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Abstract— Models for a 3D pendulum, consisting of a rigid
body that is supported at a frictionless pivot, were introduced
in a recent 2004 CDC paper [1]. Control problems were
posed based on these models. A subsequent paper, in the
2005 ACC [2], developed stabilizing controllers for a 3D rigid
pendulum assuming three independent control inputs. In the
present paper, stabilizing controllers are developed for a 3D
rigid pendulum assuming that the pendulum has a single axis
of symmetry that is uncontrollable. This assumption allows
development of a reduced model that forms the basis for
controller design and closed loop analysis; this reduced model
is parameterized by the constant angular velocity component of
the 3D pendulum about its axis of symmetry. Several different
controllers are proposed. The first controller, based on angular
velocity feedback only, asymptotically stabilizes the hanging
equilibrium. Then controllers are introduced, based on angular
velocity and reduced attitude feedback, that asymptotically
stabilize either the hanging equilibrium or the inverted equi-
librium. These problems can be viewed as stabilization of a
Lagrange top. Finally, if the angular velocity about the axis of
symmetry is assumed to be zero, controllers are introduced,
based on angular velocity and reduced attitude feedback,
that asymptotically stabilize either the hanging equilibrium
or the inverted equilibrium. This problem can be viewed as
stabilization of a spherical pendulum.

I. INTRODUCTION

Pendulum models have provided a rich source of examples
that have motivated and illustrated many recent developments
in nonlinear dynamics and control. Much of the published
research treats 1D planar pendulum models or 2D spherical
pendulum models or some multi-body version of these. In
a recent paper [1], we summarized a large part of this
published research, emphasizing control design results. In
addition, we introduced a new 3D pendulum model that,
seems not to have been studied in the prior literature.

A closely related paper [2], obtained controllers for a
3D asymmetric rigid pendulum. Controllers were introduced
that were shown to provide asymptotic stabilization of a
reduced attitude equilibrium. The reduced attitude of the
3D rigid pendulum is defined as the attitude or orientation
of the 3D rigid pendulum, modulo rotation about a vertical
axis. Stabilization results are provided in [2] for the hanging
equilibrium, and for the inverted equilibrium.

The present paper continues our research on control of
3D rigid pendula. The pendulum is supported at a pivot that
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is assumed to be frictionless and inertially fixed. The rigid
body is axially symmetric. The location of its center of mass
is distinct from the location of the pivot. Forces that arise
from uniform and constant gravity act on the pendulum. Two
independent control moments are assumed to act about the
two principal axes of the pendulum that are not the axis of
symmetry; in other words, there is no control moment about
the axis of symmetry of the pendulum. This is in contrast to
the assumption of three independent control moments in [2].

We follow the development and notation introduced in
[1]. In particular, the formulation of the models depends on
construction of a Euclidean coordinate frame fixed to the
pendulum with origin at the pivot and an inertial Euclidean
coordinate frame with origin at the pivot. We assume that the
pendulum fixed coordinate frame is selected to be coincident
with the principal axes of the pendulum, and that the center
of mass of the pendulum lies on the axis of symmetry
of the rigid pendulum. We also assume that the inertial
coordinate frame is selected so that the first two axes lie in
a horizontal plane and the “positive” third axis points down.
These assumptions are shown to guarantee that the angular
velocity component about the axis of symmetry of the rigid
pendulum is always constant. This conservation property
allows development of reduced equations of motion for
the 3D axially symmetric pendulum. The resulting reduced
model is expressed in terms of two components of the
angular velocity vector of the pendulum and the reduced
attitude vector of the pendulum.

The control problems that are treated in this paper involve
asymptotic stabilization of an equilibrium of the reduced
equations of motion of the 3D pendulum; this corresponds to
stabilization of a relative equilibrium of the 3D pendulum.
The relative equilibrium corresponds to either the hanging
reduced equilibrium or the inverted reduced equilibrium with
a pure spin about the pendulum’s axis of symmetry.

The main contributions of this paper are the develop-
ment of controllers that asymptotically stabilize the hanging
relative equilibrium, the development of controllers that
asymptotically stabilize the inverted relative equilibrium, and
for the special case that there is zero angular velocity about
the axis of symmetry of the pendulum, development of
controllers that asymptotically stabilize either the hanging
reduced equilibrium or the inverted reduced equilibrium. If
the angular velocity component about the axis of symmetry
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is nonzero, our control results can be compared with other
results in the literature on stabilization of Lagrange tops. If
the angular velocity component about the axis of symmetry
is zero, our control results can be compared with other results
in the literature on stabilization of spherical pendula. In all
of these cases, our proposed stabilization results are new.

The results are derived using novel Lyapunov functions
that are suited to the geometry of the 3D axially symmetric
pendulum. An important feature of the development is that
the results are stated in terms of a global representation of
the reduced attitude. In particular, we avoid the use of Euler
angles and other non-global attitude representations. This
work compares with [3], wherein PD control laws for sys-
tems evolving over a Riemannian manifold were proposed.
In contrast with the PD-based laws in [3] that generally
give a conservative domain of attraction, we provide almost
global asymptotic stabilization results; see [2] for definition
of almost global asymptotic stabilization. Finally, we note
that results in this paper provide almost global asymptotic
stabilization in a direct way using relatively simple non-
linear controllers. This approach avoids the artificial need
to develop a “swing-up” controller, a locally asymptotically
stabilizing controller, and a strategy for switching between
the two as in [4], [5].

II. MODELS OF THE 3D AXIALLY SYMMETRIC

PENDULUM

In this section we introduce reduced models for the con-
trolled 3D axially symmetric pendulum, and we summarize
important stability properties of the uncontrolled 3D axially
symmetric pendulum.

Since the pendulum is assumed to be axially symmetric,
there is no loss of generality in assuming that the inertia
matrix is J = diag(Jt, Jt, Ja). Let ρ denote the vector
from the pivot to the center of mass of the pendulum; in
the pendulum fixed coordinate frame it is a constant vector
given by ρ = (0, 0, ρs)T, where ρs is a nonzero scalar. The
angular velocity vector of the pendulum is denoted by ω =
(ωx, ωy, ωz)T, expressed in the pendulum fixed coordinate
frame. As introduced in [1] the reduced attitude vector of
the pendulum is formally defined as the unit vector pointing
in the direction of gravity, expressed in the pendulum fixed
coordinate frame. The reduced attitude vector is denoted by
Γ = (Γx, Γy, Γz)T.

Euler’s equations in scalar form for the rotational dy-
namics of the 3D axially symmetric pendulum, taking into
account the moment due to gravity and the control moments,
are

Jtω̇x = (Jt − Ja)ωzωy − mgρsΓy + τx, (1)

Jtω̇y = (Ja − Jt)ωzωx + mgρsΓx + τy, (2)

Jaω̇z = 0. (3)

Here τx and τy denote the control moments. The rotational
kinematics of the 3D pendulum can be expressed in terms

of the reduced attitude vector according to the three scalar
differential equations

Γ̇x = Γyωz − Γzωy, (4)

Γ̇y = −Γxωz + Γzωx, (5)

Γ̇z = Γxωy − Γyωx. (6)

This model can be viewed as defining the motion of the 3D
pendulum on the quotient space TSO(3)/S1. It is sufficient
to view the motion of the 3D pendulum as evolving on R

3×
S2, where Γ ∈ S2, according to equations (1)–(6).

It is clear that the above equations cannot be asymptoti-
cally stabilized in any meaningful sense. Clearly equation (3)
implies that the angular velocity component about the axis of
symmetry of the pendulum is ωz = c where c is a constant.
Reduction in this case is easily achieved by ignoring equation
(3) and substituting ωz = c into equations (1), (2) and (4),
(5). This leads to the reduced dynamics equations

Jtω̇x = c(Jt − Ja)ωy − mgρsΓy + τx, (7)

Jtω̇y = c(Ja − Jt)ωx + mgρsΓx + τy, (8)

and the reduced kinematics equations

Γ̇x = cΓy − Γzωy, (9)

Γ̇y = −cΓx + Γzωx, (10)

Γ̇z = Γxωy − Γyωx. (11)

We again note that this model can be viewed as defining
the reduced motion of the 3D pendulum on R

2 ×S2, where
Γ ∈ S2 according to equations (7)–(11).

The uncontrolled equations (7)–(11) have two distinct
equilibrium solutions, namely ωx = ωy = 0, Γ = Γh =
[0, 0, 1], and ωx = ωy = 0, Γ = Γi = [0, 0,−1]. The first
equilibrium is referred to as the hanging equilibrium, since
the center of mass of the pendulum is directly below the
pivot. The second equilibrium is referred to as the inverted
equilibrium, since the center of mass of the pendulum is di-
rectly above the pivot. Note that these are relative equilibrium
solutions of the uncontrolled equations (1)–(6) corresponding
to a pure spin of the pendulum about its axis of symmetry.
It can be shown using standard Lyapunov analysis that the
hanging equilibrium of (1)–(6) is stable in the sense of
Lyapunov, and the inverted equilibrium of (1)–(6) is unstable.

We next present a result for the Lyapunov stability of the
hanging and inverted equilibrium of (7)–(11).

Theorem 1: Consider the 3D axially symmetric pendu-
lum given by the equations (7)–(11). Then the hanging
equilibrium is Lyapunov stable for all c ∈ R and the
inverted equilibrium is Lyapunov stable if and only if J2

ac2 ≥
4mgρsJt.

Thus, the equilibrium of the uncontrolled system (7)–(11)
is at best, Lyapunov stable. This background provides mo-
tivation for study of controllers that asymptotically stabilize
either the hanging equilibrium or the inverted equilibrium.
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III. STABILIZATION OF THE HANGING EQUILIBRIUM OF

THE LAGRANGE TOP

In this section we assume that the constant angular velocity
c �= 0. In this case, the 3D axially symmetric pendulum
described by equations (7)–(11) is effectively a Lagrange top;
hence that terminology is used in this section. We propose
two classes of feedback controllers that asymptotically stabi-
lize the hanging equilibrium of the reduced model described
by equations (7)–(11). The first result is based on feedback
of the angular velocity of the top. The second result is based
on feedback of both angular velocity and the reduced attitude
of the top. In each case, we obtain almost global asymptotic
stability.

We begin by considering controllers based on feedback of
the angular velocity of the form

τx = −ψx(ωx), (12)

τy = −ψy(ωy), (13)

where ψx : R �→ R and ψy : R �→ R are C1 functions
satisfying the sector inequalities

ε1|x|2 ≤ {xψx(x), xψy(x)} ≤ ε2|x|2, ∀x ∈ R, (14)

where ε2 ≥ ε1 > 0 and ψ′
x(0), ψ′

y(0) > 0.

Lemma 1: Consider the 3D axially symmetric pendulum
given by equations (7)–(11). Let (ψx, ψy) be C1 functions
satisfying (14) and choose τx and τy as in (12)–(13). Then
the hanging equilibrium of (7)–(11) is asymptotically stable.
Furthermore, for every ε ∈ (0, 2mgρs), all solutions of the
closed loop system given by (7)–(11) and (12)–(13), such
that (ωx(0), ωy(0), Γ(0)) ∈ Hε, where

Hε =
{

(ωx, ωy, Γ) ∈ (R2 × S2) :
1
2

[
Jt(ω2

x + ω2
y)

+ mgρs‖Γ − Γh‖2
]
≤ 2mgρs − ε

} (15)

satisfy (ωx(t), ωy(t),Γ(t)) ∈ Hε, t ≥ 0, and lim
t→∞ωx(t) = 0,

lim
t→∞ωy(t) = 0 and lim

t→∞Γ(t) = Γh.

Proof: Consider the closed loop system given by (7)–
(11) and (12)–(13). We propose the following candidate
Lyapunov function

V (ωx, ωy, Γ) =
1
2

[
Jt(ω2

x + ω2
y) + mgρs‖Γ − Γh‖2

]
. (16)

Note that the Lyapunov function is positive definite on R
2×

S2 and V (0, 0, Γh) = 0. Furthermore, the derivative V̇ along
a solution of the closed loop is given by

V̇ (ωx, ωy, Γ) = −ωxψx(ωx, ωy) − ωyψy(ωx, ωy),
≤ −ε1(ω2

x + ω2
y) ≤ 0,

where the last inequality follows from (14). Thus V is
positive definite and V̇ is negative semidefinite on R

2 ×S2.

Next, consider the sub-level set given by Hε ={
(ωx, ωy,Γ) ∈ (R2 × S2) : V (ωx, ωy, Γ) ≤ 2mgρs − ε

}
.

Note that the compact set Hε contains the hanging

equilibrium (0, 0, Γh). Since V̇ (ωx, ωy, Γ) ≤ 0 on Hε,
all solutions such that (ωx(0), ωy(0), Γ(0)) ∈ Hε satisfy
(ωx(t), ωy(t), Γ(t)) ∈ Hε for all t ≥ 0. Thus, Hε is an
invariant set for solutions of the closed loop.

Next, from LaSalle’s invariant set theorem, we obtain that
the solutions satisfying (ωx(0), ωy(0), Γ(0)) ∈ Hε converge
to the largest invariant set in {(ωx, ωy, Γ) ∈ Hε : (ωx, ωy) =
(0, 0)}. Thus, ωx ≡ ωy ≡ 0 implies that Γx = Γy = 0 and
Γ̇z = 0 and hence, Γz = ±1. Thus, as t → ∞, either
Γ → Γh or Γ → Γi. However, since (0, 0, Γi) �∈ Hε, it
follows that Γ → Γh as t → ∞. Thus, (0, 0,Γh) is an
asymptotically stable equilibrium of the closed loop given by
(7)–(11) and (12)–(13), with Hε as a domain of attraction.

We next, strengthen the conclusions of Lemma 1 to show
that the domain of attraction is almost global.

Theorem 2: Consider the 3D axially symmetric pen-
dulum given by equations (7)–(11). Let (ψx, ψy) be C1

functions satisfying (14). Choose τx and τy as in (12)–
(13). Then, all solutions of the closed loop system given
by (7)–(11) and (12)–(13), such that (ωx(0), ωy(0),Γ(0)) ∈
(TSO(3)/TS1)\M satisfy lim

t→∞ωx(t) = 0, lim
t→∞ωy(t) = 0

and lim
t→∞Γ(t) = Γh. Here, M, a set of Lebesgue measure

zero, is the stable manifold of the closed loop inverted
equilibrium.

Proof: We present an outline of the proof. Denote

N =
{

(ωx, ωy, Γ) ∈ (R2 × S2) :
1
2

[
Jt(ω2

x + ω2
y)

+ mgρs‖Γ − Γh‖2
]
≤ 2mgρs

} (17)

Then, as in Lemma 2 in [2], it can be shown that all
solutions of the closed loop (7)–(11) and (12)–(13), sat-
isfying (ωx(0), ωy(0), Γ(0)) ∈ ∂N\{(0, 0, Γi)} enter the
set Hε in Lemma 1, for some ε > 0, in finite time.
Next, from Lemma 1 and the definition of N, we note
that for every ε ∈ (0, 2mgρs) and (ωx(0), ωy(0), Γ(0)) ∈
Hε

⋃ (
∂N\{(0, 0, Γi)}

)
, ω(t) → 0 and Γ(t) → Γh as

t → ∞. Now, since N =
⋃

ε∈(0,2mgρs)

(
Hε

⋃
∂N

)
, it

follows that all solutions satisfying (ωx(0), ωy(0), Γ(0)) ∈
N\{(0, 0,Γi)} converge to the hanging equilibrium.

Next, it can be shown that all solutions of the closed loop
(7)–(11) and (12)–(13), enter the set N in finite time. Hence
all solutions either converge to the inverted equilibrium, or
the hanging equilibrium. Thus, it is sufficient to show that
the stable manifold of the inverted equilibrium (0, 0, Γi), has
dimension less than the dimension of TSO(3)/TS1 i.e. four,
since all other solutions converge to the hanging equilibrium.

Using linearization, it can be shown that the equilibrium
(0, 0, Γi) of the closed loop is unstable and hyperbolic
with nontrivial stable and unstable manifolds. Hence, from
Theorem 3.2.1 in [6], it follows that the dimension of the
stable manifold is less than four, so that the domain of
attraction in Theorem 2 is (TSO(3)/TS1)\M, where M is
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the stable manifold and hence, the result follows.

Theorem 2 provides conditions under which the hanging
equilibrium of the Lagrange top is made asymptotically
stable by feedback of the angular velocity. Any controller of
the form (12) and (13) can be viewed as providing damping
injection. In Lemma 1, the hanging equilibrium of the closed
loop has a domain of stability that is easily computed. In
Theorem 2, the domain of attraction is almost global.

Next, we consider controllers based on feedback of the
angular velocity and the reduced attitude. These controllers
provide more design flexibility than the controllers that
depend on angular velocity only; hence they can provide
improved closed loop performance.

Theorem 3: Consider the 3D axially symmetric pendu-
lum given by equations (7)–(11) with c �= 0. Let Φ : [0, 1) �→
R be a C1 function such that Φ(0) = 0, Φ′(x) > 0 if x �= 0,
and Φ(x) → ∞ as x → 1. Furthermore, let (ψx, ψy) be C1

functions satisfying the inequality given in (14). Choose

τx = −ωx + ψx

(
(Γz − 1)Γy

)
− c(Jt − Ja)ωy

+ Jt(Γz − 1)(−cΓx + Γzωx)ψ′
x

(
(Γz − 1)Γy

)

+ (Γz − 1)ΓyΦ′
(

1
4 (Γz − 1)2

)
+ mgρsΓy, (18)

τy = −ωy + ψy

(
(1 − Γz)Γx

)
− c(Ja − Jt)ωx

+ Jt(Γz − 1)(cΓy − Γzωy)ψ′
y

(
(1 − Γz)Γx

)

− (Γz − 1)ΓxΦ′
(

1
4 (Γz − 1)2

)
− mgρsΓx. (19)

Then (ωx, ωy, Γ) = (0, 0, Γh) is an equilibrium of the closed
loop given by (7)–(11) and (18)–(19) that is asymptotically
stable with R

2 ×
(
S2\ {Γi}

)
as a domain of attraction.

Proof: Consider the system represented by (7)–(11)
and (18)–(19). We propose the following candidate Lyapunov
function.

V (ωx, ωy, Γ) =
Jt

2

[
ωx − ψx

(
(Γz − 1)Γy

)]2

+
Jt

2

[
ωy − ψy

(
(1 − Γz)Γx

)]2

+ 2Φ
(

1
4
(Γz − 1)2

)
.

Note that the above Lyapunov function is positive definite
on R

2 × S2 with V (0, 0, Γh) = 0.

Suppose that (ωx(0), ωy(0), Γ(0)) �= (0, 0, Γi). Comput-
ing the derivative of the Lyapunov function along a solution
of the closed loop, we obtain

V̇ (ωx, ωy, Γ) ≤ −
[
ωx − ψx

(
(Γz − 1)Γy

)]2

−
[
ωy − ψy

(
(1 − Γz)Γx

)]2

− ε1Φ′
(

1
4
(Γz − 1)2

)
(Γz − 1)2(Γ2

x + Γ2
y) ≤ 0. (20)

Thus, V̇ is negative semidefinite and hence, each solution
remains in the compact invariant set K = {(ωx, ωy,Γ) ∈
R

2 × S2 : V (ωx, ωy, Γ) ≤ V (ωx(0), ωy(0),Γ(0))}.

Since V̇ is negative semidefinite and Φ satisfies Φ′(x) > 0
if x �= 0, we obtain that, (Γz − 1)Γy → 0, (Γz − 1)Γx → 0,
ωx → ψx(0) = 0 and ωy → ψy(0) = 0 as t → ∞. The
last two limit properties follow from the properties of the
function ψi(·), i ∈ {1, 2} and Sandwiching theorem for the
limit of a function.

Furthermore, by LaSalle’s invariant set theorem, each
solution converges to the largest invariant set M ⊆
{(ωx, ωy, Γ) ∈ K : ωx = ωy = 0, (Γz − 1)Γy =
0, (Γz − 1)Γx = 0}. Since, any closed-loop solution of
(7)–(11) in M satisfies ωx ≡ ωy ≡ 0, we obtain that the
solution also satisfies Γz = constant.

Next, (Γz − 1)Γy ≡ (Γz − 1)Γx ≡ 0 yields either
Γz = 1, in which case Γ = Γh, or it yields Γx = 0 and
Γy = 0, and hence, Γ = Γh or Γ = Γi. However, since
V (ωx(t), ωy(t), Γ(t)) ≤ V (ωx(0), ωy(0),Γ(0)), therefore
Γ(t) �= Γi for all t > 0. Thus, Γi �∈ M. Hence, Γ = Γh.
Thus, the only solution of the closed-loop contained in the
invariant set M is ωx = ωy = 0 and Γ = Γh.

Theorem 3 provides conditions under which the hanging
equilibrium of the Lagrange top can be made almost-globally
asymptotically stable by feedback of the angular velocity and
feedback of the reduced attitude of the top. Any controller
of the form (18) and (19) requires knowledge of the axial
and transverse principal moments of inertia, mass, location
of the center of mass, and spin rate of the Lagrange top.

IV. STABILIZATION OF THE INVERTED EQUILIBRIUM OF

THE LAGRANGE TOP

As in the previous section, we assume that the constant
c �= 0, so that the 3D axially symmetric pendulum described
by equations (7)–(11) is effectively a Lagrange top. We now
propose feedback controllers that almost-globally asymp-
totically stabilize the inverted equilibrium of the reduced
equations (7)–(11). The result is based on feedback of both
angular velocity and the reduced attitude of the top.

Theorem 4: Consider the 3D axially symmetric pendu-
lum given by equations (7)–(11) with c �= 0. Let Φ : [0, 1) �→
R be a C1 function such that Φ(0) = 0, Φ′(x) > 0 if x �= 0,
and Φ(x) → ∞ as x → 1. Furthermore, let (ψx, ψy) be C1

functions satisfying the inequality given in (14). Choose

τx = −ωx + ψx

(
(1 + Γz)Γy

)
− c(Jt − Ja)ωy

+ Jt(Γz + 1)(−cΓx + Γzωx)ψ′
x

(
(1 + Γz)Γy

)

+ (Γz + 1)ΓyΦ′
(

1
4 (Γz + 1)2

)
+ mgρsΓy, (21)

τy = −ωy + ψy

(
− (Γz + 1)Γx

)
− c(Ja − Jt)ωx

+ Jt(Γz + 1)(cΓy − Γzωy)ψ′
y

(
− (Γz + 1)Γx

)

− (Γz + 1)ΓxΦ′
(

1
4 (Γz + 1)2

)
− mgρsΓx. (22)

Then (ωx, ωy, Γ) = (0, 0, Γi) is an equilibrium of the closed
loop given by (7)–(11) and (21)–(22) that is asymptotically
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stable with R
2 ×

(
S2\ {Γh}

)
as a domain of attraction.

Proof: Consider the system represented by (7)–(11) and
(21)–(22) and consider the following Lyapunov function.

V (ωx, ωy,Γ) =
Jt

2

[
ωx − ψx

(
(Γz + 1)Γy

)]2

+
Jt

2

[
ωy − ψy

(
− (Γz + 1)Γx

)]2

+ 2Φ
(

1
4
(Γz + 1)2

)
.

(23)

Note that the above Lyapunov function is positive definite
and proper on R

2 × S2 with V (0, 0,Γi) = 0.

Suppose that (ωx(0), ωy(0),Γ(0)) ∈ R
2 ×

(
S2\ {Γh}

)
.

Computing the derivative of the Lyapunov function along a
solution of the closed loop, we obtain

V̇ (ωx, ωy, Γ) ≤ −
[
ωx − ψx

(
(Γz + 1)Γy

)]2

−
[
ωy − ψy

(
− (Γz + 1)Γx

)]2

− ε1Φ′
(

1
4
(Γz + 1)2

)
(Γz + 1)2(Γ2

x + Γ2
y) ≤ 0. (24)

Thus, V̇ is negative semidefinite and hence, each solution
remains in the compact invariant set K = {(ωx, ωy,Γ) ∈
R

2 × S2 : V (ωx, ωy, Γ) ≤ V (ωx(0), ωy(0),Γ(0))}.

The remainder of the proof follows exactly the arguments
used in Theorem 3. The only solution of the closed-loop
system of (7)–(11) and (21)–(22) such that (Γz +1)Γy → 0,
(Γz + 1)Γx → 0, ωx → ψx(0) = 0 and ωy → ψy(0) = 0 as
t → ∞ is the inverted equilibrium (ωx, ωy, Γ) = (0, 0, Γi).

Theorem 4 provides conditions under which the inverted
equilibrium of the Lagrange top can be made asymptotically
stable by feedback of the angular velocity and feedback of
the reduced attitude of the top. Any controller of the form
(21) and (22) requires knowledge of the axial and transverse
principal moments of inertia, mass, location of the center
of mass, and spin rate of the Lagrange top. The inverted
equilibrium of the top is guaranteed to have an almost-global
domain of attraction. These results can be compared with the
extensive literature on stabilization of Lagrange tops; see for
example [7], [8]. The results in Theorem 4 are substantially
different from any of these cited results on stabilization of a
Lagrange top.

V. STABILIZATION OF THE INVERTED EQUILIBRIUM OF

THE SPHERICAL PENDULUM

In this section we assume that the angular velocity ωz is
a constant c = 0. In this case, the 3D axially symmetric
pendulum described by equations (7)–(11) is effectively a
spherical pendulum; hence that terminology is used in this
section. We propose feedback controllers that asymptotically
stabilize the inverted equilibrium of the reduced model
described by equations (7)–(11). Since ωz = c = 0 it
corresponds to an equilibrium manifold of the complete

model (1)–(6). The result is based on feedback of both
angular velocity and the reduced attitude of the spherical
pendulum. The development in this section is easily modified
to provide an almost globally stabilizing controller for the
hanging equilibrium.

Theorem 5: Consider the 3D axially symmetric pendu-
lum given by equations (7)–(11) with c = 0. Let Φ : [0, 1) �→
R be a C1 function such that Φ(0) = 0, Φ′(x) > 0 if x �= 0,
and Φ(x) → ∞ as x → 1. Furthermore, let (ψx, ψy) be
C1 functions satisfying the inequality given in (14). Assume
ωz(0) = c = 0, and let

y1 � (1 + Γz)Γy, (25)

y2 � (1 + Γz)Γx. (26)

τx = mgρsΓy + Jtψ
′
x(y1)ẏ1 − (ωx − ψx(y1))

+ y1Φ′
(

1
4
(Γz + 1)2

)
, (27)

τy = − mgρsΓx + Jtψ
′
y(y2)ẏ2 − (ωy − ψy(y2))

+ y2Φ′
(

1
4
(Γz + 1)2

)
, (28)

where ẏ1 and ẏ2 are obtained by differentiating (25) and
(26) and substituting from (9)–(11). Then (0, 0, Γi) is an
equilibrium of the closed loop given by (7)-(11) and (27)-
(28) that is asymptotically stable with R

2 ×
(
S2\{Γh}

)
as

a domain of attraction.

Proof: Consider the system given by (7)–(11) and (27)-
(28). We propose the following candidate Lyapunov function.

V (ω, Γ) =
Jt

2
[ωx − ψx(y1)]2 +

Jt

2
[ωy − ψy(y2)]2

+ 2Φ
(

1
4
(Γz + 1)2

)
.

(29)

Note that the above Lyapunov function is positive definite on
R

2 × S2 and V (0, Γi) = 0. Furthermore, V (ωx, ωy, Γ) is a
proper function on R

2 × S2. Next, computing the derivative
of the Lyapunov function along a solution of the closed loop,
we obtain

V̇ (ω, Γ) ≤ −(ωx − ψx(y1))2 − (ωy − ψy(y2))2

− ε1Φ′
(

1
4
(Γz + 1)2

)
(y2

1 + y2
2) ≤ 0. (30)

Thus, V̇ is negative semidefinite and hence, each solution
remains in the compact invariant set K = {(ωx, ωy,Γ) ∈
R

2 × S2 : V (ωx, ωy, Γ) ≤ V (ωx(0), ωy(0), Γ(0))}. Next,
since V̇ is negative semidefinite and from properties of Φ(·),
we obtain that, y1 → 0, y2 → 0, ωx → ψx(0) = 0 and ωy →
ψy(0) = 0 as t → ∞. The last two limit equalities follow
from the Sandwiching theorem for the limit of a function.

Furthermore, by LaSalle’s invariant set theorem, the
solution converges to the largest invariant set M ⊆
{(ωx, ωy, Γ) ∈ K : ωx = ωy = 0, y1 = 0, y2 = 0}.
Since, any closed-loop solution in M satisfies ωx ≡ ωy ≡ 0,
we obtain that the solution also satisfies Γ = constant.
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Next, y1 ≡ y2 ≡ 0 yields either Γz = −1, in which case
Γ = Γi, or it yields Γx = 0 and Γy = 0 which implies that
Γ = Γi or Γ = Γh. However, since V (ωx(t), ωy(t), Γ(t)) ≤
V (ωx(0), ωy(0), Γ(0)), therefore Γ(t) �= Γh for all t ≥ 0.
Thus, (0, 0, Γh) �∈ M. Hence, Γ = Γi. Thus, the only
solution of the closed loop contained in the invariant set M,
is ωx = ωy = 0 and Γ = Γi.

Theorem 5 provides conditions under which the inverted
equilibrium of the spherical pendulum can be made asymp-
totically stable by feedback of the angular velocity and
feedback of the reduced attitude of the spherical pendulum.
Any controller of the form (27) and (28) requires knowledge
of the transverse (but not the axial) principal moment of
inertia, the mass, and the location of the center of mass of
the spherical pendulum. Theorem 5 provides a means for
stabilizing the inverted equilibrium of the spherical pendulum
with an almost global domain of attraction.

This is a new result for stabilization of the spherical pen-
dulum. The results in Theorem 5 are substantially different
from similar results on stabilization of spherical pendulums
that have appeared in prior literature [5], [9], [10]. Our
results provide an almost-globally stabilizing controller that
avoids the need to construct a swing-up controller, a locally
stabilizing controller, and a switching strategy between the
two. In this comparative sense, our results are direct and
simple.

VI. SIMULATION RESULTS

In this section, we present simulation results for specific
controllers that stabilize the inverted equilibrium of the La-
grange top and the spherical pendulum. Consider the model
(7)–(11), where m = 140 kg, ρ = (0, 0, 0.5)T m and J =
diag(40, 40, 50) kg-m2. We choose Φ(x) = −5 ln(1 − x),
ψx(u) = 3u, and ψy(u) = 3u.

Consider a Lagrange top with spin rate about its axis of
symmetry c = 1 rad/sec. The controller is given by (21) and
(22) with the above specifications, so that it stabilizes the
inverted equilibrium, Γi = (0, 0,−1). The initial conditions
are ω(0) = (1, 3, 1)T rad/s and Γ(0) = (0.1, 0.5916, 0.8)T.
Simulation results in Figure 1 illustrate that ωx(t) → 0,
ωy(t) → 0 and Γ(t) → Γi as t → ∞.

Now consider a spherical pendulum with controller given
by (27) and (28) with the above specifications, so that it
stabilizes the inverted equilibrium. The initial conditions are
ω(0) = (1, 3, 0)T rad/s and Γ(0) = (0.1, 0.5916, 0.8)T.
Simulation results in Figure 2 illustrate that ωx(t) → 0,
ωy(t) → 0 and Γ(t) → Γi as t → ∞.
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Fig. 1. Swing-up motion of the vector between the pivot and the center
of mass of the Lagrange top in the inertial frame.

Fig. 2. Swing-up motion of the vector between the pivot and the center
of mass of the spherical pendulum in the inertial frame.
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