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ABSTRACT This paper investigates the stabilization problem of fractional order systems with both model

uncertainty and external disturbance. By combining the linear feedback control method, the dynamic

feedback control method, and the uncertainty and disturbance estimator (UDE)-based control method,

respectively, two new UDE-based control methods are developed. Using these methods, the fractional

order systems can be stabilized by three steps. In the first step, the linear feedback and dynamic feedback

controllers are designed to stabilize the nominal fractional order systems. The second step is to design a

UDE-based fractional order controller to estimate themodel uncertainty and external disturbance. In the third

step, the two controllers are combined into a new controller to realize the stabilization of those fractional

order systems. Finally, a numerical example is given to verify the correctness and validity of the proposed

methods.

INDEX TERMS Fractional order system, stabilization, linear feedback, dynamic feedback, UDE.

I. INTRODUCTION

Although fractional calculus has a history of more than

300 years, its development is slow due to its lack of prac-

tical application background. Nevertheless, fractional order

systems (FOSs) can also perform well in some practical

problems, and many systems in reality have fractional order

dynamic behavior, so the research on FOSs develops rapidly.

FOSs play an important role in many aspects, such as signal

processing, image processing, automatic control, robotics,

and so on [1]—[6]. For FOSs, there are many different

kinds of control problems, such as stabilization, synchro-

nization, anti-synchronization, co-existence of synchroniza-

tion and anti-synchronization, projective synchronization,

etc [7]–[19]. Among these control problems, stabilization is

the both basic and important problem to be solved for FOSs.

Only when the stabilization problem is solved can the other

types of control problems be settled. Therefore, it is very

important to study the stabilization problem of FOSs.

So far, the stabilization problem of FOSs has been attracted

attention of many authors in different scientific fields,

such as chemical reactors [20], electrical circuits [21] and
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microelectro-mechanical systems [22]. For example, stabi-

lization of generalized fractional order chaotic systems [23]

is studied via designing the feedback controllers. Control of

fractional order Coullet system [24] has been presented via

active control. In 2016, based on feedback control, Zheng

and Ji have investigated the stabilization of a fractional-order

chaotic systemwithout external disturbance andmodel uncer-

tainty [25]. The stabilization results are proposed for a class

of fractional order chaotic systems with unknown param-

eters by adaptive backstepping technique in [26]. Sliding

mode control is also used to realize chaos control of frac-

tional order systems with uncertainty and disturbance in [27].

In [28], based on generalized T-S fuzzy model and adaptive

adjustment mechanism, authors obtain a simple but efficient

method to control fractional order chaotic systems. Fuzzy

control method and LMIs are used to control a class of

fractional order uncertain chaotic systems in [29]. Further

development on this topic, please refer to Refs.[30]–[34].

However, the designed controllers by some existing meth-

ods are too complicated to be used in applications. In order

to design a simple and physically controller to stabilize the

system, the linear feedback control method is usually used in

applications because of its simple structure and good effect.

Furthermore, the dynamic feedback control method is given
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in [35-36] is a both effective and simplemethod for the integer

order systems. Therefore we shall generalize the dynamic

feedback control method for the integer order systems to

solve the stabilization of FOSs.

It should be pointed out that the model uncertainty and

external disturbance are not considered carefully in dealing

with the control problems of FOSs. However, the model

uncertainty and the external disturbance are inevitable in

applications. Therefore, it is difficult to implement some

existing control methods in practical applications. Luckily,

for nonlinear systems, the UDE-based control method has

made great progress in solving robot control problems and

their applications in the engineering field [37]–[39]. For the

study of integer order problems with both model uncertainty

and external perturbation, the UED-based control method has

been presented in [40]–[43]. Therefore, it is both important

and urgent problem to extend the UDE-based control method

to FOSs.

The main contribution of this paper is to design a simple

and physically controller to stabilize FOSs. The UDE-based

linear feedback control method and the UDE-based the

dynamic feedback control method are proposed to realize the

stabilization problem of FOSs with model uncertainty and

external disturbance. It is mainly divided into three steps.

In the first step, the nominal system is stabilized by using lin-

ear feedback control method and the dynamic feedback con-

trol method, respectively, thus the linear feedback controller

and the dynamic feedback controller are designed. In the sec-

ond step, a fractional-order UDE-based controller which

can estimate model uncertainty and external disturbance is

designed. The third step is to combine the two controllers to

realize the stabilization of FOSs. Finally, an example is given

to verify the correctness and effectiveness of the proposed

method.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. PRELIMINARIES

The derivative of Fractional-order Caputo is defined as

Dα
t f (x)

=
Dαf (x)

dtα

=











1

Ŵ(α − n)

∫ t

α

f (n)(ς )

(t − ς )α+1−n
dς, n− 1 < α < n

dnf (t)

dtn
, α = n

where n = [α], Ŵ(.) said function with the following expres-

sion

Ŵ(z) =

∫ ∞

0

e−t tz−1dt

The Laplace transform of the Caputo derivative

Dα
t f (t) = D

−(n−α)
t h(t), h(t) = f (n)(t) (1)

where n− 1 < α ≤ n.

Taking the Laplace transform of both sides of equation (1),

it results in

ℓ{Dα
t f (t); s} = ℓD

−(n−α)
t h(t) = s−(n−α)G(s) (2)

where

G(s) = ℓ{h(t); s} = ℓ{f (n)(t); s}

= snF(s) −

n−1
∑

k=0

sn−k−1f (k)(0)

= snF(s) −

n−1
∑

k=0

sk f (n−k−1)(0),

i.e.,

ℓ{Dα
t f (t); s} = sαF(s) −

n−1
∑

k=0

sα−k−1f (k)(0),

n− 1 < α ≤ n.

Consider the following FOS

Dα
t x(t) = f (x) (3)

where x ∈ R
n is the state, f (x) ∈ R

n is a continuous function

vector.

Definition 1: Consider the following controlled FOS

Dα
t x(t) = f (x) + Bu (4)

where x ∈ R
n is the state, f (x) ∈ R

n is the function

vector, B ∈ R
n×r , r ≥ 1, and u is the designed controller.

If lim
t→∞

‖x(t)‖ = 0, the system (4) is called to be stabilized by

the above controller u.

It is well known that there are many methods to design the

controller u. For simplicity, we adopt the linear feedback

control method and the dynamic feedback control method to

realize the stabilization problem of FOS.

Lemma 1: Consider the system (4). If (f (x),B) is stabi-

lized, then the designed linear feedback controller is given

as

u = Kx (5)

where K ∈ R
r×n is a constant matrix.

For the sequel use, three properties of the fractional calculus

are stated in the next.

Property 1: Fractional calculus defined by Caputo is a

linear algorithm, i.e.,

Dα
t (λx + µy) = λDα

t x + µDα
t y

Property 2: For FOS(1), f (x) with respect to x satisfies

the Lipschitz’s condition:

‖f (x) − f (y)‖∞ ≤ l‖x − y‖∞

where ‖.‖∞ is an ∞-norm, l is a positive real number. In par-

ticular, when x = 0, f (x) = 0. i.e.,

‖f (x)‖∞ ≤ l‖x‖∞
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Property 3: Let x ∈ R be a continuous differentiable

function, and for any continuous time t ≥ t0, i.e.,

1

2
Dα
t x

2 ≤ xDα
t x, 0 < α < 1

Lemma 2: [44]–[45] (Mittag-leffler stability) Consider the

system (3) defined by Caputo, let x = 0 be the equilibrium

point of system (3), and D ⊂ R
n be the region containing

the origin. Let V (x) : [0, ∞) × D → R be a continuously

differentiable function, and the local Lipschitz condition is

satisfied with respect to x:

β1(‖x‖) ≤ V (x) ≤ β2(‖x‖)

Dα
t V (x) ≤ −β3(‖x‖)

where t ≥ 0, x ∈ D, α ∈ (0, 1), β1, β2, β3 is κ functions, then

the fractional order nonlinear system (3) is asymptotically

stable at the equilibrium point x = 0.

Next, the UDE-based control method is introduced.

Lemma 3: [37]–[39] Consider the following chaotic sys-

tem with model uncertainty and disturbance

ẋ(t) = f (x) + BU + 1f (x) + d(t) (6)

where x ∈ R
n is the state, B ∈ R

n×r , r ≥ 1, (f (x),B) is

controllable, △f (x) is model uncertainty, d(t) is the external

disturbance. If a filter gf (t) satisfies the following conditions:

ũd = ûd − ud (7)

where ûd = (ẋ−F(x)−Buude)∗gf (t) and ud = △f (x)+d(t),

then UDE-based controller U as follows

U = Us + Uude (8)

here Us = Kx, and

Uude = B+

{

ℓ−1[
Gf (s)

1 − Gf (s)
] ∗ F(x)

}

−B+

{

ℓ−1[
sGf (s)

1 − Gf (s)
] ∗ x(t)

}

(9)

B+ = (BTB)−1BT ,F(x) = f (x) + Bus,Gf (s) = ℓ[gf (t)],

ℓ−1 represents the inverse Laplace transform, ∗ represents the

convolution.

B. PROBLEM FORMULATION

Consider the following FOS

Dα
t x(t) = f (x) + Bu+ 1f (x) + d(t) (10)

where 0 < α < 1, x ∈ R
n is the state, B ∈ R

n×r , r ≥

1, (f (x),B) is controllable, 1f (x) is model uncertainty, d(t)

is the external disturbance.

The main goal of this paper is to design a controller u to

stabilize the system (10), i.e.,

lim
t→∞

‖x(t)‖ = 0

III. MAIN RESULTS

By extending the dynamical feedback control method to the

fractional order systems, some new results are obtained.

Theorem 1: Consider system (4). If (f (x),B) is stabilized,

then the designed dynamic feedback controller u is proposed

as follows

u = K (t)x (11)

where K (t) = k(t)BT , Dα
t k(t) ≤ −γ

n
∑

i=1

x2i , and

k̇(t) = −γ xT x = −γ ‖x(t)‖2 = −γ

n
∑

i=1

x2i (12)

where γ > 0 is a constant.

Proof: Substituting the controller u in Eq. (11) into the

system (4), we call the system (4) and the system (12) to be the

auxiliary system, and introduce the following non-negative

function:

V (t) =
1

2

n
∑

i=1

x2i +
1

2γ
(k + L)2

where L is a larger constant, i.e., nl ≤ L.

Differentiating V along the trajectory of the auxiliary sys-

tem and applying Property 1, Property 2 and Property 3,

we get

Dα
t V (t) =

1

2

n
∑

i=1

Dα
t x

2
i +

1

2γ
Dα
t (k + L)2

≤

n
∑

i=1

xiD
α
t xi +

k + L

γ
Dα
t (k + L)

=

n
∑

i=1

xiD
α
t xi +

k + L

γ
Dα
t k

=

n
∑

i=1

xi(f (xi) + kxi) +
k + L

γ
Dα
t k

=

n
∑

i=1

xif (xi) +

n
∑

i=1

kx2i +
k + L

γ
Dα
t k

≤ nl

n
∑

i=1

x2i +

n
∑

i=1

kx2i +
k + L

γ
Dα
t k

≤ nl

n
∑

i=1

x2i +

n
∑

i=1

kx2i − (k + L)

n
∑

i=1

x2i

= nl

n
∑

i=1

x2i − L

n
∑

i=1

x2i

= (nl − L)

n
∑

i=1

x2i ≤ 0

= (nl − L)V1(t) ≤ 0,

where V1(t) =

n
∑

i=1

x2i .
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Integrating the integer order of the above inequality,

it results in

(nl − L)

∫ t

t0

V1(q)dq

≥

∫ t

t0

Dα
qV (ϕ)dq

=
1

Ŵ(1 − α)

∫ t

t0

∫ q

t0

V ′(ϕ)

(q− ϕ)α
dϕdq

=
1

Ŵ(1 − α)

∫ t

t0

∫ t

ϕ

V ′(ϕ)

(q− ϕ)α
dqdϕ

=
1

Ŵ(2 − α)

∫ t

t0

V ′(ϕ)(t − ϕ)1−αdϕ

= −
V (t0)(t − t0)

1−α

Ŵ(2 − α)
+

1

Ŵ(1 − α)

∫ t

t0

V (ϕ)(t − ϕ)−αdϕ

≥ −
V (t0)(t − t0)

1−α

Ŵ(2 − α)
.

Then
∫ t

t0

V1(q)dq ≤
V (t0)(t − t0)

1−α

(nl − L)Ŵ(2 − α)

Taking the limit of both sides of the inequality

lim
t→∞

∫ t

t0

V1(q)dq ≤ lim
t→∞

V (t0)(t − t0)
1−α

(nl − L)Ŵ(2 − α)

then we obtain

lim
t→∞

∫ t
t0
V1(q)dq

(t − t0)1−α
≤ lim

t→∞

V (t0)

(nl − L)Ŵ(2 − α)

=
V (t0)

(nl − L)Ŵ(2 − α)
.

There are two cases for lim
t→∞

∫ t

t0

V1(q)dq.

Case 1: If lim
t→∞

∫ t

t0

V1(q)dq < +∞, we get

lim
t→∞

V1(t) = lim
t→∞

‖xi‖
2 = 0.

Case 2: If lim
t→∞

∫ t

t0

V1(q)dq = +∞, using the L’Hospital

principle, it results in

lim
t→∞

∫ t
t0
V1(q)dq

(t − t0)1−α
= lim

t→∞
V1(t)(t − t0)

α

≤ lim
t→∞

V (t0)

(nl − L)Ŵ(2 − α)
.

The integral of order α in Eq. (10) is performed below

V (t) − V (t0) ≤
nl − L

Ŵ(α)

∫ t

t0

V (q)

(t − q)1−α
dq ≤ 0,

that is

V1(t) ≤ V (t) ≤ V (t0),

this means that V1(t) must be bounded.

So there is a T > 0 there is:

V1(t) ≤
V (t0)

(nl − L)Ŵ(2 − α)
,

So for all of the t ≥ T , we have:

lim
t→∞

V1(t) = lim
t→∞

‖x‖2 = 0.

According to Lemma 2, it can be known that system (4) is

asymptotically stable at the equilibrium point x = 0 by the

controller u.

Theorem 2: Considering the FOS (10). If (f (x),B) is sta-

bilized and a filter gf (t) satisfies the following condition:

ũd = ûd − ud , (13)

where ûd = (Dα
t x−F(x)−Buude)∗gf (t), and ud = 1f (x)+

d(t), then UDE-based controller u as follows

u = us + uude (14)

where us = Kx, and K is given in Eq. (5) or Eq. (11), and

uude is presented as follows

uude = B+

{

ℓ−1[
Gf (s)

1 − Gf (s)
] ∗ F(x)

}

−B+

{

ℓ−1[
sαGf (s)

1 − Gf (s)
] ∗ x(t)

}

, 0 < α ≤ 1 (15)

Proof: Substituting the controller u in Eq. (14) into the

system (10), we get

Dα
t x(t) = F(x) + ud + Buude (16)

where F(x) = f (x, t) + Bus, ud = 1f (x, t) + d(t), and uude
is to be designed.

Then, it is easy to obtain

ud = Dα
t x(t) − F(x) − Buude

According to the idea of UDE-control method in [37-39],

the ud is estimated by

ûd = ud ∗ gf (t) = (Dα
t x(t) − F(x) − Buude) ∗ gf (t),

Noting the condition (13), if Buude = −ûd , then the conclu-

sion of this theorem is obtained, i.e.,

Buude = −ûd

= −ud ∗ gf (t)

= −(Dα
t x(t) − F(x) − Buude) ∗ gf (t) (17)

Taking the Laplace transform of both sides of this equation

(17), we get

BUude(s) = −sαX (s)Gf (s) + F(s)Gf (s) + BUude(s)Gf (s)

then

BUude(s) − BUude(s)Gf (s) = −sαX (s)Gf (s) + F(s)Gf (s)

thus

Uude(s) = B+ 1

1 − Gf (s)
{−sαX (s)Gf (s) + F(s)Gf (s)}

i.e.,

Uude(s) = B+

{

[ Gf (s)

1 − Gf (s)

]

F(s) −
[ sαGf (s)

1 − Gf (s)

]

X (s)

}

Thus, uude = ℓ−1[Uude] is obtained.
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In conclusion, three steps are required to accomplish the

stabilization of the fractional order system with both model

uncertainty and external disturbance

(I) The controller us is designed for the nominal FOSs by

using Lemma 1 and Theorem 1;

(II) The controller uude is obtained by choosing an appro-

priate filter to estimate the model uncertainty and exter-

nal disturbance;

(III) The controller u is proposed by setting u = us + uude.

IV. ILLUSTRATIVE EXAMPLE WITH

NUMERICAL SIMULATION

In this section, the fractional order hyper-Chen system is used

to verify the correctness and effectiveness of the proposed

method.

Example 1: The fractional order hyper-Chen system with

both disturbance and uncertainty is described as follows

Dα
t x = f (x) + Bu+ △f (x) + d(t) (18)

where x ∈ R
4 is the state, and

f (x) =







37(x2 − x1)
−9x1 − x1x3 + 26x2

−3x3 + x1x2 + x1x3 − x4
−8x4 + x2x3 − x1x3






(19)

B =







0
1
0
0






, △f (x) =







0
0.03x1x2

0
0






(20)

d(t) =







d1(t)
d2(t)
d3(t)
d4(t)






=







0
500
0
0






(21)

or

d(t) =







d1(t)
d2(t)
d3(t)
d4(t)






=







0
20 sin(2t)

0
0






(22)

u = us + uude (23)

is the controller to be designed, us ∈ R and uude ∈ R.

The controlled nominal fractional order hyper-Chen sys-

tem is given as

Dα
t x = f (x) + Bus (24)

where f (x) is given in (19), and B is presented in (20)

According to the results in Section III, we should firstly

design the controller us to stabilize the system (24). There

are two methods, i.e., the linear feedback control method and

the dynamic feedback control method, are to be used in the

next.

Consider the uncontrolled nominal fractional order hyper-

Chen system (24), i.e., us = 0. It is easy to obtain that if

x2 = 0, then the following subsystem

Dα
t x1 = −37x1

Dα
t x3 = −3x3 + x1x3 − x4

Dα
t x4 = −8x4 (25)

FIGURE 1. The system (24) with α = 0.8 is stabilized.

FIGURE 2. The system (24) with α = 0.95 is stabilized.

is globally asymptotically stable, which implies that (f (x),B)

is stabilized.

Case 1: according to Lemma 1, the controller us is designed

as

us =
(

0 − 100 0 0
)

x = −100 x2. (26)

In the following, numerical simulation is carried out with

the initial conditions: x(0) = [5, −4, −3, 2]T . Figure 1 and

Figure 2 show that the fractional order hyper-Chen system

(24) is stabilized by the above controller us when α = 0.8

and α = 0.95, respectively.

Case 2: according to Theorem 1, another controller us is

designed as

us = k(t)BT x = k(t) (0 1 0 0) x = k(t)x2. (27)

and the dynamic gain k(t) is updated by (12).

Next, numerical simulation is carried out with the initial

conditions: x(0) = [5, −4, −3, 2]T , k(0) = −1. Figure 3 and

Figure 5 show that the fractional order hyper-Chen system

(24) is stabilized by the controller us when α = 0.8 and α =

0.95, respectively. Figure 4 and Figure 6 show that the feed-

back gain k(t) converge to negative constants, respectively.

The second step is to design the controller uude for the

fractional order Chen-hyper system (18).

According to Theorem 2, the controller uude is designed.

Thus, the controller u = us + uude in (18) is obtained.

It should be pointed out that the controller uude is varied

with the order α for the fractional order problem.

VOLUME 9, 2021 42701
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FIGURE 3. The system (24) with α = 0.8 is stabilized.

FIGURE 4. k(t) converges to a constant.

FIGURE 5. The system (24) with α = 0.95 is stabilized.

FIGURE 6. k(t) converges to a constant.

For example, when α = 0.8, the controller uude is as

follows:

uude = B+

{

ℓ−1[
Gf (s)

1 − Gf (s)
] ∗ F(x)

}

−B+

{

ℓ−1[
s0.8Gf (s)

1 − Gf (s)
] ∗ x(t)

}

FIGURE 7. The system (18) with α = 0.8 is stabilized.

FIGURE 8. ûd tends to ud .

FIGURE 9. The system (18) with α = 0.8 is stabilized.

For the system (18) with d(t) is given in (21) and us is

presented in (26), numerical simulation is carried out with

the initial conditions: x(0) = [5, −4, −3, 2]T . Figure 7 shows

that the system (18) is stabilized by the controller u, Figure 8

shows that ûd tends to ud .

For the system (18) with d(t) is given in (21) and us is

presented in (27), numerical simulation is carried out with the

initial conditions: x(0) = [5, −4, −3, 2]T , k(0) = −1. Fig-

ure 9 shows that the system (18) is stabilized by the controller

u, Figure 10 shows that ûd tends to ud , Figure 11 shows that

the feedback gain k(t) converges to a negative constant.

For the system (18) with d(t) is given in Eq. (22) and us is

presented in (26), numerical simulation is carried out with the

initial conditions: x(0) = [5, −4, −3, 2]T , Figure 12 shows

42702 VOLUME 9, 2021
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FIGURE 10. ûd tends to ud .

FIGURE 11. k(t) tends to a constant.

FIGURE 12. The system (18) with α = 0.8 is stabilized.

FIGURE 13. ûd tends to ud .

that the system (18) is stabilized by the controller u, Figure 13

shows that ûd tends to ud .

FIGURE 14. The system (18) with α = 0.8 is stabilized.

FIGURE 15. ûd tends to ud .

FIGURE 16. k(t) converges to a constant.

For the system (18) with d(t) is given in (22) and us is

presented in (27), numerical simulation is carried out with

the initial conditions: x(0) = [5, −4, −3, 2]T , k(0) = −1,

Figure 14 shows that the system (21) is stabilized by the con-

troller u, Figure 15 shows that ûd tends to ud , Figure 16 shows

that the feedback gain k(t) converges to a negative constant.

When α = 0.95, the controller uude is as follows:

uude = B+

{

ℓ−1[
Gf (s)

1 − Gf (s)
] ∗ F(x)

}

−B+

{

ℓ−1[
s0.95Gf (s)

1 − Gf (s)
] ∗ x(t)

}

.

For the system (18) with d(t) is given in Eq. (21) and us is

presented in (26), numerical simulation is carried out with the

initial conditions: x(0) = [5, −4, −3, 2]T . Figure 17 shows
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FIGURE 17. The system (18) with α = 0.95 is stabilized.

FIGURE 18. ûd tends to ud .

FIGURE 19. The system (18) with α = 0.95 is stabilized.

FIGURE 20. ûd tends to ud .

that the system (18) is stabilized by the controller u, Figure 18

shows that ûd tends to ud .

FIGURE 21. k(t) converges to a constant.

FIGURE 22. The system (18) with α = 0.95 is stabilized.

FIGURE 23. ûd tends to ud .

FIGURE 24. The system (18) with α = 0.95 is stabilized.

For the system (18) with d(t) is given in Eq. (21) and us
is presented in (27), numerical simulation is carried out with
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FIGURE 25. ûd tends to ud .

FIGURE 26. k(t) tends to a constant.

the initial conditions: x(0) = [5, −4, −3, 2]T , k(0) = −1.

Figure 19 shows that the system (18) is stabilized by the con-

troller u, Figure 20 shows that ûd tends to ud , Figure 21 shows

that the feedback gain k(t) converges to a negative constant.

For the system (18) with d(t) is given in Eq. (22) and us is

presented in (26), numerical simulation is carried out with the

initial conditions: x(0) = [5, −4, −3, 2]T , Figure 22 shows

that the system (21) is stabilized by the controller u, Figure 23

shows that ûd tends to ud .

For the system (18) with d(t) is given in Eq. (22) and us is

presented in Eq. (27), numerical simulation is carried out with

the initial conditions: x(0) = [5, −4, −3, 2]T , k(0) = −1,

Figure 24 shows that the system (18) is stabilized by the con-

troller u, Figure 25 shows that ûd tends to ud , Figure 26 shows

that the feedback gain k(t) converges to a negative constant.

V. CONCLUSION

In conclusion, we have studied the stabilization problem of

FOSs with both disturbance and uncertainty. The integer

order UDE-based controller is extended to the fractional order

systems, and then the fractional-order UDE-based controller

is obtained. Combining the linear, the dynamic feedback

methods, and the UDE-based control method, respectively,

two new UDE-based control methods have been obtained.

The FOSs with both model uncertainty and external dis-

turbance is stabilized by three steps. In the last section,

a numerical example with numerical simulations has been

given to verify the correctness and effectiveness of the pro-

posed method.
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