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Abstract— This paper treats the asymptotic stabilization of
a specified equilibrium in the inverted equilibrium manifold of
the 3D pendulum. This attitude stabilization problem is solved
by use of Lyapunov methods applied to closed loop dynamics
that evolve on the tangent bundle TSO(3). A smooth controller
is proposed that achieves almost global asymptotic stabilization
of the specified equilibrium; the controller provides freedom to
influence the local dynamics of the closed loop near the specified
equilibrium as well as some freedom to shape the manifold of
solutions that do not converge to the specified equilibrium.

I. INTRODUCTION

Pendulum models have provided a rich source of examples

that have motivated and illustrated many recent developments

in nonlinear dynamics and in nonlinear control [1]. An

overview of pendulum control problems was given in [2],

which provides motivation for the importance of such control

problems. The 3D pendulum is a rigid body, supported at a

fixed pivot, that has three rotational degrees of freedom; it

is acted on by a uniform gravity force and by a control mo-

ment. Dynamics and control problems for the 3D pendulum

were first introduced in [3]. Stabilization results for the 3D

pendulum have been presented in [4].

The 3D pendulum has two disjoint equilibrium manifolds,

namely the hanging and the inverted equilibrium manifold. In

[4], we studied stabilization of these equilibrium manifolds.

In this paper, we consider the problem of the stabilization of

a specified equilibrium in the inverted equilibrium manifold.

These control problems exemplify attitude stabilization prob-

lems on SO(3). The results are derived by using Lyapunov

functions that are suited to the 3D pendulum problem. Also,

the attitude is expressed in terms of a rotation matrix, in

particular avoiding the use of Euler angles and other non-

global attitude representations.

Due to a topological obstruction, it is not possible to

globally asymptotically stabilize an inverted equilibrium

using a continuous feedback controller. Thus, we propose

a continuous controller that almost globally asymptotically

stabilizes the inverted equilibrium.
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II. MATHEMATICAL MODELS OF THE 3D PENDULUM

AND EQUILIBRIUM STRUCTURE

The attitude of the 3D pendulum is represented by a

rotation matrix R, viewed as an element of the special

orthogonal group SO(3). The angular velocity of the 3D

pendulum with respect to the inertial frame, resolved in

the body-fixed frame, is denoted by ω in R3. We note that

even though global representations are used, the feedback

controllers introduced in this paper could be expressed in

terms of feedback using any other attitude representation,

such as Euler angle or quaternions.

The constant inertia matrix, resolved in the body-fixed

frame, is denoted by J . The vector from the pivot to the

center of mass of the 3D pendulum, resolved in the body-

fixed frame, is denoted by ρ. The symbol g denotes the

constant acceleration due to gravity.

Standard techniques yield the equations of motion for the

3D pendulum. The dynamics are given by the Euler-Poincaré

equation which includes the moment due to gravity and a

control moment u ∈ R3 which represents the control torque

applied to the 3D pendulum, resolved in the body-fixed frame

Jω̇ = Jω × ω + mgρ × RTe3 + u, (1)

where e3 = [0 0 1]T denotes unit vector in the direction

of gravity in the inertial frame. The rotational kinematics

equations are

Ṙ = Rω̂, (2)

where R ∈ SO(3), ω ∈ R3 and

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (3)

Note that a × b = âb.

The equations of motion (1) and (2) for the 3D pendulum

model has dynamics that evolve on the tangent bundle

TSO(3) [5]. Note that since e3 = [0 0 1]T denotes the unit

vector in the direction of gravity in the specified inertial

frame, RTe3 in (1) denotes the dimensionless unit vector in

the direction of gravity resolved in the body-fixed frame.
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To further understand the dynamics of the 3D pendulum,

we study the equilibria of (1) and (2). Equating the RHS of

(1) and (2) to zero with u = 0 yields

Jωe × ωe + mgρ × RT

ee3 = 0, (4)

Reω̂e = 0. (5)

Now Reω̂e = 0 if and only if ωe = 0. Substituting ωe = 0
in (4), we obtain ρ × RT

ee3 = 0. Hence,

RT

ee3 = ±
ρ

‖ρ‖
. (6)

Hence an attitude Re is an equilibrium attitude if and

only if the direction of gravity resolved in the body-fixed

frame, RT

ee3, is collinear with the vector ρ. If RT

ee3 is

in the same direction as the vector ρ, then (0, Re) is a

hanging equilibrium of the 3D pendulum; if RT

ee3 is in the

opposite direction as the vector ρ, then (0, Re) is an inverted

equilibrium of the 3D pendulum.

According to (6), there is a smooth manifold of hanging

equilibria and a smooth manifold of inverted equilibria, and

these two equilibrium manifolds are clearly disjoint. The

former is the hanging equilibrium manifold; the latter is the

inverted equilibrium manifold.

III. ASYMPTOTIC STABILIZATION OF A SPECIFIED

INVERTED EQUILIBRIUM

Let (0, Rd) denote a specified equilibrium in the inverted

equilibrium manifold of the 3D pendulum given by (1) and

(2). In this section we present controllers that stabilize this

specified equilibrium (0, Rd).

Let Φ : [0,∞) → [0,∞) be a C2 function such that

Φ(0) = 0 and Φ′(x) > 0 for all x ∈ [0,∞). (7)

Let Ψ : R3 → R3 be a C1 function satisfying
{

Ψ′(0) is positive definite,

P(x) ≤ xTΨ(x) ≤ α(‖x‖) for all x ∈ R3,
(8)

where P : R3 → R is a positive definite function and α(·) is

a class-K function [6]. Given a = [a1 a2 a3]
T ∈ R3, denote

Ωa(R) , a1

[
(RT

de1) × (RTe1)
]

+ a2

[
(RT

de2) × (RTe2)
]

+ a3

[
(RT

de3) × (RTe3)
]
. (9)

Further, let A ∈ R3×3, be a diagonal matrix defined as

A , diag(a). (10)

We study feedback controllers of the form

u = −Ψ(ω) + κ
(
(RT

de3) × (RTe3)
)

+ Φ′

(
trace(A − ARdRT)

)
Ωa(R), (11)

where κ ≥ mg‖ρ‖.

The controller (11) requires measurements of the angular

velocity and attitude, in the form of the rotation matrix R,

of the 3D pendulum. The angular velocity dependent term

Ψ(ω) in (11) provides damping, while the attitude dependent

term in (11) can be viewed as a modification or shaping of

the gravity potential.

Unlike feedback-linearization based approaches, the con-

trol law (11) requires no knowledge of the moment of inertia

or of the location of the center of mass of the 3D pendulum

relative to the pivot. However, the constant κ is an upper

bound on the gravity moment about the pivot. Hence a bound

on mg‖ρ‖ must be known.

We subsequently show that (ω, R) = (0, Rd) is an

equilibrium of the closed-loop consisting of (1), (2) and (11)

and it is almost globally asymptotically stable with locally

exponential convergence.

A. Equilibrium Structure of the Closed-Loop

In this section, we study the equilibria in TSO(3) of the

closed-loop system consisting of (1), (2) and (11). Define

ā , [a1 a2 ā3]
T, (12)

where

ā3 , a3 +
κ − mg‖ρ‖

Φ′

(
trace(A − ARdRT)

) ≥ a3. (13)

Since (0, Rd) lies in the inverted equilibrium manifold, it

follows from (6) that RT

d
e3 = −

ρ

‖ρ‖
. Substituting (11) in (1)

and (2), and simplifying, we express the closed-loop system

as



Jω̇ = Jω × ω − Ψ(ω) + Φ′

(
trace(A − ARdRT)

)
Ωā(R),

Ṙ = Rω̂.
(14)

Lemma 1: Consider the closed-loop system (14) of a 3D

pendulum given by (1) and (2), with controller (11), where

the functions Φ and Ψ satisfy (7) and (8), κ ≥ mg‖ρ‖ and

A defined in (10) satisfies 0 < 2a1 < a1 + a2 < a3. Then,

the closed-loop (14) has four equilibrium solutions given by

E =
{

(ω, R) ∈ TSO(3) : ω = 0, R = MRd, M ∈ Mc

}
,

(15)

where

Mc ,

{
diag(1, 1, 1), diag(−1, 1,−1),

diag(1,−1,−1),diag(−1,−1, 1)
}

. (16)

Proof: To obtain the equilibria of the closed-loop system,

equate the RHS of (14) to zero, which yields

Jω × ω − Ψ(ω) + Φ′

(
trace(A − ARdRT)

)
Ωā(R) = 0,

(17)

ω = 0. (18)
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Substituting ω = 0 into (17) and noting that Φ′(x) > 0 for

all x ∈ [0,∞) yields

Ωā(R) = a1R̂T

d
e1R

Te1 + a2R̂T

d
e2R

Te2 + ā3R̂T

d
e3R

Te3 = 0.
(19)

It can be shown that Ωā(R) = 0 implies Ωa(R) = 0.

Now define f : SO(3) → R by f(R) = trace(ARdRT)
where A , diag(a). Then, it can be shown that the tangent

map of f [5] denoted as Tf : TRSO(3) → R is given by

Tf(Rη̂) = ηTΩa(R), where η ∈ R3 and Rη̂ ∈ TRSO(3)
represents the lifted action of R ∈ SO(3) on η̂ ∈ so(3).
It follows that the set of all points in SO(3) that satisfy

Ωa(R) = 0 are the critical points of the function f .

Since A is a diagonal matrix with distinct positive eigen-

values, Theorem 1.1 in [7] implies that f is a perfect Morse

function [7]. Hence, f has exactly four critical points on

SO(3) that are the four solutions of (19). Therefore, the

equilibrium solutions lie in E as given in (15).

Remark 1: Note that the desired equilibrium (0, Rd) ∈
E . Each of the other three equilibrium solutions in E cor-

responds to an attitude configuration formed by the desired

attitude Rd, followed by a rotation about one of the three

body fixed axes by 180 degrees.

B. Local Analysis of the Closed-Loop

Consider a perturbation of the initial conditions about

an equilibrium (0, Re) ∈ E given in (15) in terms of a

perturbation parameter ε ∈ R. We express the perturbation

in the rotation matrix using exponential coordinates [5], [8],

[9]. Let the perturbation in the initial condition for attitude

be given as R(0, ε) = Ree
εδ̂Θ, where ReR

T

d
∈ Mc and

δΘ ∈ R3 is a constant vector. The perturbation in the initial

condition for angular velocity is given as ω(0, ε) = εδω,

where δω ∈ R3 is a constant vector. Note that if ε = 0 then,

(ω(0, 0), R(0, 0)) = (0, Re) and hence

(ω(t, 0), R(t, 0)) ≡ (0, Re) (20)

for all time t ∈ R. This simply represents the unperturbed

equilibrium solution.

Next, consider the solution to the perturbed equations of

motion for the closed-loop 3D pendulum given by (14). Then

differentiating both sides of the perturbed closed-loop with

respect to ε and substituting ε = 0 yields

Jω̇ε(t, 0) = −Ψ′(0)ωε(t, 0)

+ Φ′(trace(A − ARdRT

e))Ωā(Rε(t, 0)), (21)

Ṙε(t, 0) = Reω̂ε(t, 0). (22)

where

ωε(t, 0) ,
∂ ω(t, ε)

∂ε

∣∣∣∣
ε=0

and Rε(t, 0) ,
∂R(t, ε)

∂ε

∣∣∣∣
ε=0

.

Define variables for the linearization ∆ω, ∆Θ ∈ R3 as

∆ω(t) , ωε(t, 0) and ∆̂Θ(t) , RT

eRε(t, 0). Then from

(22) we obtain ∆̂Θ̇(t) = RT

eṘε(t, 0) = ω̂ε(t, 0) = ∆̂ω(t).
Therefore,

∆Θ̇ = ∆ω. (23)

Combining (21) and (23), and simplifying, we obtain

J∆Θ̈ + Ψ′(0)∆Θ̇ + K∆Θ = 0, (24)

where

K = Φ′

(
trace(A − ARdRT

e)
)
·

[
− a1R̂T

d
e1 R̂T

ee1 − a2R̂T

d
e2 R̂T

ee2 − ā3R̂T

d
e3 R̂T

ee3

]
, (25)

and ā3 is given in (13). Now, since M = ReR
T

d
∈ Mc, the

identity R̂ei = RêiR
T, where R ∈ SO(3) [8], yields

R̂T

d
ei R̂T

eei = R̂T
eMei R̂T

eei = RT

eM̂ei êiRe,

for i ∈ {1, 2, 3}. Thus, using the above, the expression for

K in (25) can be written as

K = Φ′

(
trace(A − ARdRT

e)
)
RT

e QRe, (26)

where

Q = −a1M̂e1 ê1 − a2M̂e2 ê2 − ā3M̂e3 ê3 (27)

and M = ReR
T

d
∈ Mc, as in (16).

Lemma 2: Consider the closed-loop model of a 3D pen-

dulum given by (1) and (2), with controller (11), where the

functions Φ and Ψ satisfy (7) and (8), κ ≥ mg‖ρ‖ and A
defined in (10) satisfies 0 < 2a1 < a1 + a2 < a3. Then the

closed-loop equilibrium (0, Rd) ∈ E is asymptotically stable

and the convergence is locally exponential.

Proof: Combining equations (1), (2) and (11), we obtain

the closed-loop system given by (14). Next, we linearize

the dynamics of (14) about the equilibrium (0, Rd) yielding

equation (24) where Re = Rd.

Now Ψ′(0) is positive definite and M is the identity

matrix. Hence, from (27)

Q = −a1 ê 2

1 − a2 ê 2

2 − ā3 ê 2

3

is positive definite. Next, since Φ′(·) is positive and K is a

similarity transform of Q, K in (26) is positive definite. Thus,

since K and Ψ′(0) are positive definite, linear theory guaran-

tees that the linearized system given by (24) is asymptotically

stable. Hence, the equilibrium (0, Rd) of (14) is locally

asymptotically stable with local exponential convergence.

Consider the equilibria (0, Re) of the closed-loop (14)

such that Re 6= Rd. From Lemma 1, we express the three

equilibria (0, Re) ∈ E such that Re 6= Rd as Re, i = MiRd,

i ∈ {1, 2, 3}, where

M1 = diag(1,−1,−1), M2 = diag(−1, 1,−1), and

M3 = diag(−1,−1, 1). (28)
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We next show that the above three equilibria (0, Re, i), i ∈
{1, 2, 3} of the closed-loop (14) are unstable and present the

local properties of the closed-loop trajectories.

Lemma 3: Consider the closed-loop model of a 3D pen-

dulum given by (1) and (2), with controller (11), where the

functions Φ and Ψ satisfy (7) and (8), κ ≥ mg‖ρ‖ and

A defined in (10) satisfies 0 < 2a1 < a1 + a2 < a3.

Consider an equilibrium (0, Re, i) ∈ E , such that Re, i 6=
Rd, i ∈ {1, 2, 3}. Then, (0, Re, i) is unstable. Furthermore,

there exists an invariant 3-dimensional submanifold M1, an

invariant 4-dimensional submanifold M2, and an invariant 5-

dimensional submanifold M3, respectively in TSO(3) whose

complements are open and dense, such that (a) for all initial

conditions (ω(0), R(0)) ∈ Mi, i ∈ {1, 2, 3}, the closed-loop

solutions converge to the equilibrium (0, Re, i) and (b) for all

initial conditions (ω(0), R(0)) ∈ TSO(3)\Mi, the closed-

loop solutions do not converge to the equilibrium (0, Re, i),
i ∈ {1, 2, 3}.

Proof: Combining equations (1), (2) and (11), we obtain

the closed-loop system given by (14). Next, we linearize

the dynamics of (14) about the equilibrium (0, Re, i), i ∈
{1, 2, 3} yielding equation (24). Since, Re, i 6= Rd, the three

equilibria are given by (0, Re, i) = (0,MiRd), where Mi,

i ∈ {1, 2, 3} is as given in (28).

Next, computing Qi using (27) corresponding to the three

attitude equilibria (0,MiRd), i ∈ {1, 2, 3} yields

Q1 = diag(−a2 − ā3, a1 − ā3, a1 − a2),

Q2 = diag(a2 − ā3,−a1 − ā3,−a1 + a2),

Q3 = diag(−a2 + ā3,−a1 + ā3,−a1 − a2).

Since 0 < a1 < a2 < ā3, all eigenvalues of Q1, Q2 and

Q3 lie in R\{0} and each of Q1, Q2 and Q3 has a negative

eigenvalue. Since Re, i ∈ SO(3), it follows from (26) that

corresponding to Q1, Q2 and Q3, all eigenvalues of the

matrices K1,K2 and K3 lie in R\{0} and each of K1,K2

and K3 has a negative eigenvalue. Hence (14) is unstable for

each equilibrium (0, Re, i), i ∈ {1, 2, 3} [9].

Next, since, Ψ′(0) is positive definite and all eigenvalues

of the matrices K1,K2 and K3 lie in R\{0}, it follows

that each equilibrium (0, Re, i) ∈ E , i ∈ {1, 2, 3} of (14)

is hyperbolic. Theorem 3.2.1 in [10] guarantees that each

equilibrium (0, Re, i) ∈ E of (14) has a nontrivial unstable

manifold Wu
i . Let W s

i denote its corresponding stable man-

ifold. The tangent space to the stable manifold W s
i at the

equilibrium (0, Re, i) is the stable eigenspace of the linearized

system (24), and hence is 3-dimensional, 4-dimensional and

5-dimensional, for i ∈ {1, 2, 3}, respectively. Since, the

equilibria are hyperbolic, there are no center manifolds.

Then, all trajectories near (0, Re, i) other than those in W s
i

diverge from that equilibrium. Since the dimension of the

submanifold W s
i is less than the dimension of the tangent

bundle TSO(3), the complement of W s
i is open and dense.

Denoting Mi , W s
i , i ∈ {1, 2, 3}, the result follows.

IV. GLOBAL ANALYSIS OF THE CLOSED-LOOP

In this section, we present global convergence properties

of closed-loop trajectories.

Theorem 1: Consider the closed-loop model of a 3D

pendulum given by (1) and (2), with controller (11),

where the functions Φ and Ψ satisfy (7) and (8), κ ≥
mg‖ρ‖ and A defined in (10) satisfies 0 < 2a1 <
a1 + a2 < a3. Then, (0, Rd) is an asymptotically sta-

ble equilibrium of the closed-loop (14) with local expo-

nential convergence. Furthermore, there exists an invariant

manifold M ⊂ TSO(3), whose complement is open and

dense such that for all initial conditions (ω(0), R(0)) ∈
TSO(3)\M, the solutions of the closed-loop system given

by (14) satisfy lim
t→∞

ω(t) = 0 and lim
t→∞

R(t) = Rd. For

all other initial conditions (ω(0), R(0)) ∈ M, the so-

lutions of the closed-loop system given by (14) satisfy

lim
t→∞

(ω(t), R(t)) ∈ E \{(0, Rd)}.

Proof: Consider the closed-loop system consisting of (1), (2)

and (11) given by (14). Then, it immediately follows from

Lemma 2 that (0, Rd) is an asymptotically stable equilibrium

of the closed-loop (14) with local exponential convergence.

Consider the following candidate Lyapunov function.

V (ω, R) =
1

2
ωTJω + (κ − mg‖ρ‖)(1 − eT

3RdRTe3)

+ Φ
(
trace(A − ARdRT)

)
. (29)

Note that V (ω, R) ≥ 0 for all (ω, R) ∈ TSO(3) and

V (ω, R) = 0 if and only if (ω, R) = (0, Rd). Thus V (ω, R)
is a positive definite function on TSO(3).

We show that the Lie derivative of the Lyapunov func-

tion along the closed-loop vector field of (14) is negative

semidefinite. Denote the closed-loop vector field of (14) by

Z. Then,

LZΦ
(
trace(A − ARdRT)

)

= −Φ′

(
trace(A − ARdRT)

)
[trace(ARd(Rω̂)T)].

Now, trace
(
ARd(Rω̂)T

)
= trace

(
(Rω̂)RT

d
A

)T

=

ωT

[
a1R̂T

d
e1R

Te1 + a2R̂T

d
e2R

Te2 + a3R̂T

d
e3R

Te3

]
. Therefore,

the derivative of the Lyapunov function along a solution of

the closed-loop is

V̇ (ω, R) = ωTJω̇ − (κ − mg‖ρ‖)eT

3RdṘTe3

+ LZΦ
(
trace(A − ARdRT)

)
,

= ωT

{
u − κ(RT

de3 × RTe3)

− Φ′

(
trace(A − ARdRT)

)
Ωa(R)

}
. (30)

Substituting (11) into (30), we obtain V̇ (ω, R) =
−ωTΨ(ω) ≤ −P(ω). Thus, the derivative of the Lyapunov
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function along a solution of the closed-loop system is nega-

tive semidefinite.

Recall that Φ(·) is a strictly increasing monotone function

and SO(3) is compact. Hence, for any (ω(0), R(0)) ∈

TSO(3), the set K =
{

(ω, R) ∈ TSO(3) : V (ω, R) ≤

V (ω(0), R(0))
}

, is a compact, positively invariant set of the

closed-loop.

By the invariant set theorem, it follows that all solutions

that begin in K converge to the largest invariant set in

V̇ −1(0) contained in K . Now, since P is a positive definite

function, V̇ (ω, R) ≡ 0 implies ω ≡ 0. Substituting this into

the closed-loop system (14), it can be shown that

V̇ −1(0) =
{

(ω, R) ∈ TSO(3) : ω ≡ 0, Ωā(R) ≡ 0
}

,

where Ωā(·) is as given in (9). Thus, following the same

arguments as in Lemma 1, it can be shown that the largest

invariant set in V̇ −1(0) is given by (15). Note that each of

the four points given in (15) correspond to an equilibrium of

the closed-loop system in TSO(3). Hence, all solutions of

the closed-loop system converge to one of the equilibrium

solutions in E ∩ K , where E is given in (15).

Next, consider an equilibrium (0, Re, i) ∈ E such that

Re, i 6= Rd, i ∈ {1, 2, 3}. Lemma 3 yields that the solutions

of the closed-loop system except for solutions in the invariant

submanifolds M1, M2 and M3, whose complement is open

and dense, diverge from the equilibria (0, Re, i), i ∈ {1, 2, 3}.

Thus, solutions of the closed-loop system for initial condi-

tions that do not lie in M = M1∪M2∪M3 must converge to

the equilibrium (0, Rd). Solutions of the closed-loop system

(14) for initial conditions that lie in M converge to one of

the equilibrium solutions in E \{(0, Rd)}.

Theorem 1 is the main result on asymptotic stabilization of

a specified inverted equilibrium of the 3D pendulum. Under

the indicated assumptions, almost global asymptotic stabi-

lization is achieved. This is the best possible result for this

stabilization problem, in the sense that global stabilization

using smooth feedback is not achievable.

V. SIMULATION RESULTS

In this section, we present examples that illustrate the

effect of the functions Φ and Ψ on the closed-loop responses.

We present simulation results for two distinct cases. These

correspond to cases where the closed-loop is either damped

with low frequency oscillations or stiff with fast initial

transients and oscillatory behavior. This is analogous to the

behavior observed in a linear closed-loop system with a

linear PD-type control law. The parameter a in (12) effects

the distribution of control moment along each of the three

body fixed axis. We simulate the closed-loop dynamics of

the 3D pendulum (1) and (2) with the controller (11). The

parameters are chosen as J = diag(200, 300, 150) kg·m2

and mgρ = 200 [0 0 1]T N·m. The initial conditions for

both damped and stiff closed-loop are chosen as ω(0) =
[10 40 10]T deg/ sec, and

R(0) =




0.2065 0.8760 −0.4359
−0.9733 0.2294 0
0.1000 0.4243 0.9000


 .

The desired attitude in the inverted equilibrium

manifold is chosen as Rd = diag(−1, 1,−1). To

present the simulation data, we plot the rotation angle

Θ , cos−1

(
(trace(RT

dR) − 1)/2
)

that is a scalar measure

of the attitude error between R and Rd. Physically, Θ
corresponds to the angle of rotation about an eigenaxis

required to bring the spacecraft to the desired attitude Rd.

For the controller (11), choose a1 = 1, a2 = 1.9, and a3 =
3. First consider the case for the damped closed-loop. The

functions Φ and Ψ are chosen as Φ(x) = 10x and Ψ(ω) =
Pω, where P = diag(10, 20, 30). The corresponding plots

are shown in figures 1–3. Note that the closed-loop system

converges in 150 seconds. Furthermore, since P has diagonal

values that increase in magnitude, the damping along the

body axes increases accordingly. As seen in Figure 1, ω3

converges to zero before ω2 and ω1 converge to zero. Note

that ω1 takes the longest time to converge to zero.

Next, we study the closed-loop system for the stiff case.

We choose Φ(x) = 20x and Ψ(ω) = Pω, where P =
diag(5, 10, 15). Thus, the gain in Φ is doubled whereas the

gain P is halved. The corresponding plots are shown in

figures 4–6. Note that compared to the previous case, the

closed-loop system oscillates more and the convergence time

is nearly doubled to 300 seconds. As is clear from Figure

4, the previous comments on the distribution of dissipation

hold true.
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Fig. 1. Angular velocity of the 3D pendulum.
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Fig. 2. Attitude Error of the 3D pendulum.
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Fig. 3. Magnitude of the Control Torque.
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Fig. 4. Angular velocity of the 3D pendulum.
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Fig. 5. Attitude Error of the 3D pendulum.
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Fig. 6. Magnitude of the Control Torque.
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