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Although the phenomenon of Bose–Einstein condensation1 is
a purely statistical effect that also appears in an ideal gas, the
physics of Bose–Einstein condensates (BECs) of dilute gases is
considerably enriched by the presence of interactions among
the atoms. In usual experiments with BECs, the only relevant
interaction is the isotropic and short-range contact interaction,
which is described by a single parameter, the scattering length
a. In contrast, the dipole–dipole interaction between particles
possessing an electric or magnetic dipole moment is of long-
range character and anisotropic, which gives rise to new
phenomena2,3. Most prominently, the stability of a dipolar BEC
depends not only on the value of the scattering length, a, but also
strongly on the geometry of the external trapping potential4–7.
Here, we report on the experimental investigation of the stability
of a dipolar BEC of 52Cr as a function of the scattering length and
the trap aspect ratio. We find good agreement with a universal
stability threshold arising froma simple theoreticalmodel. Using
a pancake-shaped trap with the dipoles oriented along the short
axis of the trap, we are able to tune the scattering length to zero,
stabilizing a purely dipolar quantum gas.

In the case of a homogeneous Bose–Einstein condensate (BEC)
with pure contact interaction, the existence of a stable ground state
depends on the modulus and sign of the interaction. For repulsive
interaction (a > 0), the BEC is stable, whereas for attractive
interaction (a < 0), the BEC is unstable. This instability can be
prevented by an external trapping potential. The tendency of the gas
to shrink towards the centre of the trap is in that case counteracted
by the repulsive quantum pressure arising from the Heisenberg
uncertainty relation. Detailed analysis8 shows that in a harmonic
trap with mean frequency ω̄, a condensate is stable as long as the
number of atoms N stays below a critical value Ncrit given by

Ncrit =
kaho

|a|
, (1)

where aho =
√
h̄/(mω̄) is the harmonic oscillator length and k is a

constant of the order of 1/2. This scaling has been experimentally
checked in ref. 9 in a BEC of 85Rb. The dynamics of condensates
for N ≥ Ncrit has been the subject of several experiments with
condensates of 7Li (refs 10,11) and 85Rb (ref. 12). In refs 13,
14, the collapse of a Bose–Fermi mixture of 87Rb and 40K was
investigated. Some aspects of the dynamics such as the soliton train
formation in 7Li (ref. 15) and 85Rb (ref. 16) remain the subject of
ongoing research.

Being anisotropic and long range, the dipole–dipole interaction
(DDI) differs significantly from the contact interaction, which
changes the stability conditions in a system with DDI present.

Considering a purely dipolar condensate with homogeneous
density polarized by an external field, it is found that owing to the
anisotropy of the DDI, the BEC is unstable, independent of how
small the dipole moment is17. As in the pure contact case, a trap
helps to stabilize the system. In the dipolar case, however, it is not
only the quantum pressure that prevents the collapse but also the
anisotropy of the density distribution imprinted by the trap.

Consider a cylindrically symmetric harmonic trap

Vtrap(r,z) =
1

2
m

(
ω2

r r
2
+ω2

zz
2
)

with the dipoles oriented along z, and r being the distance from
the symmetry axis. As can be intuitively understood from Fig. 1a,
in a pancake-shaped trap (aspect ratio l = ωz/ωr > 1), the dipoles
predominantly repel each other and the BEC is stable. In contrast,
a cigar-shaped trap (l < 1, Fig. 1b) leads to mainly attractive forces
and hence to a dipolar collapse. Following this simple argument,
we expect that in the prolate case a positive scattering length a is
needed to stabilize the BEC, whereas in the oblate case, we can
even afford a slightly negative a. The dependence of the stability
of a dipolar BEC on the trap aspect ratio l and scattering length a
has been extensively studied theoretically4–7, and is experimentally
investigated here.

Our measurements are carried out with a BEC of 52Cr (ref. 18),
which is so far the only experimentally accessible quantum gas with
observable DDI19,20. To compare contact and dipolar interactions,
we introduce a length scale characterizing the magnetic DDI

add =
µ0µ

2m

12πh̄2 .

The numerical prefactor in add is chosen such that a homogeneous
condensate becomes unstable to local density perturbations for
a ≤ add (ref. 21). As chromium has a magnetic dipole moment of
µ = 6µB (µB is the Bohr magneton), add ' 15a0, where a0 is the
Bohr radius. Far from Feshbach resonances, a takes its background
value abg '100a0 (ref. 22) and the BEC is stable for any l. To explore
the unstable regime, we thus reduce the scattering length a, which
in the vicinity of a Feshbach resonance scales as

a= abg

(
1−

1B

B−B0

)
with the applied magnetic field B.

To carry out the measurements, we produce a BEC of
approximately 25,000 atoms at a magnetic field that is about 10G
above the broadest Feshbach resonance where the scattering length
is approximately 85a0 and the BEC is stable. Once the BEC is
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Figure 1 Intuitive picture of the trap geometry dependence of the stability of a
dipolar BEC. a,b, In an oblate trap (a), the dipoles mainly repel each other, whereas
in a prolate trap (b), the interaction is predominantly attractive. c, The different
trapping geometries are realized by the crossed optical dipole trap (red) and a
further one-dimensional optical lattice (green). The magnetic field is pointing along
the symmetry axis z of our traps.

obtained20,23, we adiabatically shape the trapping potential to the
desired aspect ratio l. To be able to vary l over a wide range, we
generate the trapping potential by a crossed optical dipole trap
(ODT) and a superimposed one-dimensional optical lattice along
the z direction (see Fig. 1c and Methods section).

We observe two effects when approaching the zero-crossing of
the scattering length: the BEC shrinks in both directions owing
to the decreasing scattering length and the ellipticity of the cloud
changes as a manifestation of the enhanced dipolar effects20. Finally,
when we decrease the scattering length below some critical value
acrit, the BEC atom number (determined from a bimodal fit24 of the
time-of-flight absorption images) abruptly decreases (Fig. 2a,b).
The disappearance of the BEC around the instability point is shown
in Fig. 2c. Although slightly above acrit, we still see an almost
pure BEC, for a ' acrit the density shows a bimodal distribution
(an anisotropic, dense central peak surrounded by an isotropic
gaussian cloud). Just below acrit, the BEC collapses and the density
distribution becomes a unimodal, isotropic gaussian. Note that we
do not observe the formation of soliton trains as in refs 15,16. This
can be attributed to the fact that as our trap is much tighter than
in those references, the initial size of our BEC is smaller than any
single soliton observed in refs 15,16.

The critical scattering length acrit where the condensate vanishes
depends strongly on the trap aspect ratio l. For an isotropic trap
(Fig. 2a), the collapse occurs at a ' 15a0, whereas the pancake-
shaped trap (Fig. 2b) can even stabilize a purely dipolar BEC
(a ' 0). We repeated this experiment for six different traps (see
Table 1), thereby covering a range of two orders of magnitude in the

–10 0

N
/1

04
N

/1
04

10
a/a0

20 30 40

–10 0 10
a/a0

20 30 40

0

0

0.5

1.0

1.5

1.0

2.0

3.0
 = 1.0λ

 = 10λ

–5a0 –2a0 0a0
0

0.2

0.4 Optical density
a

c

b

Figure 2 Decrease of the BEC atom number N around the critical scattering
length acrit. a,b, The critical point depends strongly on the aspect ratio l of the trap.
The solid lines are fits to equation (2) used to determine the critical scattering length
acrit (see text). c, Typical images of the atomic cloud around the critical scattering
length for the trap with l = 10.

Table 1 Trap frequencies and aspect ratios of the traps used. The trap frequencies
were measured by either exciting the centre-of-mass motion or parametric
heating and are accurate to about 10%. Traps 1–3 are provided only by the
crossed optical dipole trap, whereas for traps 4–6 the horizontal dipole trap beam
and the optical lattice are used.

Trap ωr/ (2π ) (Hz) ωz/ (2π ) (Hz) ω̄/ (2π ) (Hz) l = ωz/ωr

1 1,300 140 620 0.11
2 890 250 580 0.28
3 480∗ 480 480 1.00
4 530 1,400 730 2.60
5 400 2,400 730 6.00
6 330 3,400 720 10.00
∗Trap 3 is not cylindrically symmetric (see the Methods section) and has the trap frequencies ω x = 2π×610 Hz and
ω y = 2π×370 Hz.

trap aspect ratio l. To exclude three-body loss processes causing the
abrupt decrease in the BEC atom number, we measured the lifetime
of the BEC for the different traps just above acrit and found the same
lifetime (∼10ms) for the different scattering lengths.

By fitting to the observed BEC atom numbers (Fig. 2a,b) the
threshold function

N =max
[
0,N0(a−acrit)

β
]
, (2)
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Figure 3 Stability diagram of a dipolar BEC in the a–l plane. a, Experimental (green squares) and theoretical (green line) values of the critical scattering length acrit as a
function of the trap aspect ratio. The theory curve is obtained for 20,000 atoms and an average trap frequency ω̄ = 2π×700 Hz (the average values we find for our six
traps). The red curve (magnified in the inset) marks the stability threshold for a BEC with pure contact interactions using the same parameters. The asymptotic stability
boundary (Nadd/aho � 1) which for l → 0 (l → ∞) converges to add (−2add) is plotted in grey. The error bars in l and acrit result from the uncertainty (estimated one
standard deviation) in the trap frequency measurement and the calibration a (B ) of the scattering length. b–e, Behaviour of the energy landscape E (σ r , σz ). Lines of equal
energy are plotted for fixed l = 10 and four different values of the scattering length a (blue dots in a). For acrit < a < add (c) the collapsed prolate ground state emerges
(σ r → 0 at finite σz ) and the BEC becomes metastable.

where N0, acrit and β are fitting parameters, we find the critical
scattering length acrit. The simple functional form (2) was
empirically chosen as it accounts for the fast decreasing BEC atom
number at a ' acrit and for the slow decrease for a � acrit. The
exponent β describing the steepness of the collapse was found to
be β ' 0.2 for all traps. The values of acrit that are plotted in Fig. 3a
mark the experimentally obtained stability threshold of a 52Cr BEC
in the plane (l, a). We observe a clear shift towards smaller a
as l increases. For the most oblate trap (l = 10), we can reduce
the scattering length to zero and hence access the purely dipolar
regime experimentally.

To get a more quantitative insight into the collapse threshold
acrit(l), we numerically determine the critical scattering length
(green curve in Fig. 3a). For this, we use a variational method to
minimize the Gross–Pitaevskii energy functional1

E[Φ] =

∫ [
h̄2

2m
|∇Φ|

2
+Vtrap|Φ|

2
+

2πh̄2a

m
|Φ|

4

+
1

2
|Φ|

2

∫
Udd(r−r′)|Φ(r′)|2dr′

]
dr, (3)

where

Udd(r) =
µ0µ

2

4π

1−3cos2 θ

|r|3

is the interaction energy of two aligned magnetic dipoles µ, with r
being the relative position of the dipoles and θ the angle between r
and the direction z of polarization.

Similar to the work presented in refs 4–6 and 25, we use
a cylindrically symmetric gaussian ansatz to evaluate the energy
functional (3) with the radial and axial widths σr and σz as
variational parameters (see the Methods section). To obtain
acrit, we lower the scattering length until the energy landscape
E(σr ,σz) does not contain any minimum for finite σr and σz

any more (Fig. 3b–e). Starting with large values a > add, we find
that E(σr ,σz) supports a global minimum for finite σr and σz

independently of l and thus the BEC is stable (Fig. 3b). Going
below a∼ add, the absolute ground state is a collapsed infinitely thin
cigar-shaped BEC (σr → 0) and the possible existence of a further
local minimum (corresponding to a metastable state) is determined
by the trap aspect ratio l (see Fig. 3c, where add > a > acrit and
Fig. 3d, where a= acrit). Finally, below a∼−2add (Fig. 3e), the local
minimum vanishes for any l and the BEC is always unstable6,7.

In spite of the simplicity of our model, we find good agreement
between experiment and theory (Fig. 3a). We checked that the
different atom numbers and mean trap frequencies that we find
for the six traps modify the green curve by much less than the
error bars.

The behaviour of the critical scattering length acrit as a function
of the aspect ratio l can be understood considering the limit
Nadd/aho � 1, which is satisfied by our average experimental value
of Nadd/aho ' 23. Owing to their linear N-scaling, the kinetic
energy and the potential energy (equations (5) and (6) in the
Methods section) can be neglected and the total energy E(σr ,σz)
is dominated by the interaction term

[Econtact +EDDI]∝N 2

[
a

add

− f (κ)

]
.

The function f (ref. 25) of the cloud aspect ratio κ = σr/σz arises
from the DDI and is discussed in the Methods section.

In this regime, where the stability is solely governed by the
competition between the contact and DDI, the critical scattering
length (grey curve in Fig. 3a) is implicitly given by

acrit(l) = addf (κ(l)) . (4)

The asymptotic behaviour of the theory curve now becomes
apparent: an extremely prolate (oblate) trap forces the cloud shape
to also be extremely prolate (oblate) and f takes its extremal

220 nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics

© 2008 Nature Publishing Group 



LETTERS

value 1 (−2). Hence, we find the asymptotic values acrit = add for
l → 0 and acrit = −2add for l → ∞. Another particular point is
acrit = 0, marking the aspect ratio lc needed to stabilize a purely
dipolar BEC. More precisely, as f (1) = 0, we search for the trap in
which the ground state of a purely dipolar BEC is isotropic. As the
DDI tends to elongate the BEC along the z direction and shrink it
radially26, it is clear that the desired trap is oblate. Using our model
we obtain the criterion l > lc ≈ 5.2 for a purely dipolar BEC to be
stable, a result that agrees well with the values found in refs 2,4–7.

The grey curve in Fig. 3a that we obtain by numerically solving
equation (4) shows a universal behaviour in the sense that in the
large-N limit acrit(l) does not depend anymore on the absolute
values of the trap frequencies and N . This fact clearly distinguishes
the dipolar collapse from the pure contact case (red curve in
Fig. 3a), where the l-dependence, which is already weak for finite
N (ref. 27), completely vanishes in the limit of large N as the
stability criterion reads acrit(l) = 0 (see equation (1) and red curve
in Fig. 3a). Furthermore, the instability threshold obtained here
applies for any dipolar system in a harmonic potential, such as, for
example, heteronuclear molecules, where the only difference is the
specific value of add.

In summary, we experimentally mapped the stability diagram
of a dipolar BEC. The dependence on scattering length and
trap aspect ratio agrees well with a simple model based on the
minimization of the energy of a gaussian ansatz. By using a
pancake-shaped trap, we were able to enter the regime of purely
dipolar quantum gases. Although the lifetime of the purely dipolar
BEC is relatively short (∼10ms), this work opens up the route to
new and exciting physics2. A clear subject for future studies is the
dynamics of the dipolar collapse, which might show anisotropic
features. Another remarkable property predicted to appear in a
dipolar BEC contained in a pancake-shaped trap is the existence
of a roton minimum in its Bogoliubov spectrum21. Furthermore,
close to the collapse threshold, the existence of structured ground
states is predicted28,29, a precursor for the supersolid phase30 that is
expected to appear in dipolar BECs in three-dimensional optical
lattices. Finally, a field that has gained increasing interest in the
recent past is the study of unusual vortex lattice patterns in rotating
dipolar BECs31,32.

METHODS

EXPERIMENTAL SET-UP AND PROCEDURE
To be able to vary l over a wide range, the trapping potential is generated
by a crossed ODT20,23 and a further optical lattice (Fig. 1c). The two lattice
beams (wavelength llatt = 1,064 nm, waist wlatt = 110 µm, maximum power per
beam Platt = 5W) propagate in the x–z plane under a small angle of ϑ/2= 4◦

with respect to the x axis. This configuration creates a standing wave along
the z axis with a spacing d = llatt/[2sin(ϑ/2)] = 7.6 µm. Owing to the large
spacing of the lattice and the small size of the BEC (Thomas–Fermi diameter
2RTF

z ' 6 µm), we load at most two sites when ramping up the optical lattice.
The resulting change in the atom number (at most dividing by 2) changes
the theoretical value of acrit by less than a0, which is below the size of our
experimental error bars. Tunnelling processes are completely negligible on the
timescale of our experiments.

By varying the powers in the beams, we are able to provide nearly
cylindrically symmetric traps, with aspect ratios l between ∼1/10 and ∼10,
while keeping the average trap frequency ω̄ = (ω2

rωz )
1/3 approximately

constant. More extreme aspect ratios are not used as for extreme oblate
(prolate) traps the radial (axial) confinement becomes too weak to hold the
atoms against gravity and remaining magnetic field gradients. The properties
of the six traps that were used in the experiment are listed in Table 1. The
cylindrical symmetry of the oblate traps in the x–y direction is given by the fact
that ωx and ωy are mainly determined by the horizontal ODT beam, whereas
ωz is given by the lattice and the vertical beam is not used. For prolate traps,
ωx and ωy are again mainly given by the horizontal ODT beam, whereas the
vertical beam determines ωz and the lattice is not used. For all traps, except

trap 3, we find 0.94< ωx/ωy < 1.04. For trap 3, the critical scattering length
acrit has been calculated using a gaussian ansatz with the three widths σx,y,z as
variational parameters. The obtained value deviates by less than a0 from the
value found with the cylindrically symmetric ansatz.

After the BEC is obtained by forced evaporation in the ODT, the trapping
potential is shaped in 25ms to the desired aspect ratio l. We then ramp the
magnetic field within 10ms to adjust the value of the scattering length. To tune
a accurately, we use the broadest of the resonances in 52Cr (ref. 22), which is
located at B0 ' 589G and has a width of 1B ' 1.5G (ref. 20). The current
providing the magnetic field is actively stabilized with a remaining noise of
less than 1×10−5 r.m.s., which results in a resolution of 1a∼ a0 around the
zero crossing of the scattering length. After a further holding time of 2ms,
we finally switch off the trap and take an absorption image along the x axis,
after a time-of-flight of 5ms. The BEC atom number N and radii Ry,z are
obtained by fitting the density profile using a bimodal distribution23. The
calibration between scattering length and magnetic field is done by solving the
hydrodynamic equations for the scattering length a with known N and Ry,z

(refs 20,26).

CALCULATION OF THE CRITICAL SCATTERING LENGTH
To obtain an estimate of acrit, we calculate the energy E(σr ,σz ) (3) of the
cylindrically symmetric gaussian wave function4–6,25

Φ(r,z) =

(
N

π3/2σ2
r σza3ho

)1/2

exp

(
−

1

2a2ho

(
r2

σ2
r

+
z2

σ2
z

))
with σr and σz as variational parameters. Using this ansatz, where
aho =

√
h̄/(mω̄), the contributions to the total energy are5,6 the zero-point

fluctuations
Ekin

h̄ω̄
=

N

4

(
2

σ2
r

+
1

σ2
z

)
, (5)

the potential energy
Epot

h̄ω̄
=

N

4l2/3

(
2σ2

r +l2σ2
z

)
(6)

and the mean-field interaction energy

Econtact +EDDI

h̄ω̄
=

N2add
√
2πaho

1

σ2
r σz

(
a

add
− f (κ)

)
, (7)

with

f (κ) =
1+2κ2

1−κ2
−

3κ2artanh
√
1−κ2

(1−κ2)3/2
.

The function f (κ) is a monotonically decreasing function of the condensate
aspect ratio κ = σr/σz with the asymptotic values f (0) = 1 and f (∞) = −2,
arising from the non-local term in equation (3) (ref. 25). It vanishes for κ = 1,
implying that for an isotropic density distribution the magnetic DDI does
not contribute to the total energy. As the interaction term (7) scales as N2, it
overrules the other terms in the limit Nadd/aho � 1.

Received 18 October 2007; accepted 21 January 2008; published 24 February 2008.

References
1. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in

trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).
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30. Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys.
Rev. Lett. 88, 170406 (2002).

31. Cooper, N. R., Rezayi, E. H. & Simon, S. H. Vortex lattices in rotating atomic Bose gases with dipolar
interactions. Phys. Rev. Lett. 95, 200402 (2005).

32. Zhang, J. & Zhai, H. Vortex lattices in planar Bose–Einstein condensates with dipolar interactions.
Phys. Rev. Lett. 95, 200403 (2005).

Acknowledgements
We would like to thank L. Santos, G. V. Shlyapnikov and H.-P. Büchler for stimulating discussions and
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