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state feedback
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SUMMARY

In this paper a globally stabilizing feedback boundary control law for an arbitrarily fine discretization of a
one-dimensional nonlinear PDE model of unstable burning in solid propellant rockets is presented. The
PDE has a destabilizing boundary condition imposed on one part of the boundary. We discretize the
original nonlinear PDE model in space using finite difference approximation and get a high order system of
coupled nonlinear ODEs. Then, using backstepping design for parabolic PDEs, properly modified to
accommodate the imposed destabilizing nonlinear boundary condition at the burning end, we transform
the original system into a target system that is asymptotically stable in l2-norm with the same type of
boundary condition at the burning end, and homogeneous Dirichlet boundary condition at the control
end. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and problem background

This work on control of combustion instabilities in solid propellants comes in the wake of high

activity in control of liquid fuel combustion [1–3].

Solid propellant rockets come in many different types and sizes. Applications vary from anti-

aircraft, anti-tank, and anti-missile-missiles, to ballistic missiles and large space launch vehicle

booster [4]. Compared to liquid rockets, solid propellant rockets are usually simpler in design,

easy to apply, can be hermetically sealed for long-time (5–10 year) storage, and require little

servicing. On the other hand, they cannot be fully checked before they are used and thrust

cannot be randomly varied.
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Solid propellant rocket engines are sometimes subject to combustion instabilities that can

cause engine failure either through excess pressure, increased wall heat transfer, or a

combination of the two. Although always undesirable, combustion instabilities are especially

dangerous to larger rockets [5]. Current remedy for reducing instabilities occurring in solid

propellants is either by placing of an irregular rod of non-burning material within the burning

volume, or drilling radial holes at intervals along the grain. Non-steady burning and combustion

instabilities appearing in solid propellants have been investigated extensively both theoretically

and experimentally. Combustion models used, although numerous and different in various

aspects of the analysis, commonly treat the system as a three region problem: the solid phase,

the gas–solid interface region, and the gas phase. The interface is generally collapsed to a plane

and is used as a matching condition between the two phases. Most of the models published agree

in the treatment of the solid phase as a single homogeneous region, up to the interface. The

point where main differences occur is the treatment of the gas phase. The model that we are

using is based on the work of Denison and Baum [6]. The model derived there assumes that

characteristic times for all processes involved in solid propellant combustion are short compared

to the characteristic time for heat conduction in solid. The combustion mechanism involves inert

heat conduction in the solid, surface gasification by an Arrhenius process and a gas-phase

deflagration with a high non-dimensional activation energy. Properties of solid are assumed to

be constant.

1.2. Model

Although models differ importantly in regard to handling the gas phase, most of them arrive at

a two parameter response function of mass flux with respect to pressure disturbances in their

stability analysis, as summarized in an extensive review by Culick [7]. For more details on the

validity of the assumptions used in the model by Denison and Baum, and a more in depth

insight in the work on unsteady combustion in solid propellants, interested readers are referred

to References [7, 8].

The type of instability that we are interested in are self-excited modes of burning rate response

appearing at frequencies which are not acoustic modes of the combustion chamber. For a more

detailed description and classification of combustion instabilities see Reference [9]. Stability

analysis of the model shows that the steady state solution for the uncontrolled case is unstable.

1.3. Control objective

The objective is to stabilize the steady state of the model using boundary control in temperature

on the non-reacting boundary (see Figure 1).z While there may be more practical ways of

actuating this problem than heating/cooling at the boundary opposite to the burning end

(distributed heating/cooling would provide more control authority in the case when the heat

conductivity of the solid propellant is low), the boundary actuation considered here offers the

greatest challenge from the point of view of control synthesis.

zOur idea of actively controlling combustion instability by heating/cooling the rocket fuel was motivated by a
proposition made by T’ien and Sirignano [12] for liquid fuel rockets. They suggested that a remedy to instability in the
case of practical liquid rocket could be heating of fuel by the wall of the combustion chamber by regenerative cooling
(cooling of the chamber wall is in addition beneficial on its own).
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It is important to note that, due to burning, the length of the domain LðtÞ is time varying, with
’LLðtÞ50: A physically realistic assumption is made that the rate of change of LðtÞ is much

slower than the rate of temperature dynamics in the solid propellant. As we explain in the

stability analysis, the negative sign of ’LLðtÞ enhances stability, and for sufficiently short solid

propellants the dynamics become stable, allowing to turn off the controller during the final stage

of burning.

As model parameters are changing and temperature sensors are lost in the process of burning/

shortening of the solid propellant, the controller can be rescheduled to accommodate these

relatively slow changes.

1.4. Results

We start by discretizing the original PDE model in space using finite differences which gives a

high order system of coupled nonlinear ODEs. Applying the backstepping design [10],

appropriately adapted to parabolic PDEs [11] we obtain a discretized co-ordinate transforma-

tion that transforms the original system into a properly chosen target system that is

asymptotically stable in l2-norm. Then, using the property that the discretized co-ordinate

transformation is invertible for an arbitrary (finite) grid choice, we conclude that the discretized

version of the original system is globally asymptotically stable and obtain a nonlinear feedback

boundary control law for the temperature in the original set of co-ordinates.

A major novelty of the backstepping design in this paper is that it controls an instability

caused by a boundary condition that the control cannot alter (even in the target system)

but it dominates it in an indirect way, through damping introduced in the target system. This

type of destabilizing boundary condition is a peculiarity of the solid propellant rocket model

and is not found in chemical reactor models, which otherwise have similarities with the rocket

model.

Figure 1. Solid propellant rocket.
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It is intuitively clear that the number of sensing points needed to stabilize the system is close to

the number of open-loop unstable eigenvalues (provided the sensors are properly positioned for the

given eigenfunctions of the system). For the solid propellant rocket model we show that the

number of unstable eigenvalues is always one. In simulations we show that the controller we

propose works not only with densely distributed sensors (this result is proved by Lyapunov analysis

and therefore skipped in the simulation section) but also with a very low number of sensors.

1.5. Organization

In Section 2 a nonlinear one-dimensional PDE model that governs heat transfer inside the solid

propellant is introduced, followed by the stability analysis of the open loop system. A nonlinear

feedback control law that achieves global asymptotic stabilization is presented in Section 3,

followed by the proof of stability for the target system in Section 4. Finally, a feedback control

law designed on a very coarse grid is shown to successfully stabilize the system for a variety of

different simulation settings in Section 5.

2. MATHEMATICAL MODEL

In this section we introduce a model of transient heat conduction in solid propellants. The

model that we use is based on the model introduced by Denison and Baum [6]. The main

difference is that we are considering a realistic model of a finite length rod, as opposed to the

assumption of an infinitely long rod in Reference [6] introduced to simplify the stability analysis.

We present only the key steps necessary for understanding the model here. For a detailed

derivation see Reference [6]. It is assumed that the characteristic time for heat conduction in the

solid is at least an order of magnitude greater than the characteristic times for the gas phase

transport processes and chemical reactions. That means that we assume quasi-steady-state in the

gas phase that affects the heat conduction in solid phase through boundary condition on gas–

solid interface only. In addition, the principal assumptions include homogeneous propellant

with constant properties, Lewis number of unity, single step combustion reaction of any order,

no reactions in the solid state, vaporization according to an Arrhenius law and no erosive

burning. Under given assumptions the differential equation governing heat transfer in the solid

phase is

rsCs

@T

@t
¼ mwCs

@T

@x
þ Ks

@2T

@x2
ð1Þ

where T stands for the temperature of the solid defined for x 2 ½0; xmaxðtÞ&; rs; Cs; and Ks;
respectively, for density, specific heat, and thermal conductivity of the solid, and mw for the

mass flux relative to the burning surface. Note that the length of the solid propellant stick is a

function of time and it continuously decreases, due to deflagration, once the solid propellant is

ignited. The mass flux is governed by mw ¼ e'½Ew=RT ð0;tÞ&; where R stands for gas constant, and Ew

for activation energy for vaporization and decomposition at the wall ðx ¼ 0Þ: Equation (1)

satisfies boundary condition

T ðxmax; tÞ ¼ TNB ð2Þ

where TNB stands for the temperature at the non-reacting boundary. The other boundary

condition at the burning end ðx ¼ 0Þ is obtained from the heat balance at the solid surface. The
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heat conducted into solid is given by

Ks

@T ð0; tÞ

@x
¼ K

@T ð0; tÞ

@x

! "

g

þmwðCsT ð0; tÞ ' CpT ð0; tÞ ' LvdÞ ð3Þ

where Cp stands for specific heat of gas, Lvd for heat absorbed by vaporization and

decomposition, and subscript g refers to properties of gas. In addition, by simultaneously

integrating energy and species conservation equations in the gas phase we obtain a relation for

the temperature gradient at any point in the gas phase as

K

Cpmw

@T

@x
¼ Tf ' T '

Qr

Cp

er

! "

ð4Þ

where Tf stands for flame temperature, Qr for heat of combustion, and er for fraction of total

mass flux associated with reactant species. Evaluating (4) at x ¼ 0 and substituting it in (3) we

obtain the boundary condition at x ¼ 0 as

@T ð0; tÞ

@x
¼

e'½Ew=RT ð0;tÞ&

Ks

½CpTf þ erwQr þ Lvd ' CsT ð0; tÞ& ð5Þ

System (1) with boundary conditions (2) and (5) has a steady-state

%TTðxÞ ¼ %TTð0Þ '
%TTð0Þ ' TNB

1' e'ð %mmwCs=KsÞxmax
½1' e'ð %mmwCs=KsÞx& ð6Þ

where %mmw ¼ mwð %TTð0ÞÞ: Introducing non-dimensional spatial variable, time, and, non-dimen-

sional temperature deviation from the steady-state (6) respectively as x0 ¼ ð %mmwCs=KsÞx;
t0 ¼ ð %mm2

wCs=rsKsÞt; uðx
0; t0Þ ¼ ½T ðx0; t0Þ ' %TTðx0Þ&= %TTð0Þ; and omitting superscripts 0 for convenience,

we obtain a non-dimensionalized system

utðx; tÞ ¼ uxxðx; tÞ þ f1ðuð0; tÞÞuxðx; tÞ þ B1e
'x½1' f1ðuð0; tÞÞ& ð7Þ

uxð0; tÞ ¼ 'f2ðuð0; tÞÞ

uðL; tÞ ¼ control ð8Þ

where we denote f1ðuÞ ¼ eB2½u=ð1þuÞ&; f2ðuÞ ¼ B1½f1ðuÞ ' 1& þ f1ðuÞu; and L ¼ ð %mmwCs=KsÞxmax0

B1 ¼
1' ½TNB=T ð0Þ&

1' e'L
; B2 ¼

Ew

R %TTð0Þ

Note that since uð0; tÞ > '1ðuð0; tÞ ¼ '1 corresponds to absolute zero), both f1 and f2 are well

defined. Although it appears that B1 might start increasing as L slowly changes, it actually

remains constant. Since both %TTð0Þ and %TT f are constant, from (5) we conclude that @ %TTð0Þ=@x
does not change. Taking a derivative of %TTðxÞ and evaluating obtained expression for x ¼ 0

we get

@ %TTð0Þ

@x
¼ '

%TTð0Þ ' TNB

1' e'L
¼ 'B1

%TTð0Þ ð9Þ

Since both %TTð0Þ and @ %TTð0Þ=@x remain unchanged, we conclude that B1 does not change either.

Physically, as the solid propellant burns it becomes shorter, the influence of the burning end

becomes more pronounced, and TNB increases in a fashion that keeps B1 constant. As shown in

Reference [6], depending on the current steady-state, small pressure disturbances in gas pressure

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:483–495

STABILIZATION OF A SOLID PROPELLANT ROCKET 487



can lead to instability, i.e. the departure of the surface temperature, and hence mass flux, from

the steady-state value. Linearizing (7) around the equilibrium at the origin we obtain the

linearized system as

ut ¼ uxx þ ux ' Auð0; tÞe'x ð10Þ

uxð0; tÞ ¼ 'quð0; tÞ ð11Þ

uðL; tÞ ¼ 0 ð12Þ

where A ¼ B1B2 and q ¼ 1þ A: To prove that the linearized system (10)–(12) can become

unstable we show that there exists a particular solution that grows exponentially for some choice

of A; q; and L: We start by introducing a coordinate change zðx; tÞ ¼ e'ð1=2Þxþð1=4Þtuðx; tÞ that

transforms (10)–(12) into

zt ¼ zxx ' Azð0; tÞe'ð1=2Þx ð13Þ

zxð0; tÞ ¼ ' q'
1

2

! "

uð0; tÞ ð14Þ

zðL; tÞ ¼ 0 ð15Þ

Postulating a solution of the z-system as zðx; tÞ ¼ f ðxÞzð0; tÞ; where by definition

f ð0Þ ¼ 1 ð16Þ

and substituting it in (13), we get

ztðx; tÞf ðxÞ ¼ zð0; tÞ½fxxðxÞ ' Ae'ð1=2Þx& ð17Þ

Now it becomes obvious from (17) that if we can construct f ðxÞ that satisfies

fxx ' Ae'ð1=2Þx ¼ k2f ; k2 >
1

4
ð18Þ

boundary conditions (14) and (15), and condition (16), system (10)–(12) will be unstable. We

indeed find such a solution as

uðx; tÞ ¼ CðkÞeðk'ð1=2ÞÞx þ Cð'kÞe'ðkþð1=2ÞÞx þ
A

ð1=4Þ ' k2
e'x

! "

eðk
2'ð1=4ÞÞtuð0; 0Þ ð19Þ

where

CðkÞ ¼
ðk þ ð1=2ÞÞ2 ' qðk þ ð1=2ÞÞ þ A

2kðk þ ð1=2ÞÞ
ð20Þ

and k satisfies

k3 þ k2
1

2
' q

! "

þ k A'
1

4

! "

þ
q

4
'

1

8
'

A

2

! "

¼ 'e'2kL k3 þ k2 q'
1

2

! "

þ k A'
1

4

! "

þ
1

8
þ

A

2
'

q

4

! "# $

þ 2Ake'ðkþð1=2ÞÞL ð21Þ

Note that in the limit case L ! 1; following the same approach as for the finite L; for the
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linearized system to be unstable k has to satisfy

k2 þ ð1' qÞk þ Aþ
1

4
'

q

2

! "

¼ 0 ð22Þ

If q > 1 and q2 > 4A; we find that a sufficient condition for k2 > 1
2
becomes

q2 ' q' 2A > 0 ð23Þ

that is exactly the same stability condition that Denison and Baum arrived at in Reference [6].

Numerically finding the eigenvalues of (10)–(12), we were able to show that regardless of the

values for the system parameters B1; B2; and L; or in other words regardless of the level of the

open-loop instability, the system could have only one unstable eigenvalue. As the open-loop

system becomes more unstable the magnitude of the unstable eigenvalue increases, but the total

number of unstable eigenvalues remains one. The dependence of the magnitude of the largest

eigenvalue lmax of system (10)–(12) for a particular choice A ¼ 1:0 is shown in Figure 2. What is

interesting is that our analysis shows that a longer rocket will tend to be more unstable than a

shorter one, given all the system parameters same. This means that if we can stabilize the system

at the beginning we will be able to do so at any other time instant since the solid propellant

burns and its length reduces due to deflagration. In addition, from the point of view of

implementation, the control algorithm can be turned off after the remaining length of the solid

propellant stick becomes smaller than the critical length Lcrit; defined as value for which lmax

reaches zero, i.e. lmaxðLcritÞ ¼ 0:

Figure 2. Dependence of the largest open-loop eigenvalue lmax on the non-dimensionalized rocket length L
for A ¼ 1:0:
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3. CONTROL LAW

In this section we present a feedback boundary control design for unstable burning in solid

rocket propellants.

Unlike most control problems for PDEs that assume the freedom for the designer in

prescribing boundary conditions everywhere on the boundary, this 1D nonlinear PDE model

has an unfavourable nonlinear boundary condition imposed at one of the boundaries by the

nature of the system itself. This fact presents a design challenge since the standard backstepping

procedure for parabolic PDEs of transforming the original system into a target system with

homogeneous boundary conditions, and then proving asymptotic stability using Poincar!ee

inequality (see Reference [13] for details) cannot work. We present here a modified version of the

standard backstepping design for parabolic PDEs that can accommodate the imposed

destabilizing boundary condition at the burning end. The first aspect of the modification

consists in choosing a target system that has the same type of boundary condition at x ¼ 0 as the

original system, and homogeneous Dirichlet boundary condition at x ¼ L: We then prove

asymptotic stability of the transformed system using Agmon’s instead of Poincar!ee inequality. As

it will become obvious from the stability proof, the proposed technique can be extended to a

more general class of nonlinear parabolic PDE systems with imposed boundary conditions.

To discretize the problem, let us start by denoting h ¼ L=N ; where N is an integer. Then, with

ui defined as uiðtÞ ¼ uðih; tÞ; i ¼ 0; . . . ;N ; we represent the non-dimensional system (7) as

’uui ¼
1

h2
uiþ1 '

2

h2
'

f1ðu0Þ

h

# $

ui

þ
1

h2
'

f1ðu0Þ

h

# $

ui'1 þ B1e
'ih½1' f1ðu0Þ& ð24Þ

with boundary condition at zero end expressed as ðu0 ' u'1Þ=h ¼ 'f2ðu0Þ; where u'1 stands for

an artificially introduced phantom node. Since uðL; tÞ is the control in the PDE, the control input

to the discretized system is uN : We now suggest a backstepping controller that transforms the

original system into the discretization of the system

wtðx; tÞ ¼ wxxðx; tÞ þ f1ðwð0; tÞÞwxðx; tÞ ' cwðx; tÞ ð25Þ

wxð0; tÞ ¼ 'f2ðwð0; tÞÞ ð26Þ

wðL; tÞ ¼ 0 ð27Þ

where c > k22 ; k2 being a positive constant that satisfies f2ðwð0ÞÞwð0Þ5k2wð0Þ
2 for 8wð0Þ: Under

given conditions system (25)–(27) can be shown to be asymptotically stable. We should stress

that the choice of the target system is one of the key issues here. When transforming the original

system we should try to keep its parabolic character, i.e. keep the second spatial derivative in the

transformed co-ordinates. Even when applied for linear parabolic PDEs, the control laws

obtained using standard backstepping would have gains that grow unbounded as N ! 1: The
problem with standard backstepping is that it would not only attempt to stabilize the equation,

but also place its poles, and thus as N ! 1; change its parabolic character. The co-ordinate

transformation is sought in the form

w0 ¼ u0 ð28Þ
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w1 ¼ u1 ' a0ðu0Þ ð29Þ

wi ¼ ui ' ai'1ðu0; . . . ; ui'1Þ; i ¼ 2; . . . ;N ' 1 ð30Þ

uN ¼ aN'1ðu0; . . . ; uN'1Þ ð31Þ

where wiðtÞ ¼ wðih; tÞ: The discretized form of Equation (25) is

’wwi ¼
1

h2
wiþ1 '

2

h2
'

f1ðw0Þ

h
þ c

# $

wi þ
1

h2
'

f1ðw0Þ

h

# $

wi'1 ð32Þ

with ðw0 ' w'1Þ=h ¼ 'f2ðw0Þ; wN ¼ 0; w'1 being a phantom node. By combining the above

expressions, namely subtracting (32) from (24), expressing the obtained equation in terms of

uk ' wk ; k ¼ i' 1; i; iþ 1; and applying (30), we obtain

ai ¼ h2
2

h2
'

f1ðu0Þ

h
þ c

# $

ai'1 '
1

h2
'

f1ðu0Þ

h

# $

ai'2

%

' cui ' B1e
'ih½1' f1ðu0Þ& þ

X

i'1

k¼0

@ai'1

@uk

1

h2
ukþ1 '

2

h2
'

f1ðu0Þ

h

# $

uk

!

þ
1

h2
'

f1ðu0Þ

h

# $

uk'1 þ B1e
'kh½1' f1ðu0Þ&

"&

ð33Þ

for i ¼ 0; . . . ;N ' 1: We then set a'1 ¼ a'2 ¼ 0 and use uN ¼ aN'1 as control. By inspection of

the recursive control design algorithm one can verify that the co-ordinate transformation is

invertible (which implies global asymptotic stability of the discretized system) and that the

control law is smooth.

We should stress that the control law uN obtained by recursively applying (33) is of a Dirichlet

type. The only reason for giving the control law as a temperature control law, although flux

actuation would be both more realistic and more effective, is because the model from Reference

[6] that we are using gives boundary condition at x ¼ L as Dirichlet boundary condition.

Extension from Dirichlet to Neumann boundary condition at x ¼ L would be performed in

exactly the same fashion as we did for the model of thermal convection loop in Reference [13].

4. ASYMPTOTIC STABILITY OF THE DISCRETIZED SYSTEM IN MODIFIED

COORDINATES

In this section we prove global asymptotic stability for (25)–(27) in L2-norm. The effect of the

moving boundary is resolved by utilizing the approach of Armaou and Christofides (see

Reference [14] and references therein) for control of parabolic PDEs with time-dependent

spatial domains. Note that we do not require an actuator whose position changes with time

since the co-ordinate system in the model of Denison and Baum [6] is selected so that the solid–

gas interface is maintained at x ¼ 0: In real application the actuator would be placed at the

nonreacting end of the solid propellant stick that does not move. We start with a Lyapunov

function

V ¼
1

2

Z LðtÞ

0

wðx; tÞ2 dx ð34Þ
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and find its derivative with respect to time, along the trajectories of system (25) (27), to be

’VV ¼

Z LðtÞ

0

wwt dxþ
1

2
’LLðtÞwðLÞ24

Z LðtÞ

0

wwt dx

¼

Z LðtÞ

0

f1ðwð0; tÞÞwwx dxþ

Z LðtÞ

0

wwxx dx' c

Z LðtÞ

0

w2 dx

¼

Z LðtÞ

0

f1ðwð0; tÞÞ

2
dðw2Þ þ wxw

'

'

'

'

LðtÞ

0

'

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx ð35Þ

where we have used the fact that ’LL50: Since

04f14eB2 ð36Þ

f2ðwð0; tÞÞwð0; tÞ4k2wð0; tÞ
2; k2 > 0 ð37Þ

we get

’VV4 '
eB2

2
wð0; tÞ2 ' wxð0; tÞwð0; tÞ '

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx

4 f2ðwð0; tÞÞwð0; tÞ '

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx

4 k2wð0; tÞ
2 '

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx ð38Þ

Now using Agmon’s inequality

max
x2½0;L&

w2ðxÞ4w2ðLÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z LðtÞ

0

wðxÞ2 dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z LðtÞ

0

wxðxÞ
2 dx

s

ð39Þ

we get

’VV4 2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z LðtÞ

0

w2 dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z LðtÞ

0

w2
x dx

s

'

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx

4 k22

Z LðtÞ

0

w2 dxþ

Z LðtÞ

0

w2
x dx'

Z LðtÞ

0

w2
x dx' c

Z LðtÞ

0

w2 dx

¼ ' ½c' k22 &

Z LðtÞ

0

wðx; tÞ2 dx ¼ '2½c' k22 &V ; ð40Þ

which implies that system (25)–(27) is asymptotically stable in L2-norm. The proof that (32) is

asymptotically stable in l2-norm with ðw0 ' w'1Þ=h ¼ 'f2ðw0Þ and wN ¼ 0 would be completely

analogous. We would start with Lyapunov function Vd ¼ 1
2

PN ðtÞ
i¼0 w2

i ; use the fact that
’NNðtÞ50;

use discretized version of the Agmon’s inequality (39), and obtain ’VVd4' 2½c' k22 &Vd:
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5. SIMULATION STUDY

In this section we present simulation results for the unstable burning in homogeneous solid

propellants.

As shown in Section 3, control law (33) is given in a recursive form that can be easily applied

using symbolic tools available. Once the final expression for temperature control is obtained, for

some particular choice of N ; one would have to use full state feedback to stabilize the system, i.e.

the complete knowledge of the temperature field is necessary. Instead, we show that controllers

of relatively low order (designed on a much coarser grid) can successfully stabilize the system for

a variety of different simulation settings.

The reasoning behind the idea of using low order backstepping controllers is based on

intuition and is given here without any formal proof. The idea of using controllers designed

using only a small number of steps of backstepping to stabilize the system for a certain range of

the open-loop instability is based on the fact that in most real life systems only a finite number

of open-loop eigenvalues is unstable. The conjecture is then to apply a low order backstepping

controller (controller that uses only a small number of state measurements) that is capable of

detecting the occurrence of instability from a limited number of measurements, and stabilize the

system. Indeed, extensive simulation study for thermal convection loop [13] suggested that to

accommodate a higher level of open-loop instability one would have to increase the order of

controller, i.e. use a controller designed using more steps of backstepping. The situation is even

more promising for the solid propellant instability. Unlike in the case of the heat convection

loop, the increased level of open-loop instability for the solid propellant will not result in the

increased number of open-loop unstable eigenvalues. Instead, only the magnitude of the single

unstable eigenvalue will increase as the system becomes more unstable (the level of open-loop

instability increases as either L; B1 or B2 increases). This fact suggested that a fixed low order

controller might be capable of stabilizing the system for a variety of simulation settings.

Indeed, a controller designed using only one step of backstepping (using only two

temperature measurements uð0; tÞ and uðL=2; tÞÞ was capable of successfully stabilizing the

system for a variety of different simulation settings. By controller designed using only one step

of backstepping we assume controller designed on a very coarse grid, namely on a grid with just

two points. In this case the control is implemented by using a1 for control, where a1 is obtained

from expression (33) for i ¼ 1 with h ¼ L=2 and u1 ¼ uðL=2; tÞ: Simulations were run with initial

temperature distribution uðx; 0Þ ¼ 0:01ðcosðpx=2LÞ þ cosðpx=3LÞ þ cosðpx=5LÞÞ using BTCS

finite difference method for N ¼ 200 and the time step equal to 0:01 s: The effect of moving

boundary due to deflagration was not taken into account in any of the simulations in this

simulation study. Although we have tested the controller for several different combinations of A

and L; we only present a result for A ¼ 1 (B1 ¼ B2 ¼ 1:0) and L ¼ 2:0; and briefly summarize

results for various other combinations. The controller was capable of stabilizing solid propellant

of length L ¼ 0:5 up to A ¼ 5; L ¼ 1:0 up to A ¼ 3; L ¼ 1:5 up to A ¼ 2; L ¼ 2:0 up to A ¼ 1:5;
and L ¼ 2:5 up to A ¼ 0:5: A trend of a decreasing range of A for which we could stabilize the

system as L increases is obvious. We come to the same conclusion as in the eigenvalue analysis

for the open loop system: longer rockets tend to be harder to stabilize.

The simulation results presented here are for a solid propellant rocket of non-dimensional

length L ¼ 2:0 with B1 ¼ 1:0 and B2 ¼ 1:0: The temperature response for the uncontrolled case is

shown in Figure 3. As it can be seen from Figure 3, the particular choice of L; B1; and B2

corresponds to a highly unstable solid propellant system. The system goes to an undesired
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equilibrium profile where the burning temperature is about four-times higher than the nominal

temperature, and therefore would result in a destructive failure. The corresponding temperature

uðx; tÞ for the controlled case is shown in Figure 4. The controller was capable of stabilizing the

system very fast using relatively small control effort.

Figure 3. Open loop temperature uðx; tÞ for B1 ¼ B2 ¼ 1:0 and L ¼ 2:0:

Figure 4. Closed loop temperature uðx; tÞ for B1 ¼ B2 ¼ 1:0 and L ¼ 2:0 with feedback controller designed
using only one step of backstepping.
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6. CONCLUSIONS

A nonlinear feedback controller based on Lyapunov backstepping design that achieves global

asymptotic stabilization of the unstable burning in solid propellants has been derived. The result

holds for any finite discretization in space of the original PDE model.

The simulation study indicates that a feedback control law designed using only one step of

backstepping can be successfully used to stabilize the system for a variety of different simulation

settings.
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