of the

two clasp arcs in PA we take a tab neighborhood around 
� (since a tab neighborhood

will have the shortest clasp length) and re-apply the normal neighborhood construction

of Proposition 4.5.1.
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Our first corollary produces the modified braids X 0
C and X 0

� in the statement of the

MTWS. In the course of changing X˙ to X 0
˙

, it also produces the sequences (1) and

(2) of the MTWS, which modify X˙!X 0
˙

:

Corollary 5.1.1 Assume that all changes are made in the complement of normal

neighborhoods of the clasp arcs. Then with the help of:

� complexity-reducing exchange moves on XC and X� ,

� complexity-reducing destabilizations of XC ,

� changes in foliation (which modify CA but do not change XC or X� ),

the triplet .XC; X�; CA/ may be changed to a new triplet .X 0
C; X 0

�; CA0/ which has

minimum complexity, and for which the foliation of PA has the following properties:

(1) There are no a�s or a�a� singularities in PA for � DC or �.

(2) If ˛ is a path in G�;ı which begins and ends on X� , and � is the disc on PA

which is split off by ˛ and a subarc of X� , then int.�/ contains a puncture

end-point of a 
�� clasp arc.

(3) If ˛ � G�;ı is a loop which bounds a disc � in PA, then int.�/ contains at

least two puncture end-points of clasp arcs, one from some 
 i
� and the other from


 i
�� .

(4) If v 2 G�;ı is an endpoint vertex, then either li nk.v/ contains a puncture

endpoint of a clasp arc or v lies in a normal neighborhood of a clasp arc.

Proof In the case of an embedded surface, details on how to pass from the analogue of

Proposition 5.1.1 to that of the Corollary are given in the proof of [4, Lemma 3.8]. We

have modified the statement of [4, Lemma 3.8], by saying that if a disc � exists with

the stated undesirable properties, then � is not a good disk. In the case of assertion (3)

of the Corollary we need the puncture endpoints of both 
 i
C and 
 i

� because if both

are not in � then � will be embedded, but no such embedded disc exists.

Remark 5.1.1 Armed with Corollary 5.1.1, the reader is advised to go back and look

at Figure 6 again. It was intuitively clear, when we first presented this sketch, that the

unwinding process which is illustrated in the passage from left to right ought to be

‘complexity-reducing’. Now that we have finally defined an appropriate complexity

function we can understand exactly what that means.

We need the modifications of Corollary 5.1.1 for the following reason: If it should

happen that the given braid X� is wound up some number of times as on the left, and if
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we were to modify XC but leave X� unaltered, then we might be able to use exchange

moves and destabilizations to modify XC to a minimum braid index representative,

using only complexity-decreasing moves, but if we did not modify X� too then we

would have to increase complexity at the end. That is the reason that we need the

initial complexity-reducing modifications of both XC and X� . That is the content of

Corollary 5.1.1.

An annulus component of CA is standard if every component E�G�;ı on the annulus

satisfies the following conditions:

(1) E is homeomorphic to either S1 or Œ0; 1�, ie either a circle or a line.

(2) If E is a circle then it is a core circle of the annulus component.

(3) If E is a line with @E D p[p0 then p 2X� and p0 is near X�� .

An annulus component of CA is trivially foliated if it is foliated entirely by s–arcs.

Examples of a standard annulus, and of a trivially foliated annulus, are given in Figure

43.

Our second Corollary relates to modifications which may be needed after all the clasp

arcs have been shortened, that is c1 D 0.

Corollary 5.1.2 Let .X�; XC; CA/ be of minimal complexity with c1 D 0. Then

each component of PA is either an annulus which is foliated entirely with s–arcs or a

standard annulus.

Proof The statement follows directly from Corollary 5.1.1, when we add the assump-

tion that c1 D 0.

Remark 5.1.2 The problem of pushing XC across such a standard annulus will be

treated in Section 5.7.

Remark 5.1.3 We know exactly how the foliation of PA looks inside a normal

neighborhood of a clasp arc. We now ask what can happen outside the union of normal

neighborhoods, when the puncture points are in the interior of PA, as in the left

and right sketches in Figure 37. An example is illustrated in Figure 44. The shaded

regions are unions of overlapping normal neighborhoods of clasp arcs. The clasp arcs

in question are negative. We show only one of them, to avoid clutter and enable us to

focus on the features which are of interest now. It is to be compared with the right

sketch in Figure 37. The boundaries of the region we are studying are indicated with

dotted black and grey arcs transverse to the foliation because in general they are in the

interior of PA (although in special cases there is no reason why they could not be XC

and X� . This sketch will be used in Section 6 in the proof of the finiteness of T .m/.}
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Figure 43: Examples of a standard annulus, a trivially foliated annulus, and

regions in a thin annulus. Thin annuli will be defined in Section 5.3.
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Figure 44: The foliation of PA , near the puncture point of a clasp arc 
�

but outside its normal neighborhood. It is assumed here that the puncture

point of 
� is in the interior of PA .

5.2 Pushing across a microflype region

Having simplified the foliation of CA as much as possible with the use of exchange

moves and destabilizations, we begin to investigate new features of the foliation of CA.

A clasp arc 
 in CA has two preimages in PA, namely 
C and 
� . Recall that


�; � D ˙, begins on X� and ends at an interior point of PA. Recall also that 
�

was defined to be short if it does not intersect any singular leaves. We now define 
�

to be long if the puncture endpoint of 
� is on an a�� –arc. We say that 
 is doubly

long if both 
C and 
� are long. An example of a doubly long clasp arc was given in

Figure 14. On the other hand, in Figure 56 there are 4 clasp arcs, and among the eight

preimages 
 1
�; 
 2

�; 
 3
C and 
 4

C are long, but their partners 
 1
C; 
 2

C; 
 3
� and 
 4

� are not,
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so that there are no doubly long clasp arcs. (Remark: the foliated annulus in Figure 56

gave rise to the 6–braid G–flype template which we described in the introduction to

this paper, in Figure 9).

A clasp arc 
� in PA is intermediate if it is neither short nor long. This implies that

its puncture endpoint is on a b–arc. Look ahead to Figure 57 for examples. Eight

clasp arcs are depicted there, and the 16 preimages are all intermediate. (Remark: the

foliated annulus Figure 57 gave rise to the 6–braid G–exchange template which we

described in the introduction to this paper, in Figure 10). The length of the clasp arc


C is the number of singular leaves which 
C crosses. We will not be concerned with

the length of 
� . Note that if long clasp arcs occur, then c1 > 0.

In this subsection we consider the case when there is exactly one clasp arc 
 and it

is doubly long, so that c.XC; X�; CA/D .1; 0/. Since c2 D 0, we may assume that

outside normal neighborhoods of 
C and 
� , the foliation of PA consists entirely

of bands which are foliated by s–arcs. But then, since there are no other clasp arcs

in PA, we may just as well simplify the normal neighborhoods by the deletion of

inessential b–arcs. Thus PA is a union of an aCs–tile and an a�s–tile, joined up by

bands of s–arcs. This very simple foliated annulus was introduced long ago, as the ‘key

example’ at the end of Section 2, in Figure 14. Understanding microflypes will allow

us, later, to consider very much more complicated annuli PA. Recall that microflypes

are braid-index preserving moves which replace very simple Markov towers, as can be

seen from Figure 5, so that they might be expected to be basic to our work.

Of course, when we first encountered the microflype region in PA in Section 2, as an

example of the basic construction, we did not have available to us the machinery of

braid foliations. By our work in Section 4.5 we know that the signs of the singularities

in the two tiles are opposite.

The leaves in the braid foliation of PA are level sets for the embedding of the two

tiles which make up PA. Referring back to Figure 14, it should now be completely

clear that the bottom row of sketches represents the immersion in 3–space of the two

foliated tiles in the top row of sketches, and that the motion of XC across the two

illustrated discs is indeed realized by a flype which takes XC to a new position which

is separated from X� by a band of s–arcs. The associated block strand diagram is

clearly that for a flype, which in the case which is illustrated is a negative flype. The

braid inside the braid block is a single full twist of two strands. The sign of the full

twist that is illustrated is negative.

Summarizing: A microflype region in PA is a subset of PA which is a union of an

aCs–tile and an a�s–tile, intersected by paired clasp arcs 
C and 
� , each of which

intersects a single singular leaf. A microflype on a block-strand diagram is a flype in
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which the braid in the braid block R consists of exactly one full twist of either sign

on two strands. Such a braid block R will be called a microblock. All strands have

weight 1. The sign of a microflype is the pair .˛; ˇ/ where ˛ is sign of the half-twist

which is outside the braid block and ˇ is the sign of the full twist which is inside the

braid block. In Section 5.3, below, we will show that microflypes with their associated

microblocks are the building blocks of the most general flypes, with arbitrary braids in

the braid block and arbitrary weights on the strands.

By the construction in Proposition 4.5.1, it is possible to push the clasp arcs into the

associated singular leaves, giving a more symmetric embedding in 3–space.

5.3 Pushing across thin annuli

While we have been able, up to now, to make the tacit assumption that we are working

with knots, we now return to the general case of links.

Our task in this section is to learn how to use flypes to shorten the length of long (but

not necessarily doubly long) clasp arcs in the foliation of PA, thereby reducing the

integer c1 in the complexity pair .c1; c2/. We have already seen that in the situation

where there is exactly one clasp arc, we may use a microflype to push XC across the

clasp annulus CA. The situation which we face now has two factors which make it

significantly more complicated. The first is that we must allow for the possibility that

there are k � 1 clasp arcs. The second is that if XC has � components, then CA will

be the image of � annuli under an immersion, and we must allow for the possibility of

clasp intersections between distinct annuli.

5.3.1 Constructing the thin annuli Preparing for the shortening of long clasp arcs,

we will construct a family S of ‘thin annuli’ which is a subset of PA. Normal

neighborhoods will play a key role in the construction. We will prove:

Lemma 5.3.1 Assume that X has � components. Suppose that PA contains long

clasp arcs 
 i
C; 


j
C; i 6D j . Then there exists a family S of � annuli, each a subannulus

of PA, and each with a component of XC as one of its boundaries, such that every

annulus in S is either trivially foliated by s–arcs, or is a standard annulus, or has a

foliation satisfying the following (see Figure 43 for examples):

(i) Each non-trivially foliated annulus contains at least one long clasp arc. Moreover,

all of its clasp arcs are doubly long and of length 1, with respect to the induced

foliation of S .

(ii) After an isotopy of PA which leaves XC and the other components of @S fixed,

each b–arc in S may be assumed to have at least one of its endpoints on a clasp

arc.
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Proof The case when there is exactly one long clasp arc was just discussed in Section

5.2, so we assume that there are at least two long clasp arcs. Let 
 i
C be a long clasp

arc, so that 
 i
� begins on X� and ends near XC . Assume that 
 i

C and 
 i
� have been

pushed into a union of leaves in their normal neighborhoods. This is possible, by the

construction in Proposition 4.5.1. Let Ni
� be the normal neighborhood of 
 i

� . We

focus our attention on a rectangle which we call SNi
� . See sketches (1) and (2) in Figure

45. It is a subset of Ni
� , and it coincides with Ni

� when the clasp arc has length 2.

It has three edges which are in @Ni
� . We choose an arc which is transverse to the

foliation as its other ‘horizontal’ boundary.
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Figure 45: Sketches (1) and (2) illustrate the two possibilities for SNi
� .

Sketches (3) and (4) illustrate the two possibilities for SNi
C .

There are corresponding subrectangles SNi
C and we show the two possible arrangements

in sketches (3) and (4) of Figure 45. As in the case of SNi
� , the rectangle SNi

C has 3

boundary edges which are in @Ni
C . We choose its 4th boundary edge to be an arc which

is transverse to the foliation, so that the rectangle has 4 vertices and 4 singularities.

In the special case when 
 i
C has length 2 the puncture endpoint of the arc 
 i

C will

be an interior point of SNi
C , but if 
 i

C has length � 3 then 
 i
C \
SNi

C will have both

of its endpoints on the boundary. We correct this by modifying 
 i
C\
SNi

C to a subarc

of 
 i
C which has the same image in CA as the intersection of 
 i

� with its induced

normal neighborhood. This will give us a shortened induced arc which (by an abuse

of notation) we continue to refer to as 
C . It begins on XC and ends at a point in

the interior of SNi
C . By construction, 
 i

� and the new 
 i
C have the same image in

CA, and determine the clasp intersection between the rectangles SNi
� and SNi

C which is

induced by the clasp intersection in CA corresponding to 
 i . The four cases which

are illustrated in Figure 45 will be referred to as types (1),(2),(3),(4).

Let NS be the union of all of the SNi
� and SNi

C . Note that, while SNi
˙
\ .
 j

� [ 

j
C/D∅

for all j 6D i , there is no reason why SNi
˙
\SN

j
˙

should be empty. This leads us to the

following preliminary definition of a connected collection of normal neighborhoods:

Choose SN;SN0 2 NS . We say that SN and SN0 are connected, and write SN !SN0 , if
SN\SN0 6D ∅ in PA. Two examples are given in Figure 46. In the top row, SN has
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Figure 46: Adjacent pairs of foliated connected normal neighborhoods.

Sketches a,b,c,d in the bottom row show all possibilities, after the elimination

of inessential b–arcs.

type 1 and SN0 has type 2 and SN \SN0 D @SN \ @SN0 . In the middle row SN has type

1, SN0 has type 3 and they intersect along two singular leaves and the disc between

them. Observe that this is the maximal possible intersection, because the normal

neighborhood of a clasp arc never intersects another clasp arc. It follows that the

possible sequences in a connected set are 12, 13, 14, 23, 24, 34, 21, 31, 41, 32,

42, 43. A collection of normal neighborhoods fSN1; : : : ;SNpg � NS is connected if

there is a connecting path between any two neighborhoods in the collection, ie if
SN0;SN00 2 fSN1; : : :SNpg then there exists a subcollection fSNi1 ; : : : ;SNiqg� fSN1; : : : ;SNpg

such that SN0 !SNi1  !SNi2  ! � � �  !SNiq  !SN00: A connected component of

NS is called a region and is denoted by the symbol R.

We now observe that each b–arc in each R is in a normal neighborhood of some clasp

arc. We distinguish between two types of b–arcs: those whose endpoints are vertices

which do not meet a clasp arc, and those which have at least one vertex endpoint which

is on a clasp arc. Let’s look first at the former. Examples can be seen in the darkly

shaded subrectangles in the left sketches in rows 1 and 2 of Figure 46. Recall that

our normal neighborhoods were created by the repeated use of finger moves, which

necessarily created some inessential b–arcs. But all of the b–arcs which do not intersect

clasp arcs are inessential, and may be deleted by an isotopy of PA which is supported

on a disc in the interior of the connected region, as in the passage from the left to the
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right in Figure 46. Therefore we may assume that R contains no such b–arcs. Notice

that we have chosen our definition of complexity so that this modification does not

alter the complexity. With the modification, it is easy to see that there are precisely 4

possible sequences of two modified normal neighborhoods, as illustrated in the bottom

row in Figure 46, sketches (a),(b),(c),(d).

A region R is either an annulus or a rectangle, as illustrated in Figure 43. If it is an

annulus, then it satisfies properties (i)–(ii) of Lemma 5.3.1. Assume it’s a rectangle.

The lower horizontal boundary of R is a subarc of a component of XC , and so the

connected components R1; : : : ;Rq associated to any given component of XC have a

natural cyclic order on XC . We would like to use this natural order to join them by

bands of s–arcs to obtain annuli. However the vertical edges of the rectangles are not

s–arcs. The following observation saves the day: the grey dotted horizontal boundary

of each rectangle was chosen in a rather arbitrary way as an arc which is transverse to

the foliation and in the interior of PA, and if we now modify our choices by replacing

the vertical edges of the rectangles in (a),(b),(c),(d) by the sketches in (e),(f),(g),(h) of

Figure 47 we will be in business.
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Figure 47: Possible arrangements of clasp arcs in adjacent intersecting normal

neighborhoods in PA , near the right and left boundaries of a connected

collection of normal neighborhoods

Sketches (e) and (f) are obtained from sketch (a) of Figure 47 by modifying the grey

boundary on the left and right respectively. Note that the modified grey boundary is

everywhere transverse to the leaves of the foliation. On the other hand, if we attempt

to do the same thing in the situation of (b), choosing the grey boundary to be close

to the left (resp. right) clasp arc, a point of tangency with leaves of the foliation will
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be introduced, so it is necessary to include the singular leaf which is on the left (resp.

right) in the modified connected region, as illustrated in (g) (resp. (h)). We leave it to

the reader to check that (e) and (h) are modifications of (c), and that (f) and (g) are

modifications of (d). In (e)–(h), which are based directly upon the sketches in Figure

45, all have their rightmost singular leaf in G�;ı . But there is a second possibility:

we are given the foliation near XC , and we do not know much about it outside the

normal neighborhoods. In fact there are 4 other possible patterns for the right and

left boundaries, also restricted by the fact that XC must be transverse to fibers of H.

They are illustrated in sketches (e 0 ),(f 0 ),(g 0 ),(h 0 ) of Figure 47, and were obtained from

(e),(f),(g),(h) by interchanging the roles of grey and black.

Let’s examine the possibilities for the regions. Figure 43 shows the foliated annulus and

the four possible foliated disc regions in S , up to the number of pairs of components

of G�;ı and GC;�ı . In each, we give examples of how the clasp arcs might be placed.

To construct S from the various non-trivially foliated regions we first join disc regions

which are consecutive as one travels along a component of XC with bands of s–arcs

which run between XC and X� . We may also need some number of standard annuli

which have long clasp arcs. (See Figure 43 again.) Finally we may need some number

of annuli which are foliated entirely by s–arcs. This completes the proof of Lemma

5.3.1.

Let S be an annular subset of PA which contains XC (or a component of XC in the

case when X is a link) as one of its boundary components. We consider the foliation

of S which is induced by the foliation on PA. A (possibly empty) family of s–arcs

SD fs1; : : : ; sl W si � Sg is a complete collection of s–arcs in S if (i) no two s–arcs in

the collection split off a sub-band of S that is foliated entirely by s–arcs, and (ii) for

any other s–arc s � PA there exists an si 2 S such that s[ si splits off a sub-band

of S that is foliated entirely by s–arcs. It is immediate that cutting S open along a

complete collection S of s–arcs decomposes S into a disjoint union of thin regions

and bands of s–arcs. This construction will be used in what follows.

The grey boundary of the thin annuli will in general be in the interior of PA, although

in special cases it will coincide with X� . Observe that the difference in braid index

b.XC/�b.X�/ across the union of the annuli which make up S is the total number of

positive vertices in S minus the total number of negative vertices in S . From Figure 43

we see that this difference is always either 0; 1 or �1 in a single non-trivially foliated

region. Thus the motion of XC across S to X� increases braid index if and only if

there are more regions of type �1 than of type C1 in S . The regions of type 0 do

not affect the count. We call our regions types 1d ;�1d ; 0d;1 and 0d;2 , the subscript

indicating that the region is a disc. (The two cases of type 0d are distinguished by the
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placement of their clasp arcs.) There is also the special case of the standard annulus.

The standard annulus first appeared in Corollary 5.1.2 as an embedded annulus. We

are now allowing for the occurrence of clasp arcs.

The previous construction of a thin annular subset S in PA has XC as one of its

boundary components. But, we can also use the same construction to produce a thin

annular subset which has X� as one of its boundary components. Let SC (resp.

S� ) be the thin annular subset of PA having XC (resp. X� ) as one of its boundary

components. Notice that S� , like SC , will have type 0d ; 1d ;�1d regions that are

connected by s–bands. However, the dotted grey boundary will be replaced by a solid

grey boundary since it will now be X� ; and the solid black boundary will be replace

by a dotted black boundary since it may or may not be XC .

Referring to the regions in Figure 43 we consider the cyclic ordering of the singularities

in H. We say a type 0d;1 or 1d (resp. 0d;2 or �1d ) region is a fan if all of its

singularities of parity �ı (resp. ı ) occur in sequence in the fibration, followed by all

of its singularities of parity ı (resp. �ı ).

We now have a proposition that allows us to use b.XC/ and b.X�/ to limit the

occurrences of these regions in SC and S� . It will play a key role, later, when we

prove the finiteness of the set of templates. (Look ahead to part (6) of Lemma 6.3.2 in

Section 6.)

Let �W PA! CA be the natural immersion.

Proposition 5.3.1 The annular regions SC;S��PA contribute to b.XC/ and b.X�/

in the following ways.

(1) The number of type 1d regions in SC is bounded by b.XC/.

(1 0 ) The number of type �1d regions in S� is bounded by b.X�/.

(2) If R1 � SC is a type 0d;1 region and R2 � SC is a type 0d;2 region with

�.R1/\ �.R2/ 6D∅, then the pair .R1;R2/ contributes at least C1 to b.XC/.

(2 0 ) If R1 � S� is a type 0d;1 region and R2 � S� is a type 0d;2 region with

�.R1/\ �.R2/ 6D∅, then the pair .R1;R2/ contributes at least C1 to b.X�/.

(3) Suppose R1;R2 � SC are regions of type 0d:1 and 0d;2 and that R3 � SC is

a region of any type that is a fan. Assume that

(a) �.R1/\ �.R3/ 6D∅,

(b) �.R2/\ �.R3/ 6D∅,

(c) R1 and R2 are adjacent to a common s–band Rs .

Then the triple .R1;R2;Rs/ contributes at least C1 to b.XC/.
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(3 0 ) Suppose R1;R2 � S� are regions of type 0d:1 and 0d;2 and that R3 � S� is a

region of any type that is a fan. Assume that

(a) �.R1/\ �.R3/ 6D∅,

(b) �.R2/\ �.R3/ 6D∅,

(c) R1 and R2 are adjacent to a common s–band Rs .

Then the triple .R1;R2;Rs/ contributes at least C1 to b.X�/.

Proof of (1) Consider a type 1d region. Its boundary is a union of two s–arcs, labeled

s and s0 , and subarcs xC; x� of XC; X� . Let H� ; H� 0 be the fibers which contain

s; s0 . Then xC (resp. x� ) begins on H� , travels around the braid axis some number

of times, staying transverse to fibers, and ends at H� 0 . Since there are more positive

than negative vertices in a type 1d region, it follows that xC makes at least one more

circuit about the braid axis than x� . In particular, xC makes at least one full circuit

about A and so contributes at least 1 to b.XC/.

Proof of (2) Since �.R1/ and �.R2/ intersect along a common clasp arc, we can cut

open their preimages in the thin annulus subset S of PA along the two components

of the clasp arc. Paste them together in the unique new way to obtain two new regions

which resemble type 1d and �1d regions in S . Observe that, while the new regions

look like they are type ˙1d , their images in CA will have the property: the X�

boundary, � D ˙, say x� will be a union of two arcs, x�;1 [ x�;2 , where the final

endpoint of x�;1 and the initial endpoint of x�;2 are on the same fiber, but are at different

points of that fiber. We call this a ‘surgery’. After the surgery, we may use the same

argument that we used to prove (1), to show that the angular support of xC;1[xC;2 is

2� greater than the angular support of x�;1[x�;2 . Therefore xC;1[xC;2 contributes

at least 1 to b.XC/.

Proof of (3) We have the following list of possibilities:

Case (i) R1 and R2 have different types, say R1 is type 0d;1 and R2 is type 0d;2 .

(ia) As we traverse XC on R3 we encounter an aC –arc that is adjacent to a clasp

arc that R3 shares with R1 before we encounter an aC –arc that is adjacent to

a clasp arc that R3 shares with R2 .

We surger our three regions R1 , R2 and R3 , in PA, along the pre-images of

the clasp arcs in �.R1/\�.R3/ and �.R2/\�.R3/. Since the angular support

for Rs is either contained within the angular support of XC\R3 , or is outside

the angular support of XC\R3 , the angular length of XC\ .R1[Rs [R2/

must be greater than 2� . (Conceptually, R3 creates an ‘adequate amount of

spacing’ between R1 and R2 so that the triple .R1;R2;Rs/ contributes C1

to b.XC/.)
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(ib) As we traverse XC on R3 we encounter an aC –arc that is adjacent to a clasp

arc that R3 shares with R2 before we encounter an aC –arc that is adjacent to

a clasp arc that R3 shares with R1 .

We need to consider the positioning of the s–band, Rs , that runs from R1 to

R2 . If the angular length of Rs is greater than 2� then we are done. So assume

that the angular length of Rs is less than 2� . Next, we can assume that the

angular length of XC\R3 is also less than 2� .

Now, a convenient way of accounting for braid index is to line up the foliations of

R1 , R2 and R3 (which are still thought of as being in PA) so that corresponding

clasp arcs line up. (For examples the reader should jump ahead to Figures 48 and

50). Since our argument is concerned with the measurement of angular length

we need only focus on where we start and end this measurement. It is convenient

to use the endpoint of a clasp arc in R1 (or R2 ) as our starting point and the

endpoint a clasp arc in R2 (or, reversing the interplay, R1 ) as our ending point.

Thus, as a simplifying measure in drawing such a illustration we can focus in on

the portion of the foliation of R1 and R2 where these clasp arcs are placed, for

each such portion of the foliation has just two vertices, two singularities and a

single clasp arc. Consider the position of Rs in this superimposed picture. If Rs

is not next to R3 then we can again do a cut-and-paste to produce a topological

annulus that contributes C1 to the braid index of b.XC/. If Rs is next to the

foliation of R3 then it is easy to see that XC\ .R1[Rs[R2/ contributes C1

to b.XC/. In the superimposed image of R1[Rs [R2 in R3 it can be seen

that XC \ .R1 [Rs [R2/ bounds a type 1d region. Again, the assumption

that R3 is a fan is not needed. (In the right sketch of Figure 48(ii), the short

s–band that runs from dot g to dot c0 is an example of an s–band that would

be superimposed in the foliation of the right sketch in Figure 48(ii).

Case (ii) R1 and R2 are both type 0d;1 (or both type 0d;2 ). Suppose regions R1;R2

are of type 0d;1 and R3 is a region that is a fan. We now employ this procedure of

superimposing the foliations of R1 and R2 onto the foliation of R3 . We again

consider the positioning of Rs . As before we assume that the angular support of Rs

and XC \R3 is less than 2� . When we superimpose R1 [Rs [R2 onto R3 we

will see two copies of a type 0d;1 region side-by-side. (Please refer to Figure 43 for a

understanding of the labels s and s0 .) We have two sub-possibilities:

(iia) Rs runs from the s0 label of the left region (which will be R1 in our side-by-side

image) to the s label of the right region, which is R2 .

Notice that the cyclic ordering of the singularities in R3 imposes an order on the

singularities of R1 and R2 where they intersect R3 . Thus, since R3 is a fan the

�ı singularity in R1 must occur after the ı singularity in R2 . (Recall we are
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making the simplifying assumption that R1 and R2 only have two singularities.)

So the angular support of Rs must overlap with the angular support of @R1

forcing XC\.R1[Rs/ to have angular length greater than 2� . Thus, the triple

.R1;R2;Rs/ contributes C1 to b.XC/.

(iib) Rs runs from the s label of the left region, which is R1 , to the s0 label of the

right region, which is R2 .

We cut-and-paste R1;R2;R3 to produce a type 0d;1 region having a portion

of XC in its boundary but sheared in two places. If we adjoin Rs to this new

0d;1 region we see that the resulting XC boundary contributes C1 to b.XC/.

The proofs of (1 0 ), (2 0 ) and (3 0 ) are almost identical to the proofs of (1),(2),(3), and

we leave them to the reader.

5.3.2 Using flypes to push XC across S In this subsection we assume that S is

a collection of thin (but not standard) annuli. The case of standard annuli will be

considered separately, in Section 5.7.

To simplify the notation, we use ‘bold-faced type’ for the black boundary and all

its auxiliary structures; and ‘Roman type’ for the grey boundary and all its auxiliary

structure. In particular, S is foliated by s–arcs, a–arcs (adjacent to X), b–arcs and

a–arcs (adjacent to X). (We will specify further auxiliary structure in due course.)

Thus, if S � CA is thin, then @S D X[X where X� CA is on the XC side of S in

CA, and X� CA is on the X� side of S in CA.

The main goal of this section is to establish that the isotopy of X across S to X is the

result of a collection of flypes, not necessarily all admissible. Specifically, given S we

will produce a recipe for constructing a template .D; D/ where, via a common braiding

assignment to the blocks of D and D, we have that D carries X and D carries X. Our

recipe will tell us how to designate blocks of both flavors (fixed and moving), and how

to designate the strands connecting the blocks. Moreover, we will show how the thin

structure of S gives rise to a collection of flypes that carries D to D.

To motivate our work, we begin with examples. The key to understanding the moving

blocks will be a ‘block amalgamation’ process. Here we give two examples which

illustrate: (i) how the clasp arcs of S are used to designate the microblocks first

mentioned in Section 5.2; (ii) how the foliation of S is used to amalgamate the

microblocks into larger moving blocks; and how the foliation of S is used to flype

these moving blocks.

Example 1 is illustrated in Figures 48 and 49. Figure 48(i) depicts two regions of the

preimage of S sharing two clasp intersections, 
 1 and 
 2 . For each clasp intersection
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Figure 48: The isotopy of XC across S in a simple example

in S there is a readily identifiable pair of tab neighborhoods in the preimage (just look

at what remains after stabilizing X (resp. X) along the singular leaf �4 (resp. �3 )).

So for each microflype we have an associated microblock that contains a positive full

twist. Figure 48(i) coupled with the left sketch in Figure 49 illustrates the strands in

the two microblocks: strands ab and df are associated with the microblock for 
 1 ;

and strands a0b0 and d 0f 0 are associated with the microblock for 
 2 .
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Figure 49: The 3–space embedding of XC and X� in the Example in Figure 48

Next, notice that the foliation of S yields the following sequence of isotopies for

moving X to X: in Figure 48(i)–(ii) we stabilize X along the �4 singular leaf; in
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(ii)–(iii) we perform two microflypes; and in (iii)–(iv) we destabilize X. The geometric

realization of Figure 48(ii) is depicted in the left sketch of Figure 49. (The alphabetic

labeling of points on X and X are meant to correspond between the two figures and

the reader is encouraged to check the details of this correspondence.)

Now observe that the right two sketches in Figure 49 illustrates an amalgamation

between the two full twists of the microblocks, allowing us to consolidate this stabiliza-

tion, microflypes, destabilization sequence into a single flype. Also, observe that the

two regions in Figure 48(i) will be fans. This can be verified by checking the ordering

of the angular support of the edgepaths cdef d 0e0f 0g0 and aba0b0 that are in X, along

with the corresponding angular support of the analogous edgepaths in X, since all

singular leaves have an endpoint on the boundary of these regions.
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Figure 50: Amalgamating microflypes can result in flypes with weighted strands

The three regions of S for Example 2 are illustrated in Figure 50(i) and (ii). Again,

there are two clasp intersections in S along with two pairs of tab neighborhoods

which clearly delineate the microflypes and microblocks associated with each clasp

intersection. Figure 50(iii) shows the geometric realization of X: strands ab and df

properly contains a full twist in one microblock; and strands a0b0 and d 0f 0 properly

contains a full twist in the another microblock. And, again the foliation of S supplies us

with a sequence of stabilizations, microflypes, destabilization for moving X to X: the

starting stabilization is along the segment ba0 � X; perform the two microflypes; and

then do the two remaining destabilizations. The question is, can we amalgamate the two

microblocks to achieve a three strand block that would contain the braiding depicted in

Figure 50(iv)? The answer is that the information in the foliation is ambiguous; we
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have not assigned any angular information to the singularities in Figure 50(i) and (ii). In

Figure 50(iii) we have illustrated the point f (resp. d 0 ) as occurring after (resp. before)

the point b0 (resp. d ) in the fibration, however there is no information in Figure 50(i)

and (ii) that forces this choice. The occurrences might have been reversed. If they were

reversed then the amalgamation of Figure 50(iv) would not have been possible. Thus,

the foliation of Figure 50(i) and (ii) could depict either one braid -index-decreasing

flype with a three strand block, or two elementary flypes followed by a destabilization.

As in Example 1 of Figure 48, it is easy to see that the region in Figure 50(ii) will be a

fan. This will be independent of how the amalgamation of blocks occurs.

Example 3 (see Figure 51) shows a situation where successive flypes cannot be amalga-

mated. We see four flypes, with associated braid blocks X,Y,Z,W. In the initial diagram

it looks as if it might be possible to amalgamate X and Y , but if we study the final

diagram we see that this is impossible.

W

X

Y

Z

W

X

Y

Z

Figure 51: Four independent flypes which cannot be amalgamated

Remark 5.3.1 Observations based on these examples lead us to the following remarks

about thin annuli S :

(i) The foliation of S enables us to readily identify tab neighborhoods of clasp arcs.

(ii) For each pair of tab neighborhoods (where the pairing is via the pairing of

the clasp arcs) we have an associated microflype and microblock. By our

parity conditions on the singularities of a region (refer to Figure 43) we know

that all of the microflypes associated with a particular region are of the same
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parity, ie either all positive flypes or all negative flypes. In particular, any type

0d;1; 0d;2; 1d ;�1d region used in a flype will be a fan.

(iii) We can move X across the regions of S to X through a sequence of stabilizations

of X, microflypes and destabilizations of the resulting new X. }

Recall that our main goal in this subsection is to establish that the isotopy of X across

S to X is the result of a collection of flypes, not necessarily all admissible. For that

we need to understand when it is possible to amalgamate a collection of microblocks

into a larger block that is moved by a flype. So let us finally formalize the definition of

‘amalgamation’. To do this we first need to re-characterize microblocks in term of the

foliation of S .

By hypothesis, all clasp arcs in S are doubly long. In particular, there are no short

clasp arcs. For any pair 
 i
C; 
 i

� we have pushed both arcs into a chains of leaves. (For

thin annuli these chains will always have exactly two leaves.) Since 
 i
C begins on X,

one of the endpoints of 
 i
C is a point qi

C 2 X. The fact that 
 i is doubly long shows

that one of the endpoints of 
 i
� is also near X. The singular leaf which contains it ends

at a point qi
� 2X. Since our clasp arc is doubly long, there is an analogous picture near

X. Both are illustrated in Figure 52. The part of CA that belongs to the two normal

neighborhoods runs all the way from the black boundary to the grey boundary. The

two normal neighborhoods intersect along the clasp arc.

xi
�

qi
C

qi
�

xi
C


 i

qi
C

xi
C

xi
� qi

�

Bi

Bi


 i 
 i

(i) (ii) (iii)

Figure 52: (i) The four microstrands associated to a doubly long clasp arc.

(ii) The associated microblocks. (iii) The braid projection of the microstrands

on the cylinder walls.
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We fix subarcs xi
C and xi

� of X, where xi
C (resp. xi

�/) is a closed neighborhood of

qi
C (resp. qi

� ) on X. The subarc xi is chosen so that it does not intersect the subarc

associated to adjacent singular leaves on X, also so that the arcs xi
C and xi

� have the

same angular support Œ�i1
; �i2

��H. We call these arcs the black microstrands. There

are, of course, similar thick grey microstrands xi
C and xi

� of X. Notice that the isotopy

of X across S pushes X across Ni
C (resp. Ni

� ) to X, so the two black microstrands

are mapped to the two grey microstrands.

Construct disjoint solid cylinders Bi ; Bi in 3–space which have the structure of blocks,

as defined in Section 1 of this paper. These cylinders are, of course, microblocks,

as defined in Section 5.2. The microblock Bi is foliated by discs and contains the

braided arcs xi
C and xi

� , which meet the disc fibers transversally inside Bi . It intersects

the fibers of H in the interval Œ�i1
; �i2

�. We also have, without further work, a grey

microblock. (See Figure 52(ii).)

There is an additional and very important feature of the geometry: The fact that our

clasp arcs are doubly long tells us, immediately, that the two tab neighborhoods of

the clasp arcs reach all the way from X to X, joining the black and grey microblocks.

In fact, they intersect the side boundaries of the black (resp. grey) microblocks, and

the intersection is a pair of intersecting arcs. We label the double points of the black

and grey projection with the index of 
 i . (See Figure 52(iii).) We can think of these

crossed arcs as ‘local projections’ of the microblocks. The very interesting feature of

this projection is that the black and grey projections are joined to one-another by the

tab neighborhoods of 
C and 
� . (This is easy to see in Figure 52(ii), even though we

omitted it to keep the picture as simple as possible).

Construct the black and grey microblocks, fB1; : : : ; Br g and fB1; : : : ; Br g, one for

each clasp arc in S . Let B � S3 nA be a 3–ball having the structure of a 2–disc

cross an interval, �2 � Œ0; 1�. Decompose @B as c[ t[ b, where c D @�2 � Œ0; 1�;

tD�2�f0g; and bD�2�f1g. (Our notation was chosen to suggest t for ‘top’; c for

‘cylinder’; and b for ‘bottom’.) Then B is an amalgamating block for the microblocks

fB1; : : : ; Br g associated to the microstrands fx1
C; x1

�; : : : xr
C; xr

�g of S if the following

hold:

(1) Each Bi � int.B/ for i � i � r .

(2) Its support, ie f� j B\H� 6D∅g, is a closed interval having length less than 2� .

Every component of X\B contains a microstrand.

(3) The top t and bottom b of @B are contained in generic disc fibers of H. Moreover,

each component of t\S (resp. b\S ) is a subarc of an a–arc having one endpoint

on @t (resp. @b) and one endpoint on X. The leaves of the induced foliation on
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c� @B are circles. The only non-singular leaves that c intersect are a–arcs and

c\XD∅.

(4) If xi
C (resp. xi

�/ � int.B/, then its partner xi
� (resp. xi

C/ is also a subset of

int.B/. Also, the dotted segment between each qi
C and qi

� is a subset of int.B/.

(5) Replacing

fB; t; c; b; a; fB1; : : : ; Br g; fx1
C; x1

�; : : : ; xr
C; xr

�gg

by

fB; t; c; b; a; fB1; : : : ; Br g; fx1
C; x1

�; : : : ; xr
C; xr

�gg

we can also define the amalgamation of microblocks fB1; : : : ; Br g.

Our next question is: what conditions need to be met so that we can say the isotopy

across S takes B to B? A hint comes from Figure 52(iii). Consider the projection of

the microstrands in Bi onto its cylinder boundary and the projection of the microstrands

in Bi onto its cylinder boundary. Notice that these two projections are reflections of

each other. This observation leads us to the following two definitions.

First, let B be an amalgamating block. The braid projection �.B/ of XC onto c� @B

is the graph c\S , regarded as a subset of c together with the clasp arc index labeling

of this graph’s double points. We define �.B/ in a similar fashion.

Second, amalgamating blocks B and B are a pair of related amalgamating blocks if

the following hold:

(a) fB1; : : : ; Br g and fB1; : : : ; Br g are microblocks associated with clasp intersec-

tions f
 1; : : : ; 
 r g.

(b) B is a block amalgamation of microblocks fB1; : : : ; Br g.

(c) B is a block amalgamation of microblocks fB1; : : : ; Br g.

(d) �.B/ and �.B/ are reflections of each other.

Recall Figure 51 and see Figure 53 for an example.

Proposition 5.3.2 Let S be a collection of thin annuli with boundary components

X and X. Then the motion of X to X may be realized by a collection of flypes and

destabilizations.

Proof We will construct a pair of candidates for block-strand diagrams .D; D/ such

that D (resp. D) carries X (resp. X) and the motion D!D is a sequence of flypes. We

say that our diagrams .D; D/ are merely candidates for block-strand diagrams is that
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 1 
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 1 
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Figure 53: The projection of related microstrands onto the cylindrical walls

in the boundaries of amalgamating blocks

condition (4) in the definition of a block-strand diagram may not hold. Indeed, it may

be difficult to verify whether (4) does or does not hold at this stage of the argument. For

example, it’s possible that we could amalgamate blocks, and so produce new blocks

which have full braid index. That is a matter which we are not ready to discuss at this

time. (Look ahead to Section 6.2 for more on this. See, in particular, Corollary 6.2.1).

However, if we can construct D and D so that they carry X and X, and prove that the

motion D!D is a sequence of flypes and destabilizations, we will have accomplished

our task.

To construct D and D we need to understand several aspects of their structure. Observe

that the strands of X which change position during the passage to X are precisely those

which bound the ‘tiled’ part of CA, that is the part which is away from the bands of

s–arcs. On the other hand, the part that stays fixed is the part that intersects the bands

of s–arcs. So we can consider, separately, the ‘moving’ and ‘fixed’ parts of .D; D/:

Moving blocks An amalgamating block B will be moved to an amalgamating block

B if and only if they are related amalgamating blocks, as defined above. Note that there

may be some choices involved when we select the amalgamating blocks. We make

those choices in such a way that the set of all moving blocks has minimal cardinality.

Moving Strands The moving strands in D are all subarcs of X which are not amal-

gamated into moving blocks and are not in the bands of s–arcs.

Fixed blocks Here is the intuitive idea: The fixed blocks are associated to braiding

between the strands of X (and so also of X) in the part of S which is foliated by bands
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of s–arcs. The braiding between bands of s–arcs is not part of our geometry. S only

detects the places where X and X differ in a non-trivial way, but in regions where there

are bands of s–arcs they essentially coincide. However, what might happen is that

there is braiding between the bands of s–arcs, but that the braiding is interrupted by,

for example, strands of X which separate two potential blocks. In order to determine

the angular regions where the blocks occur, we therefore look for singularities in the

tiled part of S . The block subdivision so-obtained will be too extensive, and we will

then need to amalgamate fixed blocks.

We consider the H� –sequence for S . Let Stiled � S be the portion of S that is not

foliated by s–arcs. Let f�0; �1; : : : ; ��g � Œ0; 2�/ be a cyclic listing of all the angles

at which the corresponding H�i
2H contains a singularity, ordered according to their

natural cyclic order in H. Since the bands of s–arcs are foliated without singularities,

they must be located in

H 0 D

iD�[

�2.�i ;�iC1/; iD0

f H� n H� \Stiledg:

Each component of H 0 is a disc, and it contains only s–arcs. Let C be a connected

component of H 0 . Then C has a �2 � Œ�i ; �iC1� structure, and it may contain some

number of bands of s–arcs which braid with one-another inside C . If so, we amalgamate

this braiding of s–arc bands in C into a single block B.C /, which will be a fixed

block in the template .D; D/. If C has no s–arcs then B.C / is vacuous. If C has a

single s–arc then B.c/ is a single fixed strand.

Suppose that there is another connected component C 0 in H 0 , with its fixed block

B.C 0/, and suppose further that fs� arcsg\C 0\H�iC1
� fs� arcsg\C \H�iC1

. If

this happens, the singularity at �iC1 could have been ignored. Another way to say this

is that we can amalgamate the blocks B.C / and B.C 0/ into a larger fixed block of the

template B.C [C 0/ of .D; D/. There may be some choices involved, and we make

them so that the set of all fixed blocks has minimal cardinality.

Fixed strands It may happen that we have two blocks, B.C / and B.C 0/, for which

.C \H�iC1
/ \ .C 0 \H�iC1

/ 6D ∅, but .C \H�iC1
/ 6D .C 0 \H�iC1

/, so that the

amalgamating condition fails. In this situation there are strands that run between B.C /

and B.C 0/, however not all of the s–bands coming out of B.C / go into B.C 0/, and/or

not all of the strands going into B.C 0/ are strands that emerge from B.C /. Any

braiding between the s bands that run between B.C / and B.C 0/ can obviously be

pushed into either B.C / or B.C 0/ (eliminating H�iC1
as a singular fiber) and they

will then become fixed strands.

It is clear from the construction of .D; D/ that the template .D; D/ carries .X; X/.
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We still need to show that for each moving block pair .B; B/ we have a flype (possibly

with weighted strands) taking B to B as in Figure 4(a). To do this we first need to

isolate each moving black block. Specifically, we wish to subdivide the foliation of S

so that there is a subannular region S 0 � S such that if y� X is a strand of D then y

intersects s–arcs in the foliation of S 0 . We refer to Figure 54 to see how S 0 can be

obtained through the stabilization of X. Suppose we have two clasp intersections 
 i

and 
 j where the black microblock associated with 
 i is in an amalgamated black

block B.i/ and the black microblock associated with 
 j is in an amalgamated black

block B.j /. Let y � X be a strand of D that has its endpoints on B.i/ and B.j /.
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Figure 54: Subdividing non-trivially foliated regions in S . The black (resp.

dotted grey) horizontal arcs are the arcs we refer to in the text as ‘y’ (resp.

‘y’). The intersections of the clasp arcs with the regions of interest are labeled

gi
˙

and g
j
˙

.

Since y is a strand it cannot intersect any microstrands of X. Thus, it either intersects

s–arcs in the foliation of S (in which case no subdivision is necessary), or the only

non-singular leaves it intersects are a–arcs. To describe the needed subdivision in the

latter situation, we look at the corresponding grey microblocks associated with our

two clasp intersections; the corresponding grey amalgamating blocks B.i/ and B.j /;

and the corresponding grey strand y� X which has endpoints on B.i/ and B.j /. By

assumption, the only non-singular leaves intersected by the strand y are a–arcs in

the foliation of S . If y intersects an ab–singular leaf (as illustrated in Figure 54(a))

then we can stabilize X along this singular leaf to produce a subannulus of S that
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has y intersecting s–arcs. If the strand y does not intersect an ab–singular leaf then

we can enlarge the foliation of S thru the addition of two vertices and singularities,

as illustrated in the three remaining sequences, Figure 54(b)–(d). (The new b–arc

will necessarily be inessential.) The strand y will now intersect the endpoint of an

ab–singular leaf and a stabilization of X is possible. The corresponding black strand y

will then intersect s–arcs in the resulting S 0 , isolating the block B.i/ from the block

B.j /.

+ + +
+

st
ab
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flype 1 braid isotopy flype 2

d
estab

ilizatio
n

flype
P

Q

P

Q

P

Q

P

Q

P
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P
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Figure 55: An example that shows how a stabilization, two microflypes and

a destabilization are amalgamated into a flype. The bottom left and right

sketches show the corresponding subsets of D and D. The top right sketch

illustrates the part of the diagram that we refer to as D0 in the text.

Let S 0 � S be thin subannuli that isolate all the moving blocks. Then there is a pair

.D; D0/ where D0 is obtained from D by the stabilizations in the subdivision of Figure

54. Part of it is illustrated in Figure 55. Saying the moving blocks of .D; D0/ are

isolated is saying that every strand of D or D intersects s–arcs in the foliation of S 0 .

Now, if we can show that moving across S 0 is a collection of flypes, then it will follow

that the destabilizations come from going from D0 to D.

To show that the isotopy across S 0 takes D to D0 , using a collection of flypes, we

proceed as follows: since the blocks are isolated, we need only consider what the

isotopy is for one block. This means we are back in a situation similar to that of

Example 1 and Example 2 at the beginning of this section. We have a subcollection of

regions fR1; : : : ;Rhg � S 0 in the foliation of S 0 (as defined in Section 5.3.1) that are

grouped together by clasp intersections. These regions are all either type 0d;1; 0d;2; 1d

or �1d . All of the associated microblocks of the clasp intersections of this collection
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of regions can be amalgamated into a block pair .B; B/. Our claim is that the isotopy

of B across the regions fR1; : : : ;Rhg to B is a flype. By statement (ii) of Remark

5.3.1 we know that we can subdivide the microblocks in B and flype them across to

the microblocks in B. Also, the fact �.B/ and �.B/ are reflections tells us that we

can re-amalgamate them into B. In the simplest case of a subdivision into two blocks

(Figure 55) we see that the entire isotopy of statement (ii) of Remark 5.3.1 can be

consolidated into a single flype. This situation can obviously be generalized into a

larger number of blocks in the subdivision by an iterated nesting, the first iteration

being: before doing ‘flype 1’ we subdivide block P into two new blocks and, since

block P in the upper-left sketch could have been flyped, perform the entire sequence on

these two new blocks first. Thus, B is flyped to B and the proof of Proposition 5.3.2 is

complete.

Example 5.3.1 The projection criterion is essential to choosing block amalgamations

that maintain their integrity during a flype isotopy. This is clear from the example

that we gave earlier, in Figure 51. Before the flype it looks as if X and W (and also

Y and Z ) can be amalgamated, but after the flype that is impossible. Indeed, the

requirement that the projections be reflections of each other will be violated if we

attempt to amalgamate X and W , or Y and Z . }

5.4 Constructing a candidate for a template .DC; D�/ from CA

We interrupt the flow of the argument, briefly. The procedure that we gave in Section

5.3.2 for constructing a candidate for a template from thin annuli is almost identical to

the procedure for constructing a candidate for a template .DC; D�/ from the foliation

of CA. We will need to know how to do it when we reach the end of Section 6, and

since the alert reader will have the essential ideas in mind right now, this seems like

a good moment to go through the steps in the construction. The argument will be

repetitious, because it is modeled on that in Section 5.3.2, however it seems better to

be repetitious than to keep asking the reader to turn back.

Assume that we are given CA, with boundary XC�X� . Assume that the complexity

.c1; c2/ has been minimized by the use of exchange moves. Assume further that we

have removed all short clasp arcs, and that all non-short clasp arcs are in normal

neighborhoods. We will show that we can construct a pair of diagrams .DC;D�/,

and an isotopy DC ! D� such that .DC;D�/ carries .XC; X�/, and the motion

DC! D� sends XC! X� . As in Proposition 5.3.2 we do not know whether DC

and D� are block strand diagrams because we do not know whether condition (4) for

a block-strand diagram holds. That matter will not concern us now. (Look ahead to

Section 6.2 for more on this. See, in particular, Corollary 6.2.1).
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As in Section 5.3.2 there are four ingredients in the structure of .DC; D�/: the

moving blocks, the fixed blocks, the moving strands, and the fixed strands. The precise

description of how we construct each is very close to that in Section 5.3.2, except that:

� CA replaces S ,

� CAtiled (the portion of CA not foliated by s–arcs) replaces Stiled . As a con-

sequence, we are constructing the pair .DC;D�/ (instead of the pair .D; D/).

Also the motion that takes DC ! D� now takes XC ! X� (instead of the

motion that takes D! D taking X! X/.

(i) The Moving Blocks If there are no doubly long clasp arcs, then there also are

no moving blocks, and this part of the construction ends. So we assume that there are

doubly long clasp arcs. Therefore the two tab neighborhoods of the clasp arcs reach all

the way from XC to X� . We are in the situation of Figure 52, and we may construct

black and grey microstrands, exactly as we did in Section 5.3.2, only now the black and

grey microstrands are subarcs of XC and X� . Notice that the isotopy of XC across

CA pushes XC across Ni
C to X� , so the two XC microstrands are always mapped to

the two X� microstrands. Exactly as in Section 5.3.2 we have cylinders Bi ; Bi for our

microblocks. The local projection of the microstrands in Bi (resp. Bi ) are determined

by the intersections of SC (resp. S� ) with the walls of Bi (resp. Bi ). As in Section

5.3.2, the double points of the local projections are labeled with the index of gi .

Recall the amalgamation of microblocks, and the example of a template in Figure 51.

Before the two flypes it looks as if X and W (and also Y and Z ) can be amalgamated,

but after the flype we see that is impossible. The requirement that we introduced, that

the projections be reflections of each other, is violated if we attempt to amalgamate X

and W , or Y and Z . We developed a ‘projection criterion’ for when this is possible.

The essential idea was that the block amalgamations that we used maintained their

integrity during the passage from the black side to the grey side.

Let’s begin the construction of the black microblocks. The blocks B and B have the

same structure as in Section 5.3.2. We continue to use the terms ‘top’, ‘cylinder’,

‘bottom’, with the same meaning as in Section 5.3.2. Then B is an amalgamation of mi-

croblocks fB1; : : : ; Br g for microstrands fx1
C; x1

�; : : : xr
C; xr

�g of CA if the following

hold:

(1) As in Section 5.3.2: Each Bi � int.B/ for i � i � r .

(2) As in Section 5.3.2: Its support, ie f� j B\H� 6D∅g, is a closed interval having

length less than 2� . Every component of X\B contains a microstrand.
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(3) A subtle change from (3) in Section 5.3.2: note that t\CA and b\CA are each

still a collection of subarcs of aC –arcs and, possibly, subarcs in b–arcs. This

necessarily implies that t and b are contained in a generic disc fiber of H. We

can assume that neither t nor b intersect any microstrands. Continuing, we have

the immersion �W PA �! CA. Each component of R� ��1.B\ CA/� PA

is a rectangular region that does not contain any singular points. Specifically:

(a) If R\XC 6D∅ then R is trivially foliated with @RDˇC1[ˇC2[ˇC3[ˇC4 ,

where (i) ˇC1�XC , and ˇC1 intersects some microstrands in our specified

set. (ii) ˇC2 and ˇC4 are subarcs of aC –arcs. (iii) ˇC3 is transverse to

the foliation of PA. Moreover the only non-singular leaves it intersects are

aC –arcs .

(b) If R\XD∅ then R is trivially foliated, with @RDˇC1[ˇC2[ˇC3[ˇC4

where ˇC1 and ˇC3 are in leaves; also ˇC2 and ˇC4 are transverse to the

foliation of PA.

(4) As in Section 5.3.2: If xi
C (resp. xi

�/� int.B/, then its partner xi
� (resp. xi

C/

is also a subset of int.B/. Also, the dotted segment between each qi
C and qi

�

is a subset of int.B/.

(5) As in Section 5.3.2: Replacing

fB; t; c; b; a; fB1; : : : ; Br g; fx1
C; x1

�; : : : ; xr
C; xr

�gg

by

fB; t; c; b; a; fB1; : : : ; Br g; fx1
C; x1

�; : : : ; xr
C; xr

�gg;

we can also define the amalgamation of microblocks fB1; : : : ; Br g.

As before, we also have related concepts for B, the amalgamation of microblocks

fB1; : : : ; Br g.

Our definition of the braid projection of XC onto B � @B has changed a little bit

because of the new conditions in (3) above. For a given amalgamating block B we

consider fR1; : : : ; Rlg � ��1.B\ CA/. These are the regions referred to in condition

(3)(a). Let fˇ1
C3

; : : : ; ˇl
C3
g be the corresponding ˇC3 boundary sides of these regions.

Then the graph �.[1�i�lˇ
i
C3

/ � c, along with the clasp arc index labeling of the

double points, are in �.B/. Similarly, �.B/ is just the labeled graph �.[1�i�lˇ
i
�3

/�c.

Using this definition of the braid projection of XC onto B � @B, our definition of

‘related amalgamating blocks’ is the same as before, viz:

Let B be an amalgamating block. The braid projection �.B/ of XC onto c� @B is

the graph c\S . regarded as a subset of c together with the clasp arc index labeling of

this graph’s double points. We define �.B/ in a similar fashion. Amalgamating blocks

B and B are a pair of related amalgamating blocks if the following hold:
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(a) fB1; : : : ; Br g and fB1; : : : ; Br g are microblocks associated with clasp intersec-

tions f
 1; : : : ; 
 r g.

(b) B is a block amalgamation of microblocks fB1; : : : ; Br g.

(c) B is a block amalgamation of microblocks fB1; : : : ; Br g.

(d) �.B/ and �.B/ are reflections of each other.

Look back to Figure 53 for an example.

(ii) Fixed Blocks The fixed blocks are associated to braiding between the strands of

X (and so also of X) in the part of S which is foliated by bands of s–arcs. The braiding

between bands of s–arcs is not part of our geometry. S only detects the places where

X and X differ in a non-trivial way, but in regions where there are bands of s–arcs they

essentially coincide. However, what might happen is that there is braiding between

the bands of s–arcs, but that the braiding is interrupted by, for example, strands of X

which separate two potential blocks. In order to determine the angular regions where

the blocks occur, we therefore look for singularities in the tiled part of S . The block

subdivision so-obtained will be too extensive, and we will then need to amalgamate

fixed blocks. For further details, see the proof of Proposition 5.3.2, which applies

without any changes at all.

(iii) Moving Strands The moving strands in D are all subarcs of X which are not

amalgamated into moving blocks and are not in the bands of s–arcs. We will give

details on how they are placed in in the proof of Proposition 6.3.1.

(iv) Fixed Strands It may happen that we have two blocks, B.C / and B.C 0/, for

which .C \H�iC1
/\ .C 0 \H�iC1

/ 6D ∅, but .C \H�iC1
/ 6D .C 0 \H�iC1

/, so that

the amalgamating condition fails. In this situation there are strands that run between

B.C / and B.C 0/, however not all of the s–bands coming out of B.C / go into B.C 0/,

and/or not all of the strands going into B.C 0/ are strands that emerge from B.C /. Any

braiding between the s bands that run between B.C / and B.C 0/ can obviously be

pushed into either B.C / or B.C 0/ (eliminating H�iC1
as a singular fiber) and they

will then become fixed strands.

We are now in a position to take CA and construct an associated candidate for a

template .DC; D�/. It is clear from the construction that .DC and D�/ will carry

XC and X� .

Remark 5.4.1 Go back to Figure 9. The bottom two sketches show the actual pair

of block-strand diagrams .DC;D�/ that make up the template in Figure 9, whereas

the other 5 sketches give it meaning by showing the actual combination of flypes (not
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necessarily admissible), exchange moves and destabilizations that explain the isotopy

from DC to D� .

The construction that we just gave falls short of doing what we did in Figure 9 in two

ways. The first has been noted before this, and we stress it again, but the second is new:

(1) As noted earlier, the blocks may not either be ‘consolidated’ or ‘optimal’, two

matters that will be discussed in Section 6. That’s why we have said, repeatedly,

that our DC and D� are candidates for block-strand diagrams, and the pair

.DC;D�/ is a candidate for a template.

(2) We have not constructed the intermediate stages that explain the isotopy. That

is clear, because all we dealt with is the long clasp arcs, but to explain the

intermediate isotopy we would have had to also look at clasp arcs which are not,

initially, doubly long but become doubly long after part of CA has been crossed.

That construction remains for future work, for readers who may be interested in,

for example, in working on our ‘open problem (3)’ in Section 7 of this paper. }

5.5 Pushing across regions with a G–flype foliation

We have seen that if PA contains a long clasp arc, then there is a family of thin annuli

S1 � PA having @S1 D X0 [X1 , where X0 D XC , also X0 can be pushed across

S1 to X1 using a sequence of flypes. The complement of S1 in PA will be a new

family of annuli which has boundary X1[X� . It may happen that we can then apply

Proposition 5.1.1 to simplify S1 via .ab/? exchange moves; or it may happen that

PA nS1 has long clasp arcs, in which case we can iterate the construction. Putting

the two cases together we can construct a second annulus S2 with @S2 D X1 [X2

such that the movement across S2 is either an .ab/? exchange move or a sequence of

flypes. This procedure can be iterated until either we produce thin annuli that have X�

as a boundary component, or there are no more .ab/? exchange moves, or there are no

more long clasp arcs. If we do have thin annuli with X� in the boundary then we will

have decomposed CA into a sequence of thin annuli. And, we have moved across CA

using flypes and ab or ab? exchange moves. The difficulty in moving across PA this

way is that it may happen that we needed to use inadmissible flypes.

With that difficulty in mind, we say that a family of thin annuli Sk[SkC1[� � �[SkCl

supports a G–flype foliation if (i) it is possible to cross the region using only flypes and

ab or .ab/? exchange moves, and (ii) there exist integers k; q such that b.XkCi/�

b.Xk/ for 1 � i � .q � 1/ and b.XkCq/ � b.Xk/. In this situation the combined

flyping and ab or .ab/? motion across the region Sk[SkC1[� � �[SkCq is a G–flype.

It is readily seen that if .B; B/ is a pair of related amalgamating blocks for the pair
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.XC; X�/ then B maintains its integrity through successive flypes and is isotopied to

B.

Example 5.5.1 The template in Figure 56 is an illustration of a G–flype.

(a) from strand 3 of block
Y to strand 1 of block Z

(b) from strand 2 of block
Z to strand 2 of block Y

(c) from strand 3 of block
Z to strand 3 of block Y (d) from strand 2 of block

Y to strand 2 of block Z
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Figure 56: The foliation of PA , in the situation of the 6–braid template of

Figure 9

It shows the foliated annulus PA which was used to construct the template which we

saw in Section 1 in the boxed sketches at the bottom of Figure 9. The labels ‘block Y ’

and ‘block Z ’ refer to the blocks in Figure 9. In the interest of keeping the foliation

as simple and understandable as possible, we decided to position the clasp arcs only

in tab neighborhoods, and not in normal neighborhoods. Thus, the clasp arcs are not

contained in the finite union of leaves. (The addition of 12 vertices and 12 singularities

would be needed in order to position the clasps in normal neighborhoods.) In order

to remove distracting details from the picture, we have eliminated inessential b–arcs,

collapsing the normal neighborhoods of the clasp arcs 
 1
C and 
 2

C . This is always

possible, and we did it to save space. The arcs 
 1 and 
 2 in sketch (d) are the clasp

arcs used to construct the first thinly foliated annuli that are split off by the dotted

curves in sketches (b) and (c). After we have flyped across this initial thin annulus

(the first negative flype of Figure 9) we will have four resulting vertices where we

can perform .ab/ exchange move. These are the two double-strand exchange moves

in the isotopy sequence of Figure 9. Finally, the remaining portion of CA will just
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be the region in sketch (a) and tab neighborhoods around clasp arcs 
 3 and 
 4 in

sketches (b) and (c). All of these individual motions were across thin annuli, giving us

a decomposition of CA into thin annuli. Since the braid index starts at b.XC/D 6,

goes to 7 after the first flype, remains at 7 for all of the exchange moves and only

returns to 6D b.X�/ after the last flype, all of the thin annuli in this decomposition

go to make up the motion across PA. The combination of all of these isotopies is the

6–braid G–flype which we illustrated in Figure 9 and Figure 56.

Notice that there are no moving blocks in Figure 9 because there are no doubly long

clasp arcs in Figure 56. The following features of the template in Figure 9 are outside

the support of the isotopy: the four blocks X; Y; Z; W and the following strands that

join them: all strands that enter and leave W and X , also strand 1 entering Y , strand

1 leaving Y , strands 3 and 4 entering Z and strands 1 and 4 leaving Z . We need

to account for the changes in strands 2 and 3 entering Y , strands 2 and 3 leaving Y ,

strands 1 and 2 entering Z and strands 2 and 3 leaving Z . These are all described

completely by the data in the foliated annulus.

5.6 Pushing across regions with a G–exchange foliation

In this subsection all clasp arcs have intermediate length, that is the pierce points of

both 
C and 
� are on b–arcs.

We begin with an example which illustrates how G–exchange moves arise. The example

is the foliated subsurface of PA that supports the G–exchange move of Figure 10. It

will not be difficult to understand this figure, now that the main tools in this paper, ie

the foliated immersed annulus CA and its foliated preimage PA, are in place.

The foliated subsurface of PA that supports the G–exchange move of Figure 10 is

illustrated in Figure 57, which shows four discs on PA. Label the discs R1 (top left),

R2 (top right), R3 (bottom left) and R4 (bottom right). No Ri is good, because each

contains the puncture endpoints of clasp arcs. On the other hand, each is an embedded

subset of PA (because no Ri contains both preimages of a clasp arc pair). The clasp

arcs are all doubly-intermediate (because all of the puncture endpoints are on b–arcs).

Ignoring the clasp arcs momentarily, we see that each disc is topologically equivalent

to the shaded disc in the upper left sketch in Figure 23, ie it contains a positive vertex

of valence 2 and type ab , and singularities of opposite sign. Each of our 4 regions

contains in its boundary a subarc of X� and and a subarc of XC , colored dark and

light respectively. These arcs are labeled a˙; b˙; c˙ and d˙ . If the clasp arcs were

not there we could use four ab–exchange moves to push aC (resp. bC; cC; dC ) across

its disc to a� (resp. b�; c�; d� ).
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Figure 57: Foliated subsurface of PA which are the support of the G–

exchange move of Figure 10

Since R1 intersects R4 along clasp arcs 1 and 2, and R3 along clasp arcs 3 and 4, we

cannot complete the move on strand aC until we begin the moves on strands cC and

dC . But then, the motions of strands cC and dC across discs R3 and R4 cannot be

completed because those discs have clasp intersections with R2 , and in fact no one of

the motions can be completed until all of the others are completed too. That is, we have

a G–exchange move. This particular very simple G–exchange move was discussed in

Section 1 to this paper, and was depicted in the 6–braid example in Figure 10.

Remark 5.6.1 While we have gone to some pains to insure that all clasp arcs are in

normal neighborhoods, in the example just given of a G–exchange move the normal

neighborhoods are ignored for reasons of space, as they would enlarge the pictures

to the point where they would obscure the features that are of interest. Since normal

neighborhoods were created by adding many many inessential b–arcs; going the other

way, they can also be deleted by an isotopy of the embedded part of CA. }

To generalize this example we first need to understand the foliated subregions of PA

which lead to sequences of exchange moves that carry a subarc of XC over a ‘rooted

block and strand tree’. It will be easiest to study them first without the clasp arcs, and

then add the clasp arcs later. Then we will need to understand the associated block and

strand diagrams. Since the definitions are somewhat detailed, it may be helpful to see

them worked out in a few special cases first.
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In Figure 58(a) a subarc of XC can be pushed across the shaded regions by two

exchange moves: the first across the darkly shaded disc (containing the vertices v and

w and the singularities s and r ), the second across the lighter shaded disc, which

contains the vertices v0; w0 and the singularities s0; r 0 . The support of the first exchange

+ +

- -

+

-

-
-

+

+
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+

s s0

w w0

v v0

r 0

r

s

r 0

r

s0

w w0

v v0

(a) (b)

(c)

Bi BiC1 BiC2

t.i; iC1/ t.iC1; iC2/

s.i; iC1/ s.iC1; iC2/

Bi BiC1 BiC2

Figure 58: (a) The root foliation on PA . (b) The root diagram. (c) The two

viewpoints are put together.

move, ie the dark shaded region, is a ‘pouch’ which is pierced twice by the axis, at v

and w . If the foliation of PA contains only essential b–arcs, then the closed braid

must wrap around the braid axis (perhaps with many strands traveling along together,

say t strands in all) in between the two pierce-points v and w . The first exchange

move is a push of a subarc of XC across the pouch, crossing the axis twice as it does

so at v and w . Then there is a second exchange move across a second pouch, crossing

the axis twice at v0 and w0 . There will also be t 0 braid strands wrapping about the axis

in between v0 and w0 , and perhaps a braid in between the weighted strands t and t 0 .

Keeping all this in mind we turn to Figure 58(b). It shows a picture of a root diagram

which is part of a closed braid diagram. There are 3 blocks, labeled Bi ; BiC1; BiC2

and two weighted strands, labeled t.i; i C 1/ and t.i C 1; i C 2/, traveling around the

braid axis. These blocks and strands are there because if not the b–arcs which foliate

the pouch would not be essential. The pouch is not shown in this picture.

In Figure 58(c) we put together the information in Figure 58(a) and (b). The region in

(a) is to be thought of as a very flexible disc with two pouches. We are looking through

the pouches to the block and strand tree which is visible inside them. The braid axis A

pierces the pouches in axis pieces vw and v0w0 . The darker pouch (we called it C ) is

the support of the first ab–exchange move in sketch (a). It covers the darker �–disc.
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The lighter shaded pouch C 0 covers the lighter �–disc. The motion of our subarc of

XC is the sequence of two exchange moves over the two pouches. The subarc is like a

‘handle’ which moves over the braid blocks Bi ; BiC1; BiC2 and the weighted strands.

Now for a formal definition of roots, branches and a block and strand tree. Fig-

ure 59 should be helpful. A collection of braid blocks fB1; : : : ; Blg and weighted

strands fs.1; 2/; : : : ; s.i; i C 1/; : : :g; 1 � i � l , and additional weighted strands

ft1.1; 2/; : : : ; tk1.1; 2/; t1.2; 3/; : : : ; tk2.2; 3/; : : : ; t1.i; i C 1/; : : : ; tki .i; i C 1/; : : :g

is a root if s.i; i C 1/; 1� i � l has endpoints at the bottom of Bi and at the top of

BiC1 ; tj .i; i C 1/; 1 � j � ki has endpoints at the top of Bi and at the bottom of

BiC1 , and if there exist embedded discs �.i; i C 1; j /� S3 satisfying the following

further conditions:

� The �–discs have disjoint interiors. Also, for each tj .i; i C 1/; 1 � j � ki

there is one associated disc.

� The braid axis A intersects each �–disc transversally in a single point.

� @�.i; i C 1; j / � tj .i; i C 1/[Bi [ s.i; i C 1/[BiC1: Also �.i; i C 1; j /\

s.i; i C 1/D s.i; i C 1/ and �.i; i C 1; j /\ tj .i; i C 1/D tj .i; i C 1/.

� If �.i; iC1; j / and �.i; iC1; j 0/ are distinct �–discs which are intersected in

succession by some meridian loop of s.i; i C 1/ then there exist �.i � 1; i; m/

and �.i C 1; i C 2; q/ such that the unoriented A intersects first �.i; i C 1; j /,

then �.i �1; i; m/ and �.iC1; iC2; q/ (in either order); then �.i; iC1; j 0/;

then all other �–discs.

� For each �.i; i C 1; j / there exist a �.x; y; z/ with either .x; y; z/ D .i �

1; i; m/ or .x; y; z/D .i C 1; i C 2; q/. Moreover, the unoriented A intersects

in succession �.i; i C 1; j /; �.x; y; z/; then all remaining �–discs.

Given a braid structure .H; A/, a radial sphere is a 2–sphere that is transversally

intersected by A twice and is transverse to all of the disc fibers of H. An axis piece ˛

in a radial sphere S is a closed arc whose interior is transverse to the disc fibers of H

and which has empty intersection with at least one disc fiber. Axis pieces ˛; ˇ � S ,

are loop equivalent if @˛ D @ˇ D ˛\ˇ and if ˛[ˇ bounds a 2–disc ı � S such that

ı\AD∅.

A branch is a block B with associated weighted strands t , along with a 2–disc � such

that:

� � is transversally intersected by A at one point.

� @�D t [ a where a� @B . Specifically, a is an arc made up of three segments,

aD aT [ aS [ aB where: aT is on the top of B ; aS is on the side of B ; and

aB is on the bottom of B .
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t1.i; iC1/ t1.i�1; i/
t1.iC1; iC2/ t2.i; iC1/

s.i�2; i�1/

s.i�1; i/

s.i; iC1/

s.iC1; iC2/

s.iC2; iC3/

Bi�1

Bi

BiC1

BiC2

B0

B
00

1

B 00
2

Figure 59: A block and strand tree. The dotted parts will be discussed later.

� int.�/\B D∅

The braid block B00
1

and the weighted strand which emerges from it and loops around

the axis is an example.

Iterating the construction of attaching a branch to a root, we obtain a rooted block-strand

tree.

Next we need to understand the foliated subregions of PA which lead to sequences

of exchange moves that carry a handle subarc of XC over a rooted block and strand

tree. Again it will be helpful to see examples before we give the general definition.

We first illustrate how the very simple pouch R1 in Figure 57 might itself develop

a pouch. As before, we ignore the clasp arcs. Figure 60(a) shows the double pouch

foliation of the region R of Figure 60(a). In the expanded foliation the handle arc

(the arc ˛ of Figures 23) cannot be pushed across R by ab exchanges. Fortunately

bb–exchange moves come to the rescue. (See Figures 24 and 25.) The new vertex

x has valence 2 and type .b; b/. Lemma 3.3.2, part (2), applies. We can do a bb

exchange, and then remove the resulting inessential b–arcs. Now an ab–exchange is

possible. As for the corresponding braid picture, the presence of the new vertices x; y

means that the dotted root block B0 of sketch Figure 59 has grown new branches B00
1

Geometry & Topology, Volume 10 (2006)



510 Joan S Birman and William W Menasco

-
-

-

-

--
+

+

+

-

+

+

+

-
+

+

+-

-
+

+ -

(a) (b)

w

v

x

y
s

r 0

rv v0

w

x x0

y y0

Figure 60: Expanding root foliations to tree foliations

and B00
2

. The move over the tree in Figure 60(a) will be a bb–exchange followed by

an ab exchange. In the presence of clasp arcs, the G–exchange move of Figures 10

and 57 will of course become much more complicated when new branches are added.

In this regard we note: an important feature is that every time new branches are added

the braid index increases. Thus very complicated block and strand trees will only be

encountered at very high braid index.

A slightly more complicated example, in Figure 60(b), shows the changes in foliation

when we grow new branches in two different ways in the foliation of the region R

of Figure 58(a). The changes are supported inside the region wsvv0r 0w . The branch

associated to the new vertices x and y (resp. x0 and y0 ) is attached to the strand

joining blocks Bi and BiC1 (resp. blocks BiC1 and BiC2 ). The root diagram of

Figure 58(b) has changed to a block-strand tree. In the foliation, the growth has all been

‘inward’. This time two bb exchanges and two ab exchanges are needed to realize

the G–exchange move over the block-strand tree. The reason G–exchange moves can

be hard to visualize is because the part of the surface that undergoes the change in

foliation is always far away from the block-strand tree in the closed braid. Putting this

is another way, the foliated surface points out the way to organize very big sequences

of exchange moves, some of which can be quite difficult to see in the closed braid

diagram.

Finally, we come to the general definition. Let S� PA be a complete collection of

s–arcs. For present purposes a region R � PA n S is either a rectangular shaped

subdisc or a subannular region of PA. Thus, as before, if R is a subdisc then

@RD s[YC[ s0[Y� , where: s and s0 are subarcs of leaves in the foliation of PA;

and YC and Y� are oriented arcs transverse to the foliation in the positive direction. If

R is a subannulus then @RD YC [ Y� where Y˙ are oriented curves transverse to
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the foliation in the positive direction. Inside these regions we will have the induced

foliation. While our regions may be intersected by clasp arcs, we are not concerned

with them at this time.

Let R� PA n S be as above. Let C be a component of R\G�;ı , where the graph

G�;ı was defined pictorially in Figure 42. We say that R has a root foliation if:

(1) C is homeomorphic to either S1 or Œ0; 1�.

(2) If C is homeomorphic to S1 then R is an annulus and C is homotopically

equivalent to a core circle of R.

(3) If C is homeomorphic to Œ0; 1� then C has an endpoint on Y˙ and an endpoint

near Y� .

Proposition 5.6.1 Let R� PA nS be a component which is embedded. Assume that

all b–arcs are essential. Assume that R has a root foliation. Then the isotopy which

corresponds to pushing a component of YC across R is a sequence of ab–exchange

moves over a root.

Proof The isotopy of the braid across a region which has a root foliation can be

realized by a sequence of ab exchanges. To see this, notice that at least one pouch

Pi is associated to each such region, and since the regions are crossed in a definite

order the pouches can be joined in the same order. The assumption that each b–arc is

essential implies that Pi cannot be removed by isotopy, and is associated to a new braid

block or blocks. The union of all of the P 0
is gives a disc region R with a subarc of

YC in its boundary. The union of all of the blocks is a root. The isotopy of the subarc

of YC across P is a sequence of exchange moves across this root. This completes the

proof.

Remark 5.6.2 It might happen, in the situation of Proposition 5.6.1, that S is empty

on some component of R. If that occurs, the component in question will be a standard

annulus. Pushing across a standard annulus will be treated in Section 5.7. }

A region R has a tree foliation if, after a sequence of bb–exchanges the foliation is

reduced to a root foliation.

The next proposition shows how a tree foliation imposes a block decomposition on our

two braids:

Proposition 5.6.2 Let R � PA n S be a component whose image is embedded.

Assume that S 6D ∅. Assume that all b–arcs are essential, and that R has a tree

foliation. Then the isotopy which corresponds to pushing YC across R is a sequence

of exchange moves over a block-strand tree.
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Proof The isotopy of the braid through the sequence of bb–exchanges corresponds to

collapsing a tree to its root. The collapsing is realized by bb–exchange moves followed

by braid isotopy to remove inessential b–arcs. After that, an isotopy of YC across the

new R corresponds to a sequence of aa and ab–exchange moves over this root.

Remark 5.6.3 Two remarks are in order. They relate to Propositions 5.6.1 and 5.6.2.

(1) In both propositions the basic assumption is that the region R is embedded. Of

course this will be the case if no clasp arcs intersect R. But it will also be the

case if (a) clasp arcs intersect R but no clasp arc pair intersects R, or (b) there

are no long clasp arcs which intersect R.

(2) After a G–exchange move across R, valence 1 vertices may be revealed. See

Figure 22. Later, when we get to the final steps in the proof, we will remove

them by destabilization. }

We are finally ready to introduce clasp arcs into the picture. In the most general case

there will be several related regions R1; : : : ;Rk which are intersected by paired clasp

arcs. Thus the exchange moves across one Ri will have to be interrupted midway to

do part of an exchange move along an associated Rj . Let fR1; : : : ;Rkg � PA be a

collections of regions such that each int.Ri/; 1� i �k; is embedded in S3n.XC[X�/

and each Ri has a tree foliation. Assume each Ri has at least one clasp arc with

an endpoint on XC and at least one clasp arc with an endpoint on X� , and with the

puncture endpoints on b–arcs in Ri , so that in particular no clasp arc is long. Moreover,

assume that the image of fR1; : : : ;Rkg in CA is connected. Then the collection of

regions is said to have a G–exchange foliation. The motion across a region with a

G–exchange foliation is a G–exchange move. As we have shown, in the absence of

clasp arcs it would be a sequence of exchange moves which carries a subarc of XC

over a rooted block and strand tree.

Proposition 5.6.3 Let fR1; : : : ;Rkg � PA be a collection of regions which, taken

together, have a G–exchange foliation. Then an isotopy of XC to X� across the regions

fR1; : : : ;Rkg is realized by a G–exchange move.

Proof Since each region Ri is embedded, the isotopy of any one arc Ri \XC across

Ri to Ri \X� corresponds to a G–exchange move. Moreover, since each region

contains clasp arcs having endpoints on both XC and X� and since their image in CA

is connected, we have an interdependence of the isotopies across all the regions. Thus,

an isotopy across the collection fR1; : : : ;Rkg is a G–exchange move.
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5.7 Pushing across a standard annulus

In constructing the thin annuli, we omitted the case of a standard annulus (with or

without clasp arcs). Motions across a standard annulus will in general occur at the

very end of the isotopy from XC! X� , after all singularities that are on clasp arcs

have been eliminated, and all short clasp arcs have been removed. To give an example

of such a motion, let us suppose that X is a link of � � 2 components and that the

first component, X 1
C cobounds with X 1

� a standard annulus with 2k vertices, with or

without clasp arcs. Figure 61 shows an example without clasp arcs, when k D 4.

Figure 61 shows that a stabilization along one of the singular leaves in G�;� , followed

by a sequence of k � 1 exchange moves, followed by a destabilization, suffices to

move X 1
C to X 1

� . The total change in braid index is zero. We have a Markov tower

similar to the one in Figure 5. If there are clasp arcs, we may assume that they have

been pushed into singular leaves. Keeping in mind the stabilization move in Figure 61,

where XC is pushed across a singular leaf, we note that when there is a pair of clasp

arcs a microflype pushes both the black boundary arc and the dotted grey boundary arc,

simultaneously, across a pair of singular leaves. After all of the clasp arc pairs have

been removed with the help of microflypes, the rest of the standard annulus can be

crossed with the help of complexity-reducing destabilizations and exchange moves. In
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Figure 61: Pushing across a standard annulus

Section 1 of this paper, in Figure 8, we constructed the Markov tower and the associated

template for the crossing of a standard annulus without clasp arcs. If there are clasp

arcs, then as was just shown the annulus can be crossed using microflypes, exchange

moves and destabilizations, and no other template is needed. The blocks shown in

Figure 8 allow for the possibility that other components of X braid with X 1 . If there

were no other components, then the entire move in Figure 8 can be realized by braid

isotopy. If there are other components, or if k > 4, this may not be the case. The

cyclic move exists for every k . The associated templates are the cyclic templates of

the MTWS.

Geometry & Topology, Volume 10 (2006)



514 Joan S Birman and William W Menasco

6 The proof of the MTWS

The machinery which we need to prove Theorem 2, the MTWS, has been set up. In

this section we give our proof. The reader is referred to Section 1.3 for the statement

of the theorem.

6.1 Constructing the sequences (1–2), (1–3) and (1–4) and the templates

in T .m/

We are given a �–component oriented link type X in oriented S3 or R
3 . We are

also given closed braid representatives XC 2 B.X / and X� 2 Bmin.X /. Indexing the

components of X as X 1; : : : ;X� , we choose corresponding indices for the components

of CA and XC and X� , so that each annulus Aj in CA has @Aj DX
j
C�X j

� .

By Proposition 2.2.1, which describes the ‘basic construction’ for links, we know how

to construct the clasp annulus CA. By the results in Section 4 we may assume that

CA supports a braid foliation. In particular, by Proposition 4.5.1 we may assume that

each clasp arc has a normal neighborhood, and that it has been pushed into a union of

leaves. Let c.XC; X�; CA/D .c1; c2/ be the complexity of the triple .XC; X�; CA/,

as defined in Section 5.1. Thus c1 is the number of singularities that are on clasp arcs

and c2 is the number of singularities that are outside normal neighborhoods of the

clasp arcs. The first step is:

Construction of the sequences (1–2) and (1–3) We make as many modifications

as are possible, using only exchange moves on X� and only exchange moves and

destabilizations on XC . With these restrictions, Corollary 5.1.1 tells us that we may find

sequences X�DX 1
�!� � �!X p

� DX 0
� as in (1–2) and XCDX 1

C!� � �!X
q
CDX 0

C

as in (1–3) of the MTWS such that c.X 0
C; X 0

�; CA0/ is minimal up to exchange moves

and destabilizations. Exchange moves preserve braid index and destabilizations reduce

it. Exchange moves and destabilizations are both strictly reducing on c2 . Exchange

moves in the presence of clasp arcs (ie the moves ab? and bb? ) preserve or reduce c1 .

So our sequences are strictly complexity reducing with respect to c.XC; X�; CA/.

We next turn our attention to the construction of the sequence (1–4) of the MTWS. We

begin with a weak version.

Claim For all triplets .X 0
C; X 0

�; CA0/ as above, we may find a sequence

(6–1) X 0
C DX 1!X 2! � � � !X r DX 0

�

which is strictly complexity reducing with respect to c.X 0
C; X 0

�; CA0/ such that every

adjacent pair X i!X iC1 is related by a single destabilization, exchange move, cyclic
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move, G–exchange move or flype. Notice that we do not require that the flypes be

admissible, so that the sequence may not be non-increasing on braid index.

Remark 6.1.1 (a) We draw the reader’s attention to the similarities between this

claim and the discussion at the beginning of Section 5.5 where we dealt with the special

case when CA admits a decomposition into thin annuli. Conceptually, subannuli of

CA that are thin annuli can be thought of as clasp annuli in their own right, because

the boundary components represent X and satisfy the conclusions of Lemma 2.1.1 and

Proposition 4.5.1. What this claim is asserting is that CA0 admits a decomposition

into clasp subannuli. That is, for each pair .X i ; X iC1/, the link X i �X iC1 bounds a

clasp annulus that has its foliation satisfying Proposition 4.5.1. In the same fashion

as in Section 5.5 we use the notation Si for the clasp subannulus associated with

.X i ; X iC1/. The claim then asserts that Si corresponds to one of the following

isotopies: destabilization, exchange move, cyclic move, G–exchange move or flype.

We interrupt the remark to prove the claim.

Proof of the claim The proof is by induction on c.X 0
C; X 0

�; CA0/D .c1; c2/, using

lexicographical ordering.

To begin the induction, assume that .c1; c2/D .0; 0/. Since c1 D 0, it follows that if

there are clasp arcs they must all be short, in which case Lemma 4.2.1 says that we

may eliminate them by braid isotopy. Therefore CA0 is embedded and foliated without

singularities. The foliation then consists entirely of s–arcs. But then X 0
C and X 0

�

represent the same braid isotopy class, and the MTWS is trivially true.

Inductive hypothesis Assume that the complexity of the family of foliated annuli

PA is .c1; c2/. Assume that the claim is true whenever the complexity is less than

.c1; c2/. There are several cases:

Case (a) c1 > 0, and there are long clasp arcs By the construction which was given

in Lemma 5.3.1, we find a family S of subannuli of PA such that each component

supports a thin foliation or is a standard annulus. Some of these components may be

trivially foliated, but since there is at least one long clasp arc they are not all trivially

foliated. If S is the union of standard annuli then we can push across S by a cyclic

move as shown in Section 5.7. Otherwise, S is not trivially foliated but does contain

s–arcs. Then, by Proposition 5.3.2 we may use a sequence of flypes to push X 0
C across

S . (Note: the flypes may not be admissible.) This reduces complexity. By the induction

hypothesis, the claim is true.

Case (b) c1 > 0, but there are no long clasp arcs In the presence of clasp arcs, but

the absence of long clasp arcs, Corollary 5.1.1 tells us that there must be at least one

G–exchange region. Pushing across it reduces complexity.
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Case (c) c1 D 0, but c2 is arbitrary We have already removed all short clasp arcs,

so there are none. But then there also are no normal neighborhoods. The annulus CA is

embedded. By Corollary 5.1.2, each component of PA will either be either an annulus

which is trivially foliated (in which case we are done as before) or there is a component

which is a standard annulus without clasp arcs. In the latter case the motion is realized

by a cyclic template. Again, the claim is true.

While we have found a strictly monotonic complexity-reducing sequence of closed

braids (sequence (6–1)) joining X 0
C to X 0

� , we have not established sequence (1–4) of

the MTWS because we have not established that the braid index is non-increasing.

To deal with this deficiency we introduce the augmented complexity function

C.X 0
C; X 0

�; CA/D .c0; c1; c2/;

where c0D b.X 0
C/ and c1 and c2 are as before. This is the complexity function which

is referred to in the statement of Theorem 2. Notice that:

� Since the sequence (1–2) is complexity-reducing with respect to c.XC; X�; CA/

and since exchange moves preserve braid index, it is complexity-reducing with

respect to C.XC; X�; CA/.

� Since the sequence (1–3) is complexity-reducing with respect to c.XC; X�; CA/

and since destabilizations reduce braid index, it is complexity-reducing with

respect to C.XC; X�; CA/.

Now notice that we can use the braid index entry of our augmented complexity function

to pick out a subsequence of (6–1):

(6–2) XC DX i1 !X i2 ! � � � !X ir DX�

such that 0 < i1 < i2 < � � � < ir and b.X ij / � b.X ij C1/, and for any X k of (6–1)

with ij < k < ijC1 we have b.X k/ > b.X ij /. Since X ij �X ij C1 cobound a clasp

annulus Sij which is the union of the clasp subannuli mentioned in Remark 6.1.1 our

augmented complexity function is non-increasing on the triple .X ij ; X ij C1 ;Sij /. The

properties of sequence (1–4) follow.

Remark 6.1.1 (b) Our decomposition of CA into clasp subannuli Si1[Si2[� � �[Sir

also shows us the origin of templates in T .m/. Specifically, an Sij may be a clasp

subannulus of CA that is the union of any of the types of foliations of Section 5.3.1,

5.5, 5.6 or 5.7 along with destabilization. This gives us a natural decomposition for

T .m/. Let T .m; n/ be the subset of all templates in T .m/ whose initial braid has
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braid index m and whose final braid has braid index n�m. The union of the subsets

T .m; n/; n�m determines T .m/ because:

(6–3) T .m/D T .m; m/ t T .m; m� 1/ t � � � t T .m; 1/

Thus, employing the procedure given in Section 5.4 for constructing a template, we

can use each triple .X ij ; X ij C1 ;Sij / to construct a template in T .b.X ij /; b.X ij C1//.

Moreover, using the triple .XC; X ij C1 ;Si1 [ � � �[Sij / we can construct a template in

T .m; b.X ij C1//. }

Our proof of the MTWS is almost complete, except for two missing facts: the proof

that no block in any template in T .m/ has full braid index, and the proof that T .m/ is

finite. We will deal with the former in Corollary 6.2.1 and with the latter in Proposition

6.3.1.

We emphasize that the destabilization template is not contained in T .m/. On the other

hand, for the remainder of the paper, it will be convenient to think of exchange moves,

admissible flypes and G–exchange moves as templates in T .m/, rather than as separate

moves.

6.2 Cleaning up the templates in T .m/

Our goal is to prove that no block in any template in T .m/ has full braid index, however

we will do that in a setting that yields additional information for later use. The concept

of a block-strand diagram is, at this moment, rather loose. One can imagine that blocks

could be slid around and amalgamated with one-another, and also subdivided. We would

like them to be more canonical. But even if we succeed to make them canonical, a direct

attack on the problem seems difficult. We use a more roundabout approach. When we

organized the moves of the MTWS into three separate subsequences, we separated the

subsequence (1–2), which requires only exchange moves, and the subsequence (1–3),

which requires only exchange moves and destabilizations, from subsequence (1–4),

which requires admissible flypes as well as the more general moves in T .m/. We will

see that, as a consequence, the templates in T .m/ have no blocks whose braid index is

equal to the braid index of the diagram. In fact, we will be able to show more: that

the templates of T .m/ are ‘consolidated’ in a sense that will be made precise below,

with the braid index condition on the blocks being just one of the nice properties of

consolidated templates.

Let D be a block-strand diagram having blocks B and B0 . We use the notation

t; b� @B (resp. t 0; b0� @B0 ) for the top and bottom of B (resp. top and bottom of B0 ).

Recall our use of the term ‘amalgamating blocks’ in Section 5.3.2. We now say that B0
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(resp. B ) can be amalgamated into B (resp. B0 ) if via a braid isotopy we can move

t 0 � b (resp. b � t 0 ). (These are two ways of looking at the same phenomenon.) We

say the blocks of D are consolidated if no two blocks of D can be amalgamated. Next,

let s and s0 be strands in D having endpoints on common blocks (still called) B and

B0 . We say that strands s and s0 are topologically parallel if there exists a rectangular

disc R such that R\DD @RD s[ˇb[s0[ˇt 0 where ˇb � b and ˇt 0 � t 0 . Note that

if strands s; s0 are topologically parallel, it could happen, for example, that s travels

from B to B0 without winding around the axis, but s0 winds about the axis as it does

so. To rule out this sort of complication, we say that s and s0 are braid parallel if they

are topologically parallel and R\AD∅. We say that D is consolidated if the blocks

of D are consolidated and all of its topologically parallel strands are braid parallel.

Proposition 6.2.1 Given a template .DC; D�/ with D� having minimal braid index

there exists a new template .D0
C; D0

�/, where D0
C is obtained from DC via a sequence

of exchange moves and destabilizations; also D0
� is obtained from D� via a sequence

of exchange moves; also D0
C and D0

� are both consolidated block-strand diagrams. In

particular, we can assume that the block-strand diagrams in every template in T .m/

are consolidated.

Proof Let R be a rectangular disc that demonstrates that strands s and s0 are topolog-

ically parallel for, say, DC . We look at the induced foliation of H on R. We can make

the standard assumptions about R being transverse to A and all but finitely many disc

fibers of H being transverse to R. For the finitely many non-transverse disc fibers, we

can assume that each one contains a single saddle singularity. We can then argue that

there are no leaves in the foliation that are circles. The foliation of R can then be seen

as a union of aa–, ab–, bb– and sb–tiles. In particular, since the two sides ˇb and

ˇt 0 can be assumed to be s–arcs, R will either be trivially foliated by s–arcs, or will

contain sb–singularities.

In the case where R is not trivially foliated we assign an arbitrary orientation to R.

We can then talk about the G�;ı graphs of R. We wish to invoke the statements of

Proposition 5.1.1 to simplify the graph of R through a sequence of exchange moves

and destabilizations. Since R is embedded all discs corresponding to those satisfying

statements (5), (6) and (7) of Proposition 5.1.1 will automatically be good. It is clear

that after applying Proposition 5.1.1 repeatedly, R will be trivially foliated, thus our

resulting strands will be braid parallel.

We have a similar argument in the case where our strands are in D� . The only change is

that our application of Proposition 5.1.1 cannot yield any destabilizations because D�

has minimal braid index. This establishes that we can replace a template .DC; D�/ with
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.D0
C; D0

�/ via the sequence mentioned in statements 1 and 2, so that any topologically

parallel strands in D0
C or D0

� are braid parallel.

Next, suppose there are two blocks, B.1/ and B.2/, in the template .D0
C; D0

�/ such

that we can amalgamate B.2/ into B.1/ in, say D0
� . (These blocks may be moving

or fixed.) Such an amalgamation occurs because all of the strands entering the top of

B.2/ are braid parallel and start at the bottom of B.1/. If we could also amalgamate

them in D0
C , then there would be nothing to stop us from doing the amalgamation

in both block-strand diagrams—our template would still be a template and would be

simplified. The obstruction to amalgamating B.2/ into B.1/ in D0
� is that there is no

similar amalgamation of B.2/ into B.1/ in D0
C . But, since the strands entering the

top of B.2/ are all braid parallel in D0
� , they must be topologically parallel in D0

C .

But, we are assuming that all topologically parallel strand in D0
C are braid parallel. So

there is no obstruction. Thus, the block amalgamation is possible. After an iteration of

amalgamations we may assume that .D0
C; D0

�/is consolidated.

Corollary 6.2.1 Let T D .DC; D�/ be a template in T .m/. Then there is no block

B �D� such that b.B/D b.D�/.

Proof Suppose that D� does contain a block B such that the number of strands

entering the top of B or leaving the bottom of B is equal to the braid index of D� .

Then we can amalgamate all other blocks in D� with B . That is, we can push all

braiding of strands immediately before and after B into B , thus making all such

braiding parallel. This allows us to amalgamate any block immediately before or after

B in D� with B . We then iterate this procedure to amalgamate all blocks in D� with

B . After this comprehensive amalgamation the consolidated block-strand diagram D0
�

will have a single block and will still carry X� . By Proposition 6.2.1 we will thus have

gone from XC (carried by DC ) to X� (carried by the consolidated D0
� ) through a

sequence of braid isotopies, exchange moves and destabilizations. But note that these

are the moves that made up the sequences (1–3) and (1–2). This means that our X 0
C of

sequence (1–3) is braid isotopic to our X 0
� of sequence (1–2). Thus, sequence (1–4) is

vacuous and there is no template to construct. We conclude that we can assume that the

templates of T .m/, which are all constructed using sequence (1–4), have no blocks of

full braid index.

Our main goal for this section, the proof that no block in a template in T .m/ has full

braid index, has been achieved. In so-doing, we learned a little bit more: we may assume

that the templates of T .M / are consolidated. In fact, there is still is one more step

we can take to make them more canonical. Referring back to the discussion of Fixed

Blocks in Section 5.3, in the first two paragraphs we used the occurrence of singularities
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in the fibration H to designate fixed blocks. In the third paragraph we then specified

how some of these just-constructed fixed blocks can be amalgamated. Essentially,

we were observing the existence of “missing blocks”. We make this concept and its

implications rigorous below. While this is not necessary for pushing our finiteness

argument forward, it does tie up this loose end coming from Section 5.3. Our brief

detour will end at the end of this subsection.

Let D be a block-strand diagram having braid structure .A; H/. Suppose there exist

3–balls B in the braid structure having a �� Œ0; 1� structure with the discs �� p

contained in fibers of H, 0� p � 1. Assume that int.B/ contains at least one block of

D and intersects only the strands of D , but that B n .B \D/ is not homeomorphic to

an interval cross a 2k –punctured 2–sphere. We call such a 3–ball B a missing block

in D .

Let .DC; D�/ be a template that is consolidated. Then .DC; D�/ is an optimal

template if for every missing block of D� , the ambient isotopy of S3 that takes D� to

DC does not result in an missing block of DC . In fact, we claim that we may assume

that all templates of T .M / are optimal.

To see this, let .DC; D�/D T 2 T .m/ and let fB1; : : : ; Bkg be a complete listing of

all the blocks in T . As before, b.Bi/ is the braid index of the block Bi . We define the

complexity of T to be a lexicographically ordered 2–tuple .k;
Pk

1.n� b.Bi//. Now,

if B� is a missing block of D� that is taken to a missing block BC of DC by the

ambient isotopy of S3 that relates D� and DC then by assumption BC must contain

at least one of the Bi blocks plus something else. That something else could be either

additional blocks or strands of DC that do not intersect Bi in the set BC\DC �BC .

We now replace T 2 T .m/ with a new template

T 0 D .Œ.DC n int.BC//[BC�; Œ.D� n int.B�//[B��/:

Notice that the complexity of T 0 is less than the complexity of T : if BC contains more

than one block then T 0 has fewer blocks than T ; and, if BC contains just one block,

Bi �DC , along with some number of extra strands then m�b.BC/ < m�b.Bi/. In

both situations the complexity is reduced.

It is not hard to see that employing the recipe given in Section 5.4 for producing a

.DC; D�/ from an arbitrary triplet .XC; X�; CA/ does not necessarily produce an

optimal template. We emphasize this point by ending this subsection with a useful

definition which we will need in our finiteness argument.

Let fl1
C; : : : ; lh

Cg be a listing of the components of XC \ CAtiled and, similarly,

fl1
�; : : : ; lh

�g be a listing of the components of X� \ CAtiled such that the isotopy
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across CA has l i
C being taken to l i

� for 1 � i � h. Specifically, there is a com-

ponent Ri � CAtiled that has l i
˙
� @Ri , 1 � i � h. Now, if we collapse each

of the s–arcs of CA � CAtiled to a point we can conceptually think of X� as be-

ing obtained from XC by replacing every l i
C in XC with l i

� , or to abuse notation

Œ.XCn.l1
C[� � �[ lh

C//[.l1
�[� � �[ lh

�/�DX� . (We will continue this abuse of notation

below.)

Recall that by Morton [26, Theorem 1] the conjugacy class of XC is determined by

the link type XC tA. We say that a triplet has unnecessary motion if its complexity

can be reduced in the following manner. Suppose now that there exists a proper subset

fl
i1

C ; : : : ; l
il

Cg � fl
1
�; : : : ; lh

�g such that Œ.XC n .l
i1

C [ � � � [ l
il

C//[ .l i1
� [ � � � [ l il

�/�tA

has the same link type as XC tA. Then let CA0 be the clasp annulus that is obtained

from CA by replacing each component fRi1 ; : : : ;Rilg � CAtiled with an s–band that

is parallel to the strands fl i1
� ; : : : ; l il

�g. Our new clasp annulus is still cobounded by

XC�X� and C.XC; X�; CA0/ < C.XC; X�; CA/.

6.3 The set T .m/ is finite

We return to the main thread of the argument. There is still one very big unanswered

question: how do we know that T .m/ is finite? Proving that it is, in fact, finite, is the

main result in this final subsection. See Proposition 6.3.1. The proof of the MTWS

will follow immediately.

We begin with an investigation of restrictions on the tiling of CA which follow from

the fact that it is a topological annulus. Let W be a vertex in the foliation of PA.

The valence v of W is the number of singular leaves which have an endpoint on

W . Traveling around W in either direction one will encounter a cyclically ordered

sequence .t1; t2; : : : ; tv/ of non-singular leaf types, where each ti is either a˙ or b . If

this sequence includes ˛ edges of type a˙ and v � ˛ edges of type b , then we say

that W has type .˛; v�˛/. Let V .˛; v�˛/ be the number of vertices of valence v

and type .˛; v�˛/ in the foliation of PA. Let E.s/ be the number of s–arcs which

are boundary edges of a band of s–arcs in the foliation of PA. For example, in the

foliated annulus of Figure 43 we have E.s/D 4.

Lemma 6.3.1 The vertices in the foliation of CA satisfy the following restriction:

(6–4) V .1; 1/C 2V .1; 0/C 2V .0; 2/CV .0; 3/D

2E.s/CV .2; 1/C 2V .3; 0/C

1X

vD4

vX

˛D0

.vC˛� 4/V .˛; v�˛/;
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with every term on both the LHS and the RHS non-negative. Notice that every vertex

type appears and is counted, with the following 3 exceptions: vertices of type .1; 2/,

.2; 0/ and .0; 4/ do not appear in this equation because in all three cases the coefficient

.vC˛� 4/D 0:

Proof On each annular component of PA the foliation determines a cellular decom-

position which goes over to a cellular decomposition of S2 on shrinking the 2 boundary

components to points. Letting V; E and F be the number of vertices, edges and tiles,

the fact that �.S2/D 2 shows that on each component of the foliated surface CA we

have V C2�ECF D 2. Each tile has four edges and each edge is an edge of exactly

2 tiles, so that E D 2F . Combining this with the previous equation we learn that

2V DE . Let E.a/, E.b/, and E.s/ be the number of a–, b–, and s–edges, where

we count both aC and a� edges as being type a. Then

(6–5) 2V DE.a/CE.b/CE.s/:

Since

V D

1X

vD1

vX

˛D0

V .˛; v�˛/(6–6)

E.a/D

1X

vD1

vX

˛D0

˛V .˛; v�˛/(6–7)

2E.b/D

1X

vD1

vX

˛D0

.v�˛/V .˛; v�˛/(6–8)

we may combine equations (6–5) through (6–8) to obtain

(6–9)

1X

vD1

vX

˛D0

.4� v�˛/V .˛; v�˛/D 2E.s/:

Rearranging terms, we have proved the lemma.

Our next goal is to learn which of the terms in Equation (6–4) are bounded, and which

terms can grow without bound, when we fix the braid indices b.XC/ and b.X�/.

For a triple .XC; X�; CA/ of minimal complexity with .b.XC/; b.X�//D .m; n/, let

N � PA be the union of all normal neighborhoods of the clasp arcs and let N 0 be

its complement in PA. As before, let V .˛; ˇ/ be the number of vertices of valence v

and type .˛; ˇ/ in the foliation of PA. Let V 0.˛; ˇ/ denote the number of vertices

which are in N 0 and contribute to V .˛; ˇ/.
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Our primary method for accounting for the braid index of the braid XC tX� is by

counting the number of b–arcs in non-singular disc fibers of H. This number is

independent of the choice of the fiber. Let b be a b–arc in CA\H� . Then b has

2 endpoints on A and divides H� into 2 subdiscs, �1 and �2 . In Section 4.5 we

created normal neighborhoods of the clasp arcs, at the expense of introducing lots of

b–arcs into the foliation of CA. Those b–arcs are ones that can always be removed, if

we wish to do so, by reversing the isotopy. We need to make sure that they do not mess

up our counting process. For that reason, we now sharpen the concept of an essential

b–arc. (Up to this point, a b–arc was defined to be essential if it was not inessential. )

� A b–arc b is strongly essential if the interiors of �1 and �2 each contain either

an a˙ – arc or an s–arc. Note that in the creation of normal neighborhoods we

never introduced new strongly essential b–arcs.

� A b–arc b is weakly essential if the interiors of �1 and �2 do not contain a˙

or s arcs. The reason these are only ‘weakly essential’ is because, if their vertex

endpoints are not adjacent on A, then one of discs � or �0 contains a family

of b–arcs and the innermost member of that family will be inessential. Thus

a weakly essential b–arc can always be changed to an inessential b–arc by an

appropriate sequence of isotopies.

� A b–arc b is inessential if v and w are adjacent on A. This implies that neither

�1 nor �2 contains an a� –arcs, an s–arc or a b–arc.

The construction of normal neighborhoods introduces numerous weakly essential b–

arcs in N . There may also be weakly essential b–arcs in N 0 , e.g. b may be in N 0 but

� and/or �0 may contain b–arcs that are in N . For this reason, we refine our count.

We already defined V .˛; ˇ/. Recall that V 0.˛; ˇ/ is the number of vertices which are

in N 0 and contribute to V .˛; ˇ/. Let V e.˛; ˇe/ denote the number of vertices which

are adjacent to ˛ a–arcs and ˇe strongly essential b–arcs. We will obtain the bounds

that we need from V .˛; ˇ/; V 0.˛; ˇ/ and V e.˛; ˇe/

Lemma 6.3.2 The following hold for the individual terms in Equation (6–4), when the

braid indices m and n are fixed and .XC; X�; CA/ has minimal complexity through the

application of exchange moves (applied to XC and X� ) and destabilizations (applied

to XC ):

(1) V .1; 0/ is zero.

(2) V .˛; v�˛/ is zero for ˛ � 2.

(3) If the complexity is minimal, then V 0.0; 2/D V 0.0; 3/D 0:

(4) V e.1; 2/ and V e.0; 4/ are bounded.
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(5) E.s/ is bounded.

(6) V .1; 1/ is bounded.

(7)
P1

ˇD3 V e.1; ˇe/ is bounded.

(8)
P1

ˇD5 V e.0; ˇe/ is bounded.

Remark 6.3.1 We do not obtain bounds for V .0; 2/; V .0; 3/; V .0; 4/; V .1; 2/; V 0.1; 2/

and V 0.0; 4/, and indeed they cannot be bounded. With this observation, we have

accounted for every possible term V .˛; ˇ/ and V 0.˛; ˇ/ for ˛; ˇ � 0. }

Proof We consider the various inequalities in order:

Proof of (1) and (2) These two statements follow from Corollary 5.1.1. Specifically,

statement 1. of Corollary 5.1.1 forces V .1; 0/ to be zero. If there is a vertex v� that

is adjacent to the boundary of PA that contributes to the count of V .˛; v � ˛/ for

˛ � 2 then there are two a� –arcs, a1
� ; a2

� , adjacent to v� that are not isotopic to each

other in the foliation. The subdisc, �.v�/, that a1
� [ a2

� splits off in PA can only

contain 
� clasp arcs. The absence of 
�� makes �.v�/ embedded when considered in

CA. This implies that all components of G�;ı \�.v�/��.V�/ are simply connected,

ie by statement 3. of Corollary 5.1.1 there are no loops in the graphs G�;ı \�.v�/.

This further implies that there exists a path ˛ in either G��;C or G��;� satisfying the

assumptions in statement 2. of Corollary 5.1.1. Since our subdisc does not contain a


�� clasp arc, we get a contradiction of statement 2. We conclude that V .˛; v�˛/ is

zero.

Proof of (3) By Proposition 5.1.1, if a vertex W has type (0,2) or (0,3), and if its link

is a good disc, then that vertex can be removed by changes of foliation followed by

exchange moves, reducing complexity. However, we are assuming minimum complexity.

Therefore no such W exists, unless link.W / is not good, ie it intersects N .

Proof of (4) Suppose that W is a vertex that contributes to the count of V .1; 2/. It

is near XC or X� , so assume that it is adjacent to a strongly essential b–arc. An

example was given in Figure 58(a). In this situation we showed in Figure 58(b) that

the corresponding embedding is a root. Each new block in the root contributes at least

1 to the braid index. This forces the braid index of XC tX� to grow, contradicting

our assumption that it is fixed at mC n. A similar argument applies to V .0; 4/.

Proof of (5) Suppose that E.s/ is unbounded. Then there will be an unbounded num-

ber of singularities of type a�s and/or sb . Notice that there is a direct correspondence

between the number of a�s–singularities and the number of vertices contributing to

V .1; 0/ and V .˛; v�˛/ for ˛� 2. But by statements (1) and (2) we know that V .1; 0/
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and V .˛; v � ˛/; ˛ � 2 are bounded. Thus, the only way that E.s/ can grow is if

there is a growth in the number of singularities of type sb .

Previously in Section 5.3.1 we defined the notion of a complete collection of s–arcs

for thin annuli. We have a similar notion for CA and PA. A (possibly empty) family

of s–arcs SD fs1; : : : ; sl W si � CAg is a complete collection of s–arcs in CA if: (i)

no two s–arcs in the collection split off a sub-band of CA that is foliated entirely by

s–arcs; and, (ii) for any other s–arc s� CA there exists an si 2 S such that s[si splits

off a sub-band of CA that is foliated entirely by s–arcs. It is immediate that cutting CA

open along a complete collection S of s–arcs decomposes CA into a disjoint union of

components that contain in one-to-one correspondence the components of CAtiled and

bands of s–arc.

Now fixing CA, let S to be a complete collection of s–arcs in the foliation. Assume

that E.s/ can be arbitrarily large. We know that the number of components of E.s/

which have angular length � 2� is bounded, because each time that a band of s–arcs

travels completely around A it contributes 1 to b.XC/ and 1 to b.X�/: This means

that all of the growth in the cardinality jCAnSj (which is the same as jCAtiledj) comes

from components C with the angular length of XC \ C and X� \ C being strictly

less than 2� . In particular, for such a component the set of fibers H� for which

H� \ .XC \ C/ 6D∅ coincides with the set of fibers for which H� \ .X� \ C/ 6D∅,

since XC\ C and X�\ C have their endpoints on the same two bs–singularities. We

are thus seeing a growth in the components of CAtiled that are characterized by the

condition:

� There exists an H� 2H with H� \ .X� \ C/D∅; � DC and � :

We conclude that the following holds: Let fC1; : : : ; CJg � CA nS be the set of compo-

nents for which there exists an H� 2H such that H�\.X˙\Cj /D∅ for all 1� j � J.

(Note that there may be a different H� for each Cj .) If E.s/ grows then the index J

must also grow.

Now suppose we have a subcollection of such components fCi1
; : : : ; CiL

g�fC1; : : : ; CJg

such that for every H� 2H we have that H�\Œ
S

1�j�L Cij � contains a strongly essential

b–arc. Then this subcollection contributes to the braid index of XC tX� . Since our

braid index is fixed such subcollections cannot grow in number. Thus, as the index

J grows we can only have growth in a subset fC0
i1

; : : : ; C0
iL0
g � fC1; : : : ; CJg with

the property that there exists a fixed disc fiber H 0
�

with H 0
�
\ Œ

S
1�j�L0 C0

ij
� being a

union of weakly inessential b–arcs. Pushing these weakly essential b–arcs off of H 0
�

we see that the isotopy across the components fC0
i1

; : : : ; C0
iL0
g can be achieved in the

complement of A. Thus, our original triplet .XC; X�; CA/ has unnecessary motion
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and was not of minimal complexity. But, we are assuming that we started with minimal

complexity. Thus, E.s/ cannot grow.

Proof of (6) We refer back to Proposition 5.3.1 to establish the boundedness of

V .1; 1/. If we consider the construction of SC and S� we know from (1) and (2)

of Proposition 5.3.1 that there can be at most m type 1d regions in SC and n type

�1d regions in S� . Each type 1d (resp. �1d ) region in SC (resp. S� ) accounts for

two vertices that contribute to the count of V .1; 1/. So if V .1; 1/ is able to increase it

must be through either the occurrence of type 0d;1 and 0d;2 regions in SC and S� ,

or through the occurrence of a subregion like those in Figure 57. (The distinguishing

feature between the two cases is whether the clasp arc intersecting the region is long

or not.) An increase in the latter will not increase b.XC/C b.X�/ since it will be

associated with a G–exchange move. So we need only consider growth in SC and S� .

If V .1; 1/ is allowed to grow arbitrarily large then there will be one annular component

of PA that will contribute an arbitrarily large number of vertices to the count of V .1; 1/.

Thus, we will have a single component of PA which will contribute an arbitrarily large

number of type 0d;1 or 0d;2 regions to the construction of either SC or S� . Since this

growth occurs on a single component of PA, any two type 0d regions on that PA

component will be adjacent to a common s–band, (an assumption which is needed to

apply (3) and (3 0/ of Proposition 5.3.1).

Focusing on SC , we know from (2) of Proposition 5.3.1 that we cannot have growth

in the number of pairs of type 0d;1 regions and type 0d;2 regions that intersect each

other. From (5) of Proposition 5.3.1 we know that we cannot have a single region (see

R3 in Proposition 5.3.1) which is intersected by a growing number of type 0d regions.

(By Remark 5.3.1 any R3 region in SC or S� will be a fan, which is an assumption

needed for the application of (3) and (3 0 ) of Proposition 5.3.1.)

Thus, we can only have an increase in V .1; 1/ if it comes from a pair of intersecting

regions. Dealing with the growth of V .1; 1/ in SC , we list the possibilities: (i) a type

0d;1 could intersect another type 0d;1 ; (ii) a type 0d;1 could intersect a type 0d;2 ; (iii)

a type 0d;1 (or 0d;2 ) could intersect a type 1d ; or (iv) a type 0d;1 (or 0d;2 ) could

intersect a type �1d . If we have possibility (i), for one of the .1; 1/ vertices the link(v )

will be a good disc and we could have eliminated it by (7) of Proposition 5.1.1. This

violates our minimal complexity assumption, so possibility (i) does not occur. If we

have possibilities (ii) or (iii) then by (2) and (2 0 ) of Proposition 5.3.1 there will be a

contribution of C1 to b.XC/. So these occurrences are bounded.

Finally, we consider the growth of V .1; 1/ in SC through an unbounded number of

occurrences of possibility (iv). Suppose there is growth in pairs of regions .R0;R�1d
/

such that: R0 � SC is a type 0d;2 region; R�1d
� SC is a type �1d region; and
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�.R0/\ �.R�1/ 6D∅. We refer the reader back to Figures 46 and 43, and adapt them

to our purpose at hand. In Figure 43 we see an illustration of a type �1d region. Given

such a region we can perform the inverse of the operation illustrated in the top sketch

of Figure 46 to introduce an inessential b–arc that is positioned as the ‘left most’ b–arc

in R�1d
. (Referring to the type �1d region in Figure 43, as we traverse the black

boundary in the direction of its orientation, with this introduction of an inessential

b–arc, the first first singularity of parity ı will no longer be associated with a clasp

intersection.) Now, if we stabilize XC along this first singularity we will eat into

R�1d
and the remaining portion of R�1d

will be a type 0d;1 region which we call

R0
�1d

. The new stabilized XC we call X 0
C , and we will have b.X 0

C/D b.XC/C 1.

But, since R0 is type 0d;2 and �.R0/\ �.R0
�1d

/ 6D ∅, by (3) of Proposition 5.3.1

we know that this intersection contributes C1 to b.X 0
C/. Since X 0

C came from XC

by a single stabilization we know 2� b.X 0
C/D b.XC/C 1. Thus, if we had x such

.R0;R�1d
/ pairs, for each pair we could have performed a similar stabilization on

XC to produce a braid X 0
C ; and we would know that 2x � b.X 0

C/D b.XC/Cx . This

implies x � b.XC/. So we have bounded V .1; 1/.

Proof of (7) and (8) We study Equation (6–4) and ask which terms can grow without

bound on both sides? By statements (1) and (6) of this lemma we know that the

terms V .1; 0/ and V .1; 1/ on the LHS cannot grow without bound for fixed m and n.

By statement (3) of this Lemma we know that if V .0; 2/ and/or V .0; 3/ on the LHS

grow without bound, then the growth must occur inside the union N of all normal

neighborhoods of clasp arcs. By equation (7) we know that a growth in V .1; 1/ will

force a growth in
P1

ˇD3 V .1; ˇ/ or E.s/.

Passing to the RHS of Equation (6–4), we know from statement (5) that E.s/ cannot

grow without bound, for fixed m; n. By statement (2) we know that V .2; 1/ and

V .3; 0/ are bounded. But then, the only terms which might not be bounded, on the

RHS of Equation (6–4), are those in the double sum. However, of the terms in the

double sum we know from statement (2) that V .˛; v�˛/ is bounded if ˛ � 2.

Suppose that ˇ is bounded but that V .1; ˇ/ increases without bound. This means

that there is some fixed value of ˇ for which there are arbitrarily many vertices of

type .1; ˇ/. An example was illustrated earlier, in Figure 44. In this illustration

vertices U; V; Y; Z are vertices ‘at the bottom’ of a region that is composed of normal

neighborhoods (see the right sketch of Figure 37), and the vertices W; W 00 can be

thought of as ‘coning’ these vertices and their associated singular leaves. (The vertex

W 00 should be thought of in a similar manner.) Then W and W 00 contribute to the

count of V .0; ˇ/ or V .1; ˇ/ and we are able to see the interplay between these terms

and V .0; 2/ and V .0; 3/ in equation (7). The vertices U; V; Y; Z are in N , but are

adjacent to a vertex outside of N . They have valence 2.
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Such a coning idea can be iterated. Referring back to Figure 62, if we imagine

an additional vertex W 000 lying below the black dotted arc we could conceivably

cone W; W 0; W 00 and all of the associated singular leaves to such a W 000 . Since the

number of vertices in the shaded region (vertices like U; V; Y; Z ) can possibly grow,

the number of vertices coning the bottom (or top) of a region composed of normal

neighborhoods can also grow. And, the number of vertices coning the W –flavored

vertices can then also grow, etc. So we see that there is no inherent reason whyP1
ˇD5 V .0; ˇ/ or

P1
ˇD3 V .1; ˇ/ should be bounded. However, we need only establish

that
P1

ˇD5 V e.0; ˇe/ or
P1

ˇD3 V e.1; ˇe/ are bounded.

By construction the vertices that contribute to V e.0; ˇe/ and V e.1; ˇe/ count are

outside normal neighborhoods. We suppose that a growth in them is balanced in

Equation (6–4) by a growth in V .0; 2/ and V .0; 3/ that are associated with the normal

neighborhoods of 
C arcs.

We need to go back to our original construction of CA and extract an embedded

annulus from CA that contains the vertices that contribute to the
P1

ˇD5 V e.0; ˇe/

or
P1

ˇD3 V e.1; ˇe/. We do this by taking a tab neighborhood for each 
� � PA

(see the left sketch of Figure 38) and removing it from PA and its image from CA.

(This is equivalent to stabilizing X� along all of the singular leaves that are in the tab

neighborhoods of the preimages 
� of the clasp arcs.) Through an abuse of notation

(and in keeping with Section 2) we call this embedded annulus AC .

Recall the notation X�; X0; XC;A�;AC from the basic construction in Section 2.

Choose an annular neighborhood A0 of X0 in AC[A� which does not intersect the

clasp arcs. Then A0 is embedded and has X0 as its core circle. Since AC and A�

are both embedded, we may extend them to embedded annuli A0
C D AC [A0 and

A0
�DA�[A0 which have a common framing, also both are embedded and both have

X0 as a core circle. From the construction in Section 2 we know that the algebraic

linking number Lk.X�; X0/D 0. It then follows that the linking number Lk.XC; X0/

is also 0, and so A0
C can be extended to a minimal genus Seifert surface FC (different

from the one which we used in Section 2) having XC as its boundary. Observe that all

of the vertices that contribute to
P1

ˇD5 V .0; ˇ/ or
P1

ˇD3 V .1; ˇ/ are in AC , and so

also are in FC .

Now consider the count
P1

ˇD5 V e.0; ˇe/ on AC � FC , and suppose we have a type

.0; 2/ vertex, v 2AC . The possibilities are: that both of the b–arcs that are adjacent to

v are strongly essential; or one is strongly essential and the other is weakly essential;

or both are weakly essential. (Our notion of weakly essential and strongly essential are

now with respect to the surface FC .) We observe that if we have the last case, when

we eliminate either of the weakly essential b–arcs using an exchange move and the
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surgery in Figure 25, the sum
P1

ˇD5 V e.0; ˇe/ will remain constant. (Referring to the

labeling in Figure 25, any strongly essential b–arcs that were adjacent to the vertex

w1 will be adjacent to the vertex w2 after the surgery. Thus, the essential valence of

w2 will increase by exactly the essential valence of w1 .)

Next, we observe that the count
P1

ˇD5 V e.0; ˇe/ is invariant under our change in

foliation illustrated in Figure 20. This is proved by examining the changes in the

H� –sequence under the change in foliation (which reverses the order of the associated

singularities).

So we allow in AC the conversion of type .0; 3/ vertices to type .0; 2/ vertices, and the

elimination of type .0; 2/ vertices if both of the adjacent b–arcs are weakly essential.

Such alterations to AC keep
P1

ˇD5 V e.0; ˇe/ constant. If the number of type .0; 2/

vertices which we cannot eliminate in this manner is arbitrarily large then, since for

each such vertex there is a strongly essential (with respect to FC ) b–arc, the braid

index of XC will be unbounded. (Basically, AC is forcing the existence of a block and

strand tree of arbitrarily high index as described in Section 5.5.) Since we cannot have

an arbitrarily large number of such type .0; 2/ vertices adjacent to strongly essential

b–arcs, and they balance out
P1

ˇD5 V e.0; ˇe/, this sum must be bounded.

A similar argument applies to
P1

ˇD3 V e.1; ˇe/. Also, we can interchange the role XC

with X� , using A� instead of AC . (A subtle point is that we will have to change the

orientation of A� to match that of X� .) This completes the proof of Lemma 6.3.2.

Remark 6.3.2 It is interesting to note the similarities between (6–4) and [10, Equa-

tion (7)]. Given any Seifert surface, F with Euler characteristic �.F/, assume that F

is tiled by aa–, ab– and bb–tiles. Using the notation introduced earlier for V .˛; ˇ/ ,

we have

(6–10) V .1; 1/C 2V .0; 2/CV .0; 3/D

4�.F/CV .2; 1/C 2V .3; 0/C

1X

vD4

vX

˛D0

.vC˛� 4/V .˛; v�˛/:

In our proof of statements (7) and (8) of Lemma 6.3.2 we used the fact that AC can

be extended to a Seifert surface FC bounded by XC . In Equation (6–4) we noticed

that when dealing with a bounded braid index, growth in the values V .0; 2/, V .0; 3/ is

balanced by growth in the values V .˛; v�˛/ for ˛ D 0; 1 and 4� v . So in Equation

(6–10), if there is any additional growth in the values V ..˛; v�˛/ for 0� ˛ and 4� v

it must be balanced out by (positive) growth in the value ��.FC/. (If there are any

vertices in FC nAC that contribute to the count of V .0; 2/ or V .0; 3/ then by our

argument in [10] they would have been eliminated through changes in foliation and
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exchange moves.) In other words, one can think of AC as being the largest subannuli

in FC such that when Equation (6–10) is specialized to the surface FC nAC , growth

in the sum V .2; 1/C 2V .3; 0/C
P1

vD4

Pv
˛D0.v C ˛ � 4/V .˛; v � ˛/ is balanced

precisely by growth in the genus of FC . As the number of tiles of FC grow the only

way AC � FC can intersect these additional tiles is by s–bands going through aa–

or ab–tiles parallel to the XC boundary. The braiding of s–bands of AC that comes

from them running through aa– or ab–tiles of FC can be seen as accounting for some

of the braiding that occurs in the fixed blocks of a block-strand diagram. }

Proposition 6.3.1 Choose any positive integer m. Then for each fixed positive integer

n � m the set of templates in T .m; n/ is finite. Moreover, while the finitely many

templates in T .m; n/ depend on the braid indices m and n of @A, they do not depend

in any other way on the choice of A.

Proof The idea behind the assertion that T .m/ is finite is that the parts of the foliated

clasp annulus CA which can grow without bound when we fix the braid index of the

boundary are all inside the blocks. In this regard observe that a block of braid index

k < m can contain an unbounded number of distinct k –braids, and of course in any

one example the k –braid assignment to the block contributes to the foliation of CA.

The hard part of the proof is to show that in all cases where aspects of the foliation of

CA grow without bound, the growth in a template T D .DC; D�/ can be understood

as occurring inside the blocks of DC (which are also the blocks of D� ).

We begin by defining a subset of CA which contains precisely the information that

we need to construct a template in T .m/. In this regard we remark that one of the

beautiful features of block-strand diagrams is that most of the detailed information

about the links that they support is concealed in the blocks, however we do not need to

know details of what is in the blocks to construct the templates. Therefore we really

need a rather limited amount of information from the foliation of CA to construct the

templates in T .m/.

A b–arc in CA is said to be near X�; � D˙, if it has a vertex endpoint that meets an

a� –arc. The subset BS of CA which is of interest to us now is the union of all s–arcs

and a˙ arcs in CA, together with all b–arcs which are near XC or X� , enlarged to a

closed neighborhood in CA which is chosen so that its boundary (which include both

XC and X� ) is a union of simple closed curves which are transverse to the foliation

of CA. We call it the boundary support of PA, because it is the subset of PA which

determines the embeddings of DC and D� in 3–space, by Proposition 3.1.1 and the

construction in Section 5.4. In the example in Figure 56 the boundary support includes

everything except the b–arcs which join vertices 5 and 11, and also vertices 2 and 14.

In generic examples BS will be a very small subset of PA.
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By definition BS includes the thin annuli, SC (resp S� ) which are associated to XC

(resp. X� ), and all b–arcs in CA that are near XC tX� . A clasp arc pair .
C; 
�/

in PA induces a clasp arc pair .
C; 
�/ in BS . It follows from the definition of BS

that clasp arcs in CA are in BS if and only if they are doubly long. For, if it happens

that 
 i
� is long but 
 i

�� is not, then BS will be embedded near X� , even though CA

is not embedded near 
 i , and we are studying the part of PA which determines the

embedding of the template in 3–space. Notice further that an s–arc is in CA if and

only if it is in BS . From now on we will drop the parity subscripts for a–arcs when

we talk about the induced foliation on BS .

As before, N � PA be the union of all normal neighborhoods of the clasp arcs and

let N 0 be its complement in PA. Initially, we let Ndl be the union of all normal

neighborhoods of all doubly long clasp arcs in PA. These are the clasp arcs with the

property that we can push XC across it all the way to X� by a sequence of microflypes

that amalgamate to a flype. (Other clasp arcs are not doubly long initially, but may

become doubly long after G–exchange moves.) We enlarge Ndl by adjoining to it

any ab–tile that has only weakly essential b–arcs intersecting the boundary of our

initial Ndl . We allow continual enlargement of Ndl in this fashion until any ab–tile

that intersects Ndl and has only weakly essential b–arcs is also in Ndl . Next, let N 0
dl

be the complement of Ndl in N . Let S be the union of all bands of s–arcs. It will be

convenient to divide the foliation of BS into parts:

� BS1 D S , the union of all bands of s–arcs.

� BS2 D BS \Ndl .

� BS3 D BS \N 0
dl .

� BS4 D BS \N , the intersection of BS with the union of all normal neighbor-

hoods of all clasp arcs.

� BS5 D BS n .BS1 [ BS4/, ie the part of BS that is non-trivially tiled and

outside all of the normal neighborhoods.

If A is a subset of PA, let jAj denote the number of connected components in A.

Claim jBSi j is bounded for i D 1; 2; 3; 4; 5.

Proof of claim jBS1j D jSj is bounded, because every band of s–arcs has 2 s–edges,

but by (5) of Lemma 6.3.2 we know that the number of s–edges in the foliation of CA

is bounded. Suppose next that jBS2j D jBS \Ndlj is unbounded. Since the clasp arcs

in Ndl are doubly long, there must be some connected component of PA split along the

bounded set S which has the property that as one travels along X˙ in this component

one passes from Ndl to N 0
dl an unbounded number of times. However, studying the
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regions in Figure 43 we see that this would violate (4), (5) and (6) of Lemma 6.3.2,

so this cannot happen. The identical argument shows that jBS3j D jBS \N 0
dlj is also

bounded. (Remark: this does not say that there is a bound on the number of clasp arcs,

in fact no such bound exists.) Since BS4 D BS2CBS3 it follows that jBS4j is also

bounded. Since BS5 is the part of BS that is non-trivially tiled and outside the union

of all normal neighborhoods, it follows that as we travel along a component of X˙ we

will intersect components of BS1;BS5 and BS4 . We never pass from a component

of BS5 to another component of BS5 without passing through a component of BS1

or BS4 . Since jBS1j and jBS4j are both bounded, it follows that jBS5j must be

bounded too. This proves the claim.

Our next task is examine the contributions of the components of BSi to DC and D� .

For this we need to investigate in detail (in a more general setting) the construction in

Section 5.4. Recall that to construct a template .DC; D�/ we needed to understand

four aspects of its structure: the moving blocks, the moving strands, the fixed blocks

and the fixed strands. We analyze each separately.

Moving blocks An amalgamating block B will be moved to an amalgamating block

B if and only if B and B are related amalgamating blocks as defined in Section 5.6.

This assumes that they are associated to clasp arcs which are doubly long in PA. Thus

the moving blocks will be associated to Ndl . Note that there may be some choices

involved when we select the amalgamating blocks. We make those choices in such a

way that the set of all moving blocks has minimal cardinality.

The strands of XC which are incorporated into an amalgamating block lie in the black

boundary of Ndl , ie in the subset BS2 of BS . We have already proved that BS2 is

bounded. We know that if a subarc of XC\Ndl is related to a corresponding subarc of

X�\Ndl , then their angular lengths coincide. So let fN1; : : : ; Nr g DNdl be a listing

of all of the components. For each component Ni we define its angular support †Ni to

be the interval Œ�0
i ; �1

i �� Œ0; 2�/ for which � 2 Œ�0
i ; �1

i � iff H�\Œ.XC[X�/\Ni � 6D∅.

Notice that if B and B are related amalgamating blocks then the angular support of

every Ni component that intersects B (or B) must overlap, ie if each component of the

subcollection fNj1
; : : : ; NjR

g�fN1; : : : ; Nr g intersects B then †Nj1
\� � �\†NjR

6D∅.

Since Ndl is a finite set there are a finite number of angular support intervals, and for

those intervals there are only a finite number of possible intersection subsets. Thus,

there are only a finite number of possible moving blocks in any template of T .m; n/.

Moving Strands Every subarc of XC which is away from the bands of s–arcs is

potentially a moving strand, however some of these potential moving strands have been

amalgamated into moving blocks. We separate the surviving moving strands into two

types:
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(a) Moving strands that are the subarcs of XC which are in @Ndl but were not

amalgamated into moving blocks. The finiteness of this set of strands follows

from the argument we used to prove that the number of moving blocks is finite.

(b) Moving strands that are the subarcs of XC which intersect BS5 . Since jBS5j

is bounded, we can restrict ourselves to the strands which intersect a single

component of BS5 .

By Proposition 3.1.1, the embedding of these strands is determined by the ordering and

signs of the vertices and singularities which belong to a tile in BS5 which intersects

XC . If we can show that the number of such vertices is bounded, it will follow that the

number of singularities is also bounded. Since the number of distinct ways to assign

orders and signs to a finite set of vertices and singularities is finite, it will then follow

that the number of possible arrangements of the moving strands in set (b) is bounded.

The vertices in question contribute to the count of V .1; ˇ/, and unfortunately could be

unbounded. For example, since we can have arbitrarily many clasp arcs, the number

of vertices contributing to the count of V .1; 2/ can be arbitrarily high. But, these

vertices are adjacent to weakly essential b–arcs which do not add information to the

positioning of our type (a) or (b) strands. Thus, the only vertices that we need to be

concerned with are the ones that contribute to the count of V e.1; ˇe/. By statement (7)

of Lemma 6.3.2, we know that they are bounded. Thus, there are only a finite number

of possibilities for the positioning of moving strands in any template in T .m; n/.

Fixed blocks The argument here is more subtle than the one for the moving blocks,

because the fixed blocks are associated to bands of s–arcs, and so there is no tiling

to work with. Nevertheless, we can relate the phenomenon of block amalgamation

to the tiling, in the following way. Recall (see the construction in Section 5.4) how

the fixed blocks are formed. Let CA be the clasp annulus and let CAtiled be the part

that is not foliated by s–arcs. Let f�1; : : : ; �r g be a listing of all of the singularities

in BS \ CAtiled . For each � in one of the intervals Œ�i ; �iC1� we know there are no

singularities. For each such � we also know that H� contains a–arcs and b–arcs and

s–arcs. So .H� n ŒH� \ CAtiled�/ is a collection of discs, each containing only s–arcs

(with some discs possibly containing no s–arcs). Each component of the union over

all � 2 Œ�i ; �iC1� of the set f.H� n H� \CAtiled/g has a D2� Œ�i ; �iC1� structure. Let

C be one such component. If C contains bands of s–arcs. amalgamate them into a

single block B.C /. If C contained no bands or just a single band then B.C / is either

vacuous or a single fixed strand.

Now it may happen that there is another connected component C 0 with its associated

block B.C 0/, such that we have the amalgamation condition

(6–11) fs�arcsg\C 0\H�iC1
� fs�arcsg\C \H�iC1

:
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If this happens, amalgamate B.C 0/ and B.C / and delete the singularity at �iC1 , so

that we have a single block B.C [C 0/. (If B.C 0/ was vacuous or a single strand then

B.C [C 0/ is essentially still B.C /.) Continue this amalgamation process as long as

possible. Among all amalgamated blocks discovered in this way, choose one such that

the set of fixed blocks has minimum cardinality. In this way we will have eliminated

some number of singularities, ie the ones which separated the new-amalgamated blocks.

Let �1; : : : ; �p be the angles which remain. We need to show that this listing is

bounded, when b.XC/ and b.X�/ are fixed.

To do this we consider the effect a singularity has in the H� –sequence when weakly

essential b–arcs are used. We refer to Figure 18, where the possibilities for the b–edges

of bb– and ab–tiles are illustrated. Each could be either strongly or weakly essential.

Figure 62: The possibilities for b–edges of bb– and ab–tiles. A black

undotted b–edge means strongly essential A black dotted b–edge means

weakly essential.

First, note that occurrences of aa–singularities will effect the block amalgamation

condition stated previously, ie (6–11) above. So the occurrence of aa–singularities

will register in our listing of remaining angles �1; : : : ; �p . But, by statements (1), (2)

and (3) of Lemma 6.3.2 we will have a bounded number of such singularities.

Second, notice that among the possibilities for bb–tiles, (1) and (2) will not effect our

amalgamation condition, because weakly essential b–arcs split off regions that contain

no s–arcs. This is also true for (1) and (2) in our possibilities for ab tiles.

Thus, the only possibilities that effect the amalgamation condition are (4), (5) and (6)

for bb–tiles, and (3) for ab–tiles.

Now by statements (1), (2), (4), (6), (7) and (8) of Lemma 6.3.2 there are a bounded

number of strongly essential b–arcs in a fixed fiber of H. So there are a bounded

number of singularities that can effect our amalgamation condition. Thus, the growth

in our remaining angles �1; : : : ; �p is bounded. (It is interesting to notice that since
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the tiles in the normal neighborhoods have all of their sides labeled wi they do not

effect the amalgamation condition.)

We have in fact established more than just that there are a finite number of fixed blocks.

We have established that there are only a finite number of possible positions for fixed

blocks. This is because there are only a finite number of positions for vertices that

contribute to the count of V e.˛; ˇe/ and, thus, a finite number of singularities that

correspond to possibilities (3)–(5) for bb tiles and possibilities (2) and (3) for ab tiles.

Therefore any combinatorial information having to do with cyclic ordering of vertices

on A and cyclic ordering of singularities in H is also finite.

Fixed strands If the number of moving blocks, moving strands and fixed blocks

is finite then the number of fixed strands must be finite. Using the observation we

employed to establish the finiteness of positions of fixed blocks, we can establish

finiteness of the positions of fixed strands.

Thus everything is bounded, and so the number of block-strand diagram pairs is bounded.

The proof of Proposition 6.3.1 is complete. But then, so is the proof of Theorem 2.

7 Open problems

(1) As was pointed out in Section 1.1, Markov’s Theorem is just one example of a class

of theorems about 3–manifolds in which some form of stabilization and destabilization

play an important role. A very different and very important example is the Kirby

Calculus [21], relating two surgery representations of a 3–manifold. The stabilization

move is the addition of an unknot with standard framing to the link that is to be surgered.

In this setting, what should be the analogue of the MTWS? Presumably, the first entry

in the complexity function should be the number of components in the surgery link.

But unfortunately, in this regard, we do not know of any tools that could be put to

work, to play the role that was played by the geometry of braid foliations and the group

structure of the braid group in the proof of the MTWS.

(2) There are many analogies between the study of knots via their closed braid repre-

sentatives and the study of 3–manifolds via their Heegaard diagrams (or equivalently

via their ‘Heegaard gluing maps’ in the mapping class group of a closed orientable

surface of genus g ). In the latter setting equivalence classes of Heegaard splittings are

in 1–1 correspondence with double cosets in the mapping class group Mg modulo

the mapping class group Hg of a handlebody. We pose as an open problem to find

moves which (like the moves in T .m/) change the equivalence class of a Heegaard

splitting of a 3–manifold without increasing its Heegaard genus. A strategy for finding
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such moves is given by the second author in [24], however (lacking an invariant) there

is no proof that this strategy actually produces inequivalent splittings. In his PhD

thesis [33] Joel Zablow made a relevant contribution in his study of waves in Heegaard

diagrams. Is there a tool which plays the role of braid foliations in the situation of

Heegaard splittings of 3–manifolds? This seems to be a very interesting area for future

investigations.

(3) We pass to open questions about Theorem 2 of this paper. In principle the templates

in T .m/ can be enumerated, but the actual enumeration is non-routine. We pose this

as an open problem for mD 4; 5 and any other cases which prove to be computable.

A very interesting special case are to classify the templates in T .m; m/. In particular,

these relate any two closed braid representatives when both have minimum braid index.

There should be applications. For example, knowing that the only templates that we

need for braid index 3 are the flype and destabilization templates, it is a simple matter to

classify links which are closed 3–braids (replacing the complicated argument we used

in [11]), and it is to be expected that if T .4/ is computed, then one would learn more

about the classification of links of braid index 4. One could expect many applications,

if such an advance in knowledge could be achieved.

(4) Although actual enumeration of T .m/ may not be routine, if we restrict our

attention to a single type of isotopy such enumeration or characterization may be

reasonably doable. Specifically, referring back to Section 5.7, the characterization of all

knot complements that admit a cyclic move predicated on the existence of an essentially

embedded standard annulus in its complement would be of interest. Moreover, such

knot complements could be divided into two classes: the first class would have the

components of GCC and G�� being homeomorphic to Œ0; 1�; and, the second class

would have the components of GCC and G�� being homeomorphic to S1 . The first

class would use a positive stabilization and destabilization to begin and end the cyclic

move. The second class would use a negative stabilization and destabilization for the

cyclic move. The question is how to determine when a knot is not in both classes, since

the first class corresponds to a transversal isotopy and the second class does not. (See

our article [6].)

(5) In the manuscript [7] the authors proved that an arbitrary closed braid representative

of a composite knot or link may be modified by the use of exchange moves to a prime

summand of the same braid index. We do not know whether the work in that paper

can be incorporated into the proof of the MTWS. The difficulty is that we do not

know whether the splitting 2–sphere which realizes the connect-sum operation can be

modified to one which intersects the clasp annulus CA in a ‘nice’ way.

(6) Some knots or links, for example the unlink [9] and most iterated torus links [25],

have unique closed braid representatives of minimum braid index. On the other hand,
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there are links of braid index 3 which have more than one conjugacy class of 3–braid

representatives [11], and this pathology clearly persists as braid index is increased. We

pose the open problem: find general conditions which suffice for a knot or link type to

have a unique conjugacy class of closed braid representative of minimum braid index.

(7) Referring back to Remark 6.3.2, it would be of interest to understand exactly

how the structure of a minimal genus Seifert surface can restrict the ability of a given

link type having minimal braid index n to be carried by any template of T .m; n/. In

particular, if the Seifert surface has a foliation composed of aa tiles at minimal braid

index is T .m; n/ necessarily empty for all values of m.

(8) There are special knots and links, for example the unlink [9] and most iterated

torus links [25], for which the MTWS is very simple: the moves are simply braid

isotopy and exchange moves. We say that such links are exchange-reducible. Are there

other examples of exchange-reducible links? Does the conclusion hold under weaker

hypotheses?

We remark that by the main result in Birman–Wrinkle [14], if a knot type X is exchange-

reducible, then every transversal knot type T X associated to X is transversally simple,

ie determined up to transversal isotopy by X and the Thurston–Bennequin invariant.

Since G–exchange moves and positive flypes are realized by transversal isotopy, it

would be equally interesting if the condition ‘exchange-reducible’ was weakened to

‘exchange and positive flype-reducible’.

(9) As noted in problem (4) above, the unlink is exchange-reducible. This fact proves

that there exists a monotonic and very rapid (perhaps even a quadratic) algorithm for

recognizing the unlink, through the use of exchange moves. Unfortunately, however,

the complexity function that would translate this existence theorem into a working

algorithm needs new techniques, as the complexity function is concealed in the invisible

family of discs which the unlink bounds. (One of these days the first author will write

a short note to show that it is also concealed in the auxiliary ‘extended braid word’ of

Birman and Hirsch [5].) We note that the unknot recognition algorithms in [5] and

the finite unknot recognition algorithm in the very new paper by Ivan Dynnikov [17],

which is based upon related foliation techniques, are exponential. A vague (but we

feel realistic) problem is to find an ‘energy functional’ (AKA complexity function)

which uses the monotonic reduction process that is guaranteed to exist because of

exchange-reducibility. A wild guess is that it is encoded in notions based upon Ricci

curvature.

(10) The MTWS begins with a choice of a closed braid representative X� 2 X

which has braid index b.X /, however at this writing we do not know how to compute

b.X /. The most useful tool that we know is the ‘Morton–Franks–Williams inequality’,
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however the MFW inequality is doomed to fail in certain situations (see Kawamuro

[20]). An important open problem is to develop new techniques for computing the

braid index of a knot or link. As can be seen from [20], templates can be a very useful

tool.

(11) Conjecture:

� Every block-strand diagram in a template in T .m/ has at least one block.

We remark that our attempts to find a counterexample have been unsuccessful, but

we lack a proof that it cannot happen. Note that the number of counterexamples is

necessarily finite.

(12) In a standard annulus, the graph G�;ı (resp. GC;ı ) is topologically equivalent to

a circle which cobounds with a component of XC (resp. X� ) an embedded annulus.

That annulus is foliated without singularities. From this is follows that, if we regard

G�;ı and GC;ı as defining knots in R
3 , then they will have the same knot type as the

component in question of X . But in fact more can be said. The graph G�;ı (resp. GC;ı )

is a union of arcs, each a branch in a singular leaf, which join up a string of negative

(resp. positive) vertices in a cycle. Each arc lies in a fiber of H and has its endpoints on

A, and so this representation of the component of X has an ‘arc presentation’, in the

sense defined by Cromwell [16] and Dynnikov [17]. Indeed, Ivan Dynnikov has been

engaged in a project which begins with the introduction of braid foliations, and goes

on to study the foliations of the associated Seifert surface bounded by G�;ı and GC;ı ,

adapting the braid foliation machinery in [7] and [9] to arc presentations. One expects

that there will be similar adaptations of the work in this paper to arc presentations,

although the adaptation is almost certainly non-trivial.

One reason why arc presentations are of interest is because they give a filtration of

all knots and links, using the number of arcs as a measure of complexity, and with

that filtration there are always finitely many arc presentations which represent a given

knot type and have complexity at most the complexity of a given example. This fact is

important if one wishes to use the braid foliation machinery to construct algorithmic

solutions to the knot and link problem.
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