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A stable train of compressed Stokes pulses (to ~10 nsec) is obtained in a stimulated Brillouin fiber ring laser (of
length L = 83 m) by periodically interrupting the argon-ion cw pump beam with an intraring cavity acousto-optic
modulator. Interruption of the pump action, at each round-trip time ¢, o Ln/c, permits damping of the excited
sound waves that accumulate at the entry of the fiber owing to the inertial response of the material, well described by
the coherent three-wave stimulated Brillouin scattering model (C3W-SBS equations). Amplification and compres-
sion of the backscattered Stokes pulse are limited by nonlinear optical Kerr effect, which is incorporated into the

C3W-SBS equations.

1. INTRODUCTION

Stimulated Brillouin backscattering (SBS) is a dominant
nonlinear effect in single-mode optical fibers, where it ap-
pears at moderate threshold values.1'2 In particular, SBS is
used as a gain process in fiber lasers,3-8 in which a narrow-
linewidth laser pump source, yielding high-power flux densi-
ties into the fiber, amplifies the stimulated backscattered
Stokes background on a long interaction length. Genera-
tion of periodic trains of short Brillouin Stokes pulses has
been attributed to mode locking,>%10 i.e., to phase synchro-
nization of longitudinal modes in the first Stokes component
that cover the Brillouin gain bandwidth. Mode locking may
be installed by the relaxation behavior that occurs in the
oscillators as a result of periodic pump depletion or active
modulation. However, the temporal behavior of the SBS
process describing these finite-cell-length oscillations!! or
relaxation oscillations!? has been investigated within the
strongly damped-approximation (called here the SDA mod-
el) for the sound wave, which is relevant only for the station-
ary case!® or for weak Stokes pulses, as we shall discuss
below. For long interaction times and high amplification
and compression of the Stokes pulse a description starting
from the well-established coherent three-wave SBS equa-
tions derived for electrostrictive continuous media,l4:15
called here C3W-SBS equations, is necessary (note that the
resonant condition in this model implies second-order non-
linearities); the asymptotic behavior of an initial bounded
Stokes pulse whose amplitude grows and whose width
shrinks at the expense of a continuous pump wave has been
studied in Refs. 16 and 17.

Our aim in this paper is to compare experimental results
obtained in fiber ring configurations with those provided by
numerical simulation of the appropriate C3W-SBS equa-
tions through the slowly varying amplitude approximation,
which is valid here for the optical waves as well as for the
sound wave. Modeling was done simultaneously with an
experiment on a single-mode silica-fiber ring laser, of length
L = 83 m, pumped by a single-mode argon-ion cw laser. The
properties determined from the numerical simulation have
permitted improvement of the experimental configuration.
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For example, numerical calculations show that, when the
backscattered Stokes pulse leaves the nonlinear medium
and cw pump input is maintained, the amplitude of the
sound wave can remain high, especially at the fiber end used
for the pump coupling. This accumulation of the excited
phonons owing to the inertial response of the sound waves,
well described by the C3W-SBS equations, is responsible for
shortening the effective length of the nonlinear medium by
depleting the pump just at its entry and for spreading the
Stokes-pulse tail. Thus one of the aims of an improved
experimental setup is to permit spontaneous phonon damp-
ing by interrupting the pump input coupling into the fiber at
a frequency equal to the round-trip photon frequency (v, =
1/t, =~ c¢/Ln) with an acousto-optic modulator (AOM) in
order to stabilize the amplified and compressed train of
Brillouin Stokes pulses. This device also prevents reflec-
tions of the Stokes pulses on the output laser pump mirror
by isolating the laser pump from the backscattered Stokes
pulses. We improve our description of the finite spatial
width of the Stokes pulses observed in the actual experiment
by including optical Kerr nonlinearity in the C3W-SBS
equations, which introduces phase modulation,!8 and here
amplitude modulation too, and limits the compression.

C3W-SBS equations have already been used to interpret
pulse compression (from 20 to 2 nsec) by backward SBS in a
tapered optical waveguide filled with methane at 130 atm.1°
However, in nonlinear-optical problems dealing with SBS
(and also with stimulated Raman scattering), the SDA mod-
el is commonly used for the dynamical equations.!-13 This
model may be derived from C3W-SBS equations by assum-
ing that the sound response is instantaneous and the pho-
nons are motionless. Such a description reduces the system
to the evolution of two counterpropagating optical waves
coupled together by third-order susceptibility: it amounts
to considering two equations involving optical intensities,
disregarding phases. The SDA model is exactly solvable2
but obviously cannot describe the interaction outside the
spatial overlapping domain of the two electromagnetic wave
envelopes.

In Section 2 we recall the coherent SBS interaction brief-
ly, and we present the basic equations that are used for the
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numerical simulations. In Section 3 we describe the experi-
mental setups and give the experimental results for the two
ring configurations used as fiber oscillators. The first sim-
ple setup, without an AOM, yields a nonstable regime, and
we observe that when pump intensity is increased well above
SBS threshold several Stokes pulses are simultaneously ex-
cited along the fiber, among which are stationarily amplified
only those that are separated by submultiples of the round-
trip period. To explain this fact we present a simple argu-
ment based on stationarity, total pump depletion by each
leading Stokes pulse, and exponential SBS Stokes gain.
The second setup, in which the AOM is tuned to the round-
trip photon frequency v, couples the laser input to the fiber
ring oscillator through first-order Bragg diffraction, while
feedback is achieved through zero-order Bragg diffraction.
This setup yields a stable train of amplified and compressed
Brillouin Stokes pulses. In Section 4 we give the numerical
results: the time behavior of the field amplitudes governed
by C3W-SBS plus the optical Kerr equations agrees well
with the experimental results. Finally, a conclusion is
drawn in Section 5 in which the possibility of quasi-solitons
in the C3W-SBS dynamics is envisaged.

2. MODELS OF STIMULATED BRILLOUIN
SCATTERING

A. Coherent Three-Wave SBS Model

In SBS a forward-propagating pump wave (at frequency w;
= kic) couples with the thermal phonon fluctuations of the
medium and stimulates a counterpropagating Stokes beam
(at frequency wy = w; — ws), downshifted by the phonon
frequency w; = 2¢cswin/c, where n is the refractive index, ¢
the sound velocity, and ¢ the velocity of light in vacuum.
The resonance condition for three-wave coherent interac-
tion provides maximum power transfer when the wave-vec-
tor mismatch is zero: k; = k; —ko. Inasingle-mode fiber it
is possible to reduce the wave description to three planar
homogeneous propagating waves by following a treatment
similar to that of Ref. 21: (1) a forward-propagating pump
wave E1(x, t) = Eq1(x, t)exp[i(k1x — w;t)] exhibiting depletion
during the amplification and compression of (2) a backscat-
tered Stokes wave Eq(x, t) = Ea(x, t)exp[—i(kox + wot)] and
(3) a forward-damped sound wave f(x, t) = ps(x, t)exp[i(ksx
— wgt)] induced by electrostriction. Counterpropagation
then yields the phase-matching condition: ks = ky + kg ~
2k,.

To describe the coherent time-dependent behavior of SBS
in single-mode fibers, we can use the well-established C3W-
SBS equations derived for electrostrictive continuous me-
dia, 1415 which concern the three coupled waves, Ej, E, and
s, having amplitudes E;, E,, and p;, respectively, and some
damping v;. In one-dimensional optical media of dielectric
permeability ¢, and for parallel polarized electromagnetic
waves, we can write

[0.2 + 27,0, — (c/n)?3 2By = —(1/nD82((0e/dp)p.Esl, (1)
8,2 + 2v49, — (¢/n)?%,E, = —(1/n?)3,2[(0e/3p)p*Eq),  (2)
32 + 2v,0, — ¢,20,2)b; = —(pge/2)(3e/3p)3,2(ELE,*). (3)

It is usual to introduce the slowly varying envelope approxi-
mation for the waves; the complex amplitudes E;, Ey, and p;
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are assumed slowly varying in time and space so that the
development of the second derivatives of the complete fields
(Ey, E», and ;) yields

82— —2iwd, + 92 — w? ~ —2iwd, — wf,
8,2 — £2ikd, + 8,2 — k? ~ £2ikd, — k7,

where the right-hand operators apply only to the ampli-
tudes. This is a good approximation for the electromagnetic
waves since their frequencies w; are high compared with the
time variation d; of the amplitude. For the sound waves two
cases are possible: (1) In the strong-coupling case (® > &, =
6 X 102 W/cm? in silica) the sound response time w;~! may
be greater than the inertial response time 7 = (3;05/ps) "1, and
the dynamics associated with the second derivative must be
included, which leads to a complex phase-amplitude evolu-.
tion!? (this case is relevant for laser—plasma interaction
problems). (2) However, in typical optical-fiber experi-
ments we are addressing the small-coupling case (® < ®,),
and the slowly varying envelope approximation for the
sound-wave amplitude evolution holds, too.}* The electro-
strictive field E, associated to the phonon amplitude p; is
given by ps = icE,, where ¢ = (oon3eo/2ccs)/2 and ¢ is the
vacuum dielectric constant. We write Egs. (1)-(38) in di-
mensionless form after introducing time (r = 1/KE,) and
length (A = ¢7/n) scales, where E,, is the input amplitude of

the pump E; and
een’\V2 7
K= ( 0 P12 )
21’0% A

is the SBS coupling constant for optical materials?; for an
optical fiber of fused silica with a refractive index n = 1.46,
an elasto-optic coefficient p1s = 0.286, a sound velocity ¢; =
5.96 X 108 m sec™!, and an unperturbed fiber density py =
2.21 X 103 kg m~3, we obtain for the pump wavelength X =
5145 A the SBS coupling value K = 65.9 msec™! V-1, If we
change (Ei/E, — Ej; t/m = tKE, — t; x/A = xnKEp/c — x),
introduce (u = vs7 = vs/KEp; pe = v127 = 712/KEp), and
neglect the sound-wave velocity in Eq. (3) (because nc,/c ~
1075 in silica), Eqs. (1)-(3) yield the dimensionless form

(3, + 8, + p)E; = —E.E,, (5)
(8, — 8, + u)E, = E\E ¥, (6)
(8, + WE, = E\E,*. (M

Starting from an initial bounded Stokes background Ej, the
transient and asymptotic evolution governed by Egs. (5)-(7)
in the presence of a constant input pump wave E; without
optical attenuation (u, = 0) has been considered in Ref. 16.
During the first stage, the Stokes-pulse growth is exponen-
tial until its amplitude becomes comparable with the pump
amplitude. A second regime follows in which total and
abrupt depletion of the pump field E; is accompanied by a
sharp leading edge of the backscattered Stokes envelope Eo,
which is amplified and compressed. The backscattered
wave envelope exhibits a set of large peaks of decreasing
amplitude, the amplitude of the first growing linearly with
time ¢ while its width shrinks as 1/t. Later there is a spatial
spreading of the Stokes tail because of the finite response
time of the sound waves (inertial response time). The
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phases of the complex amplitudes E; are time and space
independent, except for the sudden = shifts that appear
when the fields vanish (7 pulse envelope??),

B. SBS Adiabatic Model: SDA Model

In order to compare the C3W-SBS model governed by Eqs.
(5)-(7) with the commonly used adiabatic model11:1213,20 jp
which the inertial response of the sound wave is neglected
(uE; > 8,E;), let us write the evolution equations for the flux
intensities ®; = (neoc/2)|E;|? by setting E; = E Ey*/u in Eq.
(7) in dimensioned units:

[9, + (n/c)(8, + 7,)]®; = —g®; By, @
[6,‘ - (n/C)(a; + ’Ye)]q’z = —gP; P, 9
where the Brillouin gain coefficient g is given by

27n'p,.2
Pr2 _ 462%10-Mm w1,

= ! 2 K?= 2
Ys€oC€ cNpocAvp

where Avg = 150 MHz is the Brillouin linewidth (FWHM) in
pure fused silica.23:2¢

If we consider the amplification regime already described
for an initial spatial bounded Stokes envelope E, in the
presence of a constant pump E;, the SDA model (which is
exactly solvable?) properly describes the first interaction
stage where E; exhibits exponential amplification and steep-
ening (compression) during its backward motion at the ex-
pense of Eq, which is depleted.l® When E; is greater than E;
and the width of the E; peak becomes extremely small, the
characteristic evolution time becomes smaller than the
damping time v,™! of the sound wave (3;05 > vsps, i.e., 0,Es >
rEy), the SDA adiabatic model fails. Neither the linear
amplification with time of the leading E; peak, obtained
with the C3W-SBS equations, nor the spreading of its tail is
described through the SDA model; indeed, that model can-
not account for the interaction between the sound wave and
the pump wave after (or outside) the Stokes-pump interac-
tion, because within this approximation the sound wave
vanishes in the absence of E; or E;. In particular, the SDA
model will be inappropriate to describe pump-wave-Stokes-
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pulse interactions in a ring configuration (such that consid-
ered here), in which the active medium retains a memory of
former interactions, because of the finite response time of
sound waves.

C. SBS Coupled to the Nonlinear-Optical Kerr Effect
When the SBS amplification and compression of the back-
scattered Stokes pulse becomes important we must look for
saturation mechanisms in order to interpret the finite spa-
tial width observed in the actual experiment. For a time
width of the order of v,~1, i.e., for few nanoseconds, the
dispersion does not act efficiently. However, self-phase
modulation due to the nonlinear-optical Kerr effect!® seems
to be a good candidate because it couples phases and ampli-
tudes, producing self-amplitude modulation and spreading
the Stokes pulse, like the time behavior obtained for a simi-
lar problem in which dispersion instead of the SBS effect is
taken into account.?’26 The refractive index of the fiber
medium is

n = ngy + nlEl%/2, (10)

where ng (=1.46) is the unperturbed refractive index, ns
(=1.27 X 10~22m? V-2for silica'8) is the Kerr coefficient, and
E = E; + E; is the total electromagnetic field. Here, we
retain only the zero-frequency terms of the nonlinear Kerr
effect, which describe a uniform bias of the nonlinear index.
The other terms, called holographic terms,?7 are oscillating
terms at frequencies different from those involved in SBS,
namely, at exp[3i(kx % wt)], exp[i(3kx + wt)], and exp[i(kx +
3wt)]. They can in themselves be responsible for Raman
instabilities?” but with lower gains than the SBS process
considered here. Nevertheless, the bias terms of the refrac-
tive index are resonant with SBS and will be responsible for
self-phase and self-amplitude modulation, which considera-
bly modify the amplitude profile and width of the backscat-
tered amplified Stokes pulse. Introducing the nonlinear
optical Kerr effect into the dimensionless C3W-SBS Eqgs.
(5)-(7), we obtain the dimensionless C3W-SBS-K equations

8, + 0, + u)E, = —E,E, + iK(IE,|> + 2lE,)E,, (11)

Table 1. Computation Parameters for the Fiber Used in the Experiments®

P (mW)
Other Parameters 25 50 100 150 200
% (MW/cm?2) 0.347 0.694 1.38 2.08 2.77
E, (MV/m) 1.35 1.91 2.70 3.30 3.82
7 = (KEp)~! (nsec) 11.2 7.94 5.62 4.60 3.97
A =cr/n(m) 2.30 1.63 1.15 ‘ 0.945 0.815
L/A 36 51 72 88 . 101
U= ysT 5.26 3.73 2.64 2.16 1.86
e = YeT 5.7 X 10~3 4.0 X103 2.9 X103 2.3 X103 2.0 X 1073
» = ngwk,/2K 4,6 X108 6.5 X103 9.1 X103 1.11 X 102 1.29 X 102

@ Length L = 83 m, effective cross section S = 7.2 X 10~12m2, Other notation:

P is the pump power coupled into the fiber
& is the pump flux intensity
Ej, is the electromagnetic field corresponding to ¢

7 I3 the SBS characteristic time [where the coupling constant given by Eq. (4) is K = 65.9 m sec™! V-1]

A is the SBS characteristic length

u is the dimensionless sound-damping rate (corresponding to y, = wAvg = 470 MHz)

#e is the dimensionless optical attenuation (corresponding to 21.7 dB km~1)

K, is the dimensionless Kerr/SBS rate coefficient (where ng = 1.27 X 10~22 m2 V-2)

w 18 the laser frequency (=3.66 X 1015 sec™!).
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@, — 8, + u)E, = E,E* + iK,QlE,> + |[E,DE,, (12)
(8, + WE, = E\E,*, (7

where the dimensionless coefficient comparing the nonlin-
ear-optical Kerr effect with the SBS effect is given by

K, = nwE,/?K, (13)

K (m sec™! V-1) being the SBS coupling coefficient given by
Eq. (4).

The validity domain of Eqs. (11) and (12) is restricted to
the perturbative Kerr contribution. For the pump intensi-
ties used here, we have K, <« 1 (see Table 1), which gives an
upper limit for the amplified E; field (E; < 13 in the E, units
used here) within this description. Redimensionalization of
Eqgs. (11) and (12), by including K, in new field, time, and
space variables, permits suppression of K. from these equa-
tions with the validity condition reduced to new f1eld ampli-
tudes smaller than unity.

Within the pure C3W-SBS description given by Egs. (5)-
(7), the simple phase dynamics already discussed reduces
the problem to a study of three partial differential equations
for the real part of E;.1®6 With the SBS-K Eqgs. (11), (12), and
(7) the phase dynamics plays a nontrivial role: the nonlin-
ear coupled phase-amplitude evolution leads to amplitude
modulation and subsequently spreads the width of the am-
plified E, pulse. '

3. EXPERIMENTAL PROCEDURE AND
RESULTS

The purpose of the experiment described here is to design a
proper setup for SBS analysis in a planar-wave configura-
tion. The active medium is.an 83-m-long single-mode recti-
linearly birefringent fiber F, with a 3-um-diameter pure-
silica core surrounded by a borosilicate optical cladding,
used along one of its neutral axes, such that the interacting
optical waves are parallel polarized. In order to have alarge
interaction length, we pump the fiber with a cw single-mode
ionized argon-ion laser emitting at A\ = 5145 A. To work
with low pumping power levels, we mount the fiber in an
optical ring oscillator in which the feedback is achieved by
the two mirrors, M; and My; input and output fiber cou-
plings are obtained through 18X microscope lenses (see Figs.
1 and 2). Detection is achieved with a 500-psec rise-time
silicon diode connected to a 400-MHz oscilloscope. This
mounting set then acts as an optically pumped Brillouin
fiber laser.>-® We define the forward direction in the ring
oscillator as the pump-beam direction.

Thermal phonon fluctuations in the fiber are then ampli-
fied by the cw pump beam to give rise to backward-scattered
Brillouin Stokes pulses, which are recoupled into the fiber
after a round trip in the oscillator for further amplification.
The pump wave’s coupling efficiency is 60%, and the fiber’s
linear attenuation is 34%. We estimate the input coupling
efficiency of the Brillouin pulses to be 80% and the output
fiber coupling efficiency to be 90%, taking lens losses into
account.

A ring oscillator configuration349 rather than a back-and-
forth oscillator®6.28 was chosen in order to optimize the inter-
action length. We have successively used the two ring oscil-
lators shown in Figs. 1 and 2 to solve different experimental
problems described below.
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5145 A lens 18X
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g L
observation l 2
™ sBS

Fig. 1. Basic mounting set of the first stlmulated Brillouin ring
fiber oscillator: constant pump input.

o
5145 A

MV—" .
AOM ens 18X

&=y
observatiqn"SBs A S

X - :
pump «
~S,

J lens 18X
M\ si
2

Fig. 2. Mounting set for the second stimulated Brillouin ring fiber
oscillator: modulated pump input.

A. First Ring Oscillator

We start with the simplest configuration, the experimental
setup of which is depicted in Fig. 1. The two mirrors M; and
M; are 50% beam splitters. Pump coupling is achieved
through Mj, and either the output pump beam or the Bril-
louin pulses may be observed through Ms.

Experimental Results

The backward output signal is recorded with a fast detector,
while the laser pump power level is progressively increased
to 600 mW. At low pump level, backward scattering origi-
nates mainly in cw Rayleigh scattering in the fiber and from
reflections upon the different optical surfaces. When the
pump power reaches a characteristic threshold value (here
less than 50 mW at the output of the pump argon laser), a
temporal structure arises in the backward beam, consisting
of a periodic train of stimulated Brillouin pulses, the tempo-
ral repetition rate of which corresponds to a pulse round-trip
time in the ring ¢, = 1/v, (=415 nsec within this configura-
tion, taking into account the 11-nsec transit time outside the
fiber). The temporal width of the Brillouin pulses is typi-
cally in the 20-30-nsec range, with a sharp peak, the maxi-
mum of which is difficult to determine but may be estimated
as being several times the pump power coupled into the fiber
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20-30 nsec

10 nsec

>
t
b

Fig. 3. Typical stimulated Brillouin pulses obtained at the output
of the oscillator of Fig. 1.

(Fig. 3a). In fact, this amplitude is highly unstable and
fluctuates between zero and a maximum value; sometimes
some sharper and narrower pulses appear, probably with an
internal fine structure not resolved by our detector (Fig. 3b).

We also measure the average output pump power level,
which exhibits a saturation value close to 30 mW directly
after the fiber and half of this value at the oscillator output'
On the other hand, the average backward-scattered power is
almost linear with the input power.

Another interesting feature is the pulse-repetition-rate
evolution with the pump power level. As we pointed out in
Section 1 and has been noted by several authors,?8% when
stimulation occurs the frequency repetition rate of the Bril-
louin pulses, corresponding to a pulse round-trip time ¢,
(=415 % 5 nsec) at the low pump level, doubles at the higher
pump level (210 nsec between two pulses). When the pump
power level is increased still more, we observe that the repe-
tition rate is multiplied by three and then by four and even
five, with an increasing instability among all these regimes.
At such a pump power level (some hundreds of milliwatts at
the output of the ‘argon laser) high transient regimes of
randomly distributed Brillouin pulses appear. ‘When the
repetition rate increases by an integer factor (2, 3, ...), the
pulse width shown in Fig. 3a seems to decrease in the same
ratio.

We also have successxvely probed the backward- and for-
ward-output frequency power spectra, usmg the experimen-
tal setup of Figs. 4 and 5. These experimental mountings
use a 165-mm Jobin & Yvon holographic diffraction grating
engraved with 1872 lines/mm and a 50-cm focal-length and
/9 aperture objective well corrected for aberrations (Clair-
aut objective). This setup gives a theoretical spectral reso-
lution of less than 2 GHz, which ensures a good separation
for the Brillouin lines (v, = 34 GHz) but does not give any
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information on the fine structure of each individual line (6v,
< Avg = 150 MHz, where dvs corresponds to the shortest
measured time width Af; = 10 nsec of the backscattered
Stokes E; pulse).

The spectra are depicted in Figs. 6 and 7. The backward
spectrum, obtained by using the experimental setup of Fig.
4, exhibits as many as five Stokes lines (Fig. 6), and the
forward spectrum (Fig. 7, corresponding to the experimental
setup of Fig. 5) as many as five Stokes lines and four anti-
Stokes lines. The frequency shift between two adjacent
lines corresponds to the Brillouin spectral shift (v, = 34
GHz), and the number of spectral lines increases with the
coupled pump power level.

The experiment could be improved by analyzing the Bril-
louin spectrum with a spectrum analyzer, which would per-
mit better resolution of the fine structure of the Brillouin
line and better interpretation of the process that leads to
pulse generation.

Discussion

Starting from some experimental observations, a simple ex-
planation for the frequency-multiplication rate may be giv-
en, although details of exactly what happens in the oscillator
need not be known. We have to assume only (1) oscillator
quasi-stationarity, whlch corresponds to the experimental
observation in a time range of the order of 100 usec, (2)
exponential gain (which is valid for the low pump levels used
here), and (3) strong enough pump depletion to reduce the
pump level below the Brillouin stimulation threshold after
the interaction with a backscattered Brillouin pulse (which -

a Clairaut objective

r "4 == * .__;l screen
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Fig. 4. Mounting set for the observation of the backward power
spectrum corresponding to the setup of Fig. 1.
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Fig. 5. Mounting set for the observation of the forward power
spectrum corresponding to the setup of Fig. 1.
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Fig. 6. Schematic diagram of the backward power spectrum at a
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Fig.7. Schematic diagram of the forward power spectrum at a high
pumping level (the length of each line is proportional to its intensi-
ty).

corroborates the experimental observation of the pump
transmission saturation).

Then if T'is the ring linear transmission coefficient for the
Brillouin pulses during one round trip, P the pump power
coupled into the fiber, G the gain Brillouin coefficient in the
proper units, and X an effective interaction length taking
into account pump-wave attenuation and depletion along
the fiber, stationarity implies equality between gain and
losses, i.e., the product of T times the Brillouin peak power
in the ring just at the end of amplification equals the Bril-
louin peak power just before its interaction with the pump
wave:

T exp(GPX) = 1 < X = —In(T)/(GP).

The interaction length along the fiber is then determined by
the pump power level that results in an equal spacing be-
tween adjacent Brillouin pulses inside the ring.

Now, assuming N Brillouin pulses traveling together in
the ring, the leading pulse in the fiber begins to interact with
the pump at a distance X; from the pump input fiber end. If
L is the ring optical length, we have at this particular time

X, =L~ Xy,

where Xy is the Nth pulse position at the same time. On the
other hand, the shortest distance between the two successive
pulses N and 1 in the ring is

AN1=L—'XN+X1,

from which we may deduce that
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Xy=L—-X,=L+X, - Ay, < Ay, = 2X, = -2 In(T)/(GP),
which yields
A12 + A23 + ...+ ANI = NA12 =L = '—2Nln(T)/(GP)

<>

N = —GPL/[2 In(T)].

The number of pulses traveling together inside the cavity is
then proportional to the coupled pump power level, and
therefore the system will be stable for the particular pump
power levels that ensure that N is an integer. If P is not
equal to one of these particular values, stationarity is not
possible; actually, what is experimentally observed is that
there is a part of the Brillouin backscattering that is station-
ary; the recurrence frequency of that part increases by jumps
when the power level is growing.

From the equation immediately above, we may deduce
that ’

P =—-2N In(T)/(GL),

which permits calculation of the critical power correspond-
ing to the fundamental repetition rate (corresponding to
N=1)

T = (0.5)2 (the two beam splitters) X 0.8 (the coupling
efficiency) X 0.6 (the fiber linear transmission)
X 0.9 (the recoupling efficiency) = 0.11,

G = (the silica Brillouin gain coefficient: g = 4.6
X 10~11 m/W)/(the effective cross section of this
particular fiber: S=7.2X10"2m? =64W1m™,

L=8m

>

= —210g(0.11)/(6.4 X 83) W = 8 mW.

This averaged pump power coupled into the fiber corre-
sponds roughly to 30 mW at the argon-laser output, which is
in good agreement with the experiment (less than 50 mW,
limited by the measurement precision).

A feature that does not correspond in this experiment to
the standard multiple Brillouin scattering model is the exis-
tence of a forward scattering that appears in the spectrum,
With high enough pump power level, the first (backward)
Stokes component, downshifted by v, from the pump line
frequency, may induce a second (forward) Stokes compo-
nent, downshifted by 2v, from the pump frequency, which
may generate a third (backward) Stokes at 3y, and so on.
But the experimental observation exhibits a spectral shift of
only v, instead of 2v; between adjacent lines in the backward
spectrum (Fig. 6) as well as in the forward spectrum (Fig. 7).
Moreover, this last spectrum shows an anti-Stokes wing not
allowed in a three-wave Brillouin process. Nevertheless it is
interesting to note that on the backward spectrum (Fig. 6)
the third Stokes line amplitude is higher than the second one
and that on the forward spectrum the second Stokes ampli-
tude is higher than the first one, which indicates that the
cascade process described above probably happens, but not
alone.

This experimental feature may be explained by the fact
that the pump laser is not isolated from the ring. M; is a
50% beam splitter; half of the backward Brillouin pulse ener-
gy leaving the fiber through L; comes backward to the pump
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laser. A small part of these backward pulses is transmitted
through the argon-laser front mirror inside the pump laser
cavity and may perturbate the pump laser itself slightly, but
the largest part is reflected from the laser front mirror and
comes back forward into the ring oscillator. Three waves
are then to be considered inside the ring oscillator: the
forward pump wave (p), the backward Brillouin pulses
(B17), and also the forward Brillouin pulses (B;*). This
configuration leads to the generation of several other waves:
at first, by Brillouin processes, pulses B; will generate new
forward and backward Brillouin pulses (By), which by the
same process may generate higher-order Brillouin pulses.
Moreover there will be possibilities of constructive four-
wave mixing among all these frequencies along the forward
direction: for example, (p + B;*) may generate (Ba* + A; %),
where A;* is an anti-Stokes component upshifted by v, from
the pump line frequency. A similar scenario has been de-
scribed in Refs. 28 and 30.

B. Second Ring Oscillator

The ring described above encounters several problems,
among them (1) a complication of the wave configuration by
several forward and backward Brillouin pulses, which inter-
act with one another; (2) a coupling of the pump laser cavity
with the Brillouin oscillator, which may perturbate the
pump wave; and (3) a cw pumping regime that prevents
spontaneous phonon damping after interaction with a par-
ticular Brillouin pulse. An acoustic phonon velocity of ¢, =
5960 m/sec corresponds to a displacement of roughly 2.5 mm
during one round-trip time of the Brillouin pulses, i.e., pho-
nons may be considered motionless between two successive
Brillouin pulse round trips. This phonon population, gen-
erated during the interaction between the pump wave and
the Stokes peak, continues to be stimulated by the partially
depleted cw pump beam and the Stokes tail and cannot be
spontaneously damped. This process induces a spreading of
the Brillouin pulse tail, a stronger pump depletion at the
entry of the fiber, and therefore a shortening of the pump
interaction length with the next regular-feedback Brillouin
pulse. The spontaneous damping rate of the acoustical pho-
nons is ys = wAvg, corresponding to a characteristic time ¢,
= 6 nsec, i.e., much shorter than the photon round-trip time
tr=415nsec. We find it useful to interrupt the pump a time
interval longer than ¢; and shorter than ¢, in order to remove
the remaining postinteractive phonons from the fiber.

To stabilize the Brillouin pulsed regime, we introduce an
intracavity AOM. The AOM works in first-order Bragg
diffraction with an efficiency of 70% (Fig. 2). M; and M, are
now two 100% mirrors, which improve the Brillouin feed-
back coefficient (note that the pump feedback coefficient is
therefore also increased). Observation of Brillouin pulses
and output pump beam is carried out by reflection on glass
beam splitters S; and S;. The AOM is externally activated
with a frequency 7, = 2.427 MHz, this value being critical for
the experimental pump threshold level. Note that 7, corre-
sponds to a time of 412 nsec, slightly lower than the experi-
mental Brillouin pulse round-trip time of 415 nsec, but this
discrepancy may be attributed to experimental uncertainty.

The pump beam coupled into the fiber by the first Bragg
order of the AOM generates backward Brillouin pulses.
They are maintained and self-synchronized in the ring cavi-
ty through the zero order of the AOM (when it is not activat-
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ed). The result is a better feedback rate in the cavity and
also the isolation of the pump argon laser. The pump level
in the fiber is not continuous but varies periodically at fre-
quency ¥, which ensures that the time interval for the stimu-
lated phonons is spontaneously damped. In fact, at so large
a modulation frequency the AOM has a sine response: dur-
ing interaction the pump level cannot be considered con-
stant, and the pump laser isolation is not complete. Never-
theless, we have not seen any evidence of forward Brillouin
pulses in this ring oscillator, even at high pump power level.

In this configuration the ring behavior is much simpler
than in the first one: the power spectral analysis shows one
backward Brillouin Stokes line, and at a pump power level

Fig. 8. Temporal structure of the backward-stimulated Brillouin
beam during ring oscillation showing a typical train of stimulated
Brillouin pulses in the short-time range (200 nsec/division) where
the emission is highly stable.

(100 usec/div) t
low pump power

a
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T i
i

(100 usec/div) t
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b

Fig. 9. Long-time envelope scheme of the stimulated Brillouin
pulses at a, low and b, high pump power levels.
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Fig. 10. Temporal structure of the forward-transmitted pump
beam: a, without and b, with ring oscillation.

low enough (experimentally lower than 400 mW at the out-
put of the argon laser) to prevent the fiber from oscillating
by its end faces the repetition-rate frequency is well stabi-
lized (Fig. 8).

Nevertheless, the peak amplitude of the Brillouin pulses
remains unstable, particularly near the pump threshold
(now ~180 mW for the argon-laser power, much higher than
for the first ring oscillator): when the observation is
achieved within a long time scale (100 psec/division), the
Brillouin output exhibits randomly distributed trains of pe-
riodic pulses. Higher power results in a partial stabilization,
with amplitude fluctuation limited to some 20%. This fea-
ture is shown schematically in Fig. 9. The mechanical vibra-
tions could be partially responsible for these instabilities,
because we already observe small amplitude fluctuations
with similar frequencies below the Brillouin threshold; we
attribute these instabilities to phase fluctuations between
direct and recoupled pump beams.

The Brillouin pulse width is typically 20 nsec FWHM,
with incidentally shorter pulses down to 10 nsec FWHM for
the strongest amplitudes, and that width covers all the use-
ful pump power range (roughly a factor of 2, from 200 to 400
mW at the argon-laser output). The SBS amplification is
strong enough to produce a Brillouin Stokes peak power as
much as an order of magnitude higher than the nondepleted
pump power (measured by opening the ring cavity).

Another interesting feature is the pump power depletion,
shown in Fig. 10 for the case of high pumping level. Pump
depletion is increasing with the power value and may reach
more than 50% of the average level and 85% of local level.
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4. NUMERICAL RESULTS

SBS in an optical-fiber ring configuration is one of the most
striking examples of long-time nonlinear interaction of light
with matter, and the dynamical evolution requires long-time
numerical integration for the asymptotic behavior to be
known. It may be modeled well by the one-dimensional
C3W-SBS Egs. (5)-(7) or (11), (12), and (7) when the optical
Kerr effect is included. We have performed several numeri-
cal computations for the periodical feedback conditions of
the ring configuration and for different pump powers P
given in Table 1 by using the four-step Runge-Kutta inte-
gration algorithm described in Ref. 16. Even though our
principal result concerns the stabilization of a pump-modu-
lated fiber-ring SBS laser, we present below some results
concerning the cw fiber-ring configuration to show the lack
of performance of such a setup for obtaining a stable SBS
pulsed laser, as mentioned in Section 1.

A. Constant Pump Input (Continuous Wave)

As we mentioned in Subsection 2.B, the SDA model, which
neglects the inertial response time of the phonons, cannot
describe the transient regime of amplification and compres-
sion of an initial bounded condition for Es(x, ¢t = 0) since its
tail is spread because of the finite response time of the
phonons. Therefore we use the C3W-SBS equations to de-
scribe the transient temporal behavior. Nevertheless, as we
shall see, when the Es(x, t) envelope is spread through the
entire fiber length, the pump depletion leads to a shortening
of the gain medium, the Stokes peak gives power back to its
tail, and the amplitude of the Stokes pulses decreases to a
level low enough that the regime of decreasing relaxation
oscillations tending to a steady state can be roughly de-
scribed by the SDA model.

The high-amplitude transient regime depends on the ini-
tial conditions; in particular, the maximum amplitude of the
amplified and compressed Stokes wave envelope depends on
the amplitude and width of the initial Stokes noise or pho-
non noise. However, starting with a large variety of initial

~ conditions, we have obtained the same asymptotic quasi-

steady state of decreasing relaxation oscillations for the
Stokes pulses; this state depends only on the gain length L/A
(see Table 1) and on the feedback efficiency p, which takes
into account the losses caused by the beam splitters and the
coupling-recoupling efficiencies [here p = 0.16 = (0.5)2 (the
two beam splitters) X 0.8 (the coupling efficiency) X 0.8 (the
recoupling efficiency)].

In Figs. 11-13 we show the numerical results of integration
of Eqgs. (5)—(7) for the ring configuration with constant pump
input (cw) for the initial conditions Ey(x, t = 0) =0 and a
bounded Stokes bump of small amplitude |Ex(x, t = 0)lmax =
10-8, which occupies half of the fiber length, in order to show
a strong transient peak compression that is due to the SBS
effect. In the optimal situation in which the backscattered
Stokes pulses are isolated from the output pump mirror
(e.g., through a Faraday rotator) in order to prevent backre-
flection into the fiber, the boundary conditions are

El(oy t) = Ep + \/;El(L’ t); E2(L3 t) = \/;E2(09 t)r

where Ej, is the pump field amplitude coupled into the fiber
and p is the feedback efficiency. The phase dynamics does
not affect the SBS gain within the model described by Eqgs.



308  J.Opt. Soc. Am. B/Vol. 6, No. 3/March 1989

L/A=50; p=0.16; p=4; j1 =4x10">

10

pem—T T T T T T T T T a

[Ex(0.t)]
5

0 500 1000

L/A=50; p=0.18; u=4; u, =4x10"°

LR T T U— b
-l i
=
4
2]
gaol N
e
ol ) N S P S e
o] 500 1000

t

Fig. 11. Numerical computation of the pure C3W-SBS problem
governed by Eqgs. (5)-(7) for constant pump input P = 50 mW (and
corresponding parameters of the second column of Table 1), and an
initial bump condition for the Stokes background of amplitude
|Ea(x, 0)lmax = 106 and width L/2. Time evolution for the ampli-
tudes a, of the backscattered train of Stokes pulses |Eq(x = 0, £); b,
of the transmitted pump |E;(x = L, ¢)|, which initially exhibits
strong depletion and for long times reaches a quasi-constant small
level.

(6)—(7). The pump input power coupled into the fiber is
approximately P = 50 mW, corresponding to L/A = 50 and u
= 4 (see Table 1). We can see a transient regime of strong
amplified and compressed pulses (see Fig. 11a), the ampli-
tude saturation of which depends on the width of the initial
bump condition, accompanied by strong depletion of the
pump (Fig. 11b). Figure 12 shows the envelope spatial dis-
tribution of the field amplitudes |E;(x, t)| in the fiber at
consecutive time fractions of one round-trip period 7, = 50
during the transient amplification regime. The leading
backscattered Stokes pulse periodically encounters the fresh
pump envelope near the middle of the fiber and exhibits
noticeable gain close to the fiber input end. As we said
above, for long times the inertial response of the excited
phonons (finite response time) is responsible for their accu-
mulation through the fiber medium, principally at the pump
input end, and saturates the Stokes gain by lengthening the
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backscattered envelope until the Stokes pulses overlap (Fig.
11a). Then the pump monotonically exhibits depletion
from the input end of the fiber, and the dynamics evolves to
a regime of decreasing relaxation oscillations with an in-
creasing of modulation frequency (Fig. 13). The result is an
almost total reflector, which downshifts the pump frequency
by the 34-GHz sound frequency but avoids a SBS pulsed
regime.

For the input pump powers used here, the SDA model
described in Ref. 12 for v, = 0 yields a steady state. The

L/A=50; p=0.16; u=4; 1 =4x107°
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Fig. 12. Numerical computation for the C3W-SBS ring with con-
stant pump input and the same parameters as for Fig. 1. Spatial
distribution of the field envelope amplitudes in the fiber: |E;(x, ¢)|
(long-dashed curves), |Eq(x, t)F(soIid curves), and |E,(x, ¢)| (short-
dashed curves) at consecutive time intervals during one round-trip
period 7, = 50 in the transient regime of Fig. 11a. a,¢ = 230;b,t =
250; ¢, t = 2170.
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Fig. 13. a, Magnification of part of Fig. 11a at the same time
interval. The maximum Stokes amplitude is of order 1 (in E, units)
at t ~ 1000 and at this time presents four oscillations inside one
period; it is of order 0.03 (in E, units) at ¢ ~ 3400 and at this time
presents seven oscillations inside one period. b, Spatial distribu-
tion of the field envelope amplitudes |E;(x, t)| in the fiber at time t =
1275 (solid curves) and at time ¢ = 3750 (dashed curves), where the
spatial envelope amplitudes tend to a monotonic quasi-steady dis-
tribution.

boundary conditions for this first ring configuration de-
scribed by Eqgs. (8) and (9) are given by

q’](o, t) = Qi'n + Pq’1(Ly t)y lp2(4[/; t) = p(I>2(0, t))

where ®;, is the pump flux power coupled into the fiber and p
is the feedback efficiency. For v, = 0, it is shown in Ref. 12
that a steady-state solution exists:

¢‘2(0) - 1-p exP{gL‘IH(O)[l - @2(0)/<P1(0)]}
2,(0) 1-p

3.
(P 0 = mn .
10 = L8, )1 — 220/ 5,0

We can see from Fig. 13 that an almost steady state is
approached only for long times for v, = 0 as well as for vy, #
0. We can see in Fig. 11b the transmitted pump |E;(L, t)l,
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which is completely depleted at the beginning and increases
with time until it reaches an almost constant small value.
In the strong-amplification regime the optical Kerr effect
may become important, and in Fig. 14 we plot the numerical
results of integration of Eqs. (11), (12), and (7) for the previ-
ous data and for K, = 6 X 103, We see that self-amplitude
modulation saturates the Stokes-pulse amplitude |Eox, t)|
at lower values (compare it for ¢ = 270 with that correspond-

L/A=50; p=0.16; u=4; u,=4x10"% K =6x107°
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[Eqglinag = 4.9259

t=170
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Eplpax = 41511

[B(x.t)|

Fig. 14. Numerical computation for the C3W-SBS-Kerr ring with
constant pump input, taking into account the optical Kerr effect
[Egs. (11), (12), and (7)]. K, = 6 X 1073, and the other parameters
correspond to those in the second column of Table 1. Spatial
distribution of the field envelope amplitudes in the fiber: |E1(x, t))
(long-dashed curves), |Es(x, t)| (solid curves), and |E.(x, )| (short-
dashed curves) at three times separated by two round-trip periods 7,
= 50 around the Stokes pulse amplitude saturation. The Stokes
envelopes show a fine structure. The figures represent the first two
fifths of the fiber.
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Fig. 15. Numerical computation for the SBS ring with modulated
pump input (without the optical Kerr effect): time evolution for
the amplitudes of the backscattered train of Stokes pulses |Es(x = 0,
¢)l, which show a slow secular amplification after time ¢t ~ 1000.
(Data from first column of Table 1 with K, = 0).
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Fig.16. Numerical computation for the SBS-Kerr ring with modu-
lated (MW) pump input (with the optical Kerr effect and data
corresponding to those of the first column of Table 1 with K, = 5 X
10-3): Time evolution for the amplitudes of the backscattered train
of Stokes pulse |Ey(x, = 0, t)|, which show a saturation at time ¢ ~
500. The asymptotic stage presents an amplitude |Ea(x, 8)lmax =
2.8.

ing to Fig. 12¢), and the envelope shows a fine structure.
Figure 14 represents the first two fifths of the fiber. The
envelope structure looks like the experimental one shown in
Fig. 8b, which certainly indicates that the multiple-scatter-
ing experimental situation maintains a highly transient re-
gime, like that of Ref. 31. However, here we do not consider
interaction between multiple backward and forward Bril-
louin Stokes pulses, which were present in the actual experi-
ment owing to the lack of isolation of the pump laser from
the ring, and we obtain a quasi-steady-state regime.

The understanding of the saturation and relaxation mech-
anism for the cw pump input case, described by the C3W-
SBS equations, leads us to look for a SBS pulsed regime. In
order to permit spontaneous damping of the accumulated
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phonons at each round trip (the third problem mentioned in
Subsection 3.B), we must turn off the pump after the output
of the backscattered Stokes pulse. Therefore we maintain
the periodic regime of amplified and compressed Stokes
pulses by imposing on the pump intensity the strong modu-
lation synchronized at the Stokes round-trip frequency.

B. Modulated Pump Input

For a modulated wave, corresponding to the second ring
oscillator described in Subsection 3.B, where substitution of
mirrors for the splitters yields p = 0.56 for the feedback
coefficient, strong periodical variation of the pump input
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Fig. 17. a, Magnification of Fig. 16 showing several Stokes pulses
IE5(0, t)I. b, Several transmitted pump pulses |E;(L, ¢)| showing
depletion. ¢, Comparative time width of the backscattered Stokes
pulse corresponding to the SBS ring of Fig. 15 (solid curve) and of
the SBS-K ring of Figs. 16 and 17 (dashed curve).
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Fig.18. Numerical computation for the SBS-Kerr ring with modu-
lated pump input. Spatial distribution of the field envelope ampli-
tudes in the fiber: |E;(x, t)| (long-dashed curves), |Ex(x, t)| (solid
curves), and |E(x, t)| (short-dashed curves), at two consecutive
times during one period.

level by the AOM at the round-trip frequency », = 1/7r,
synchronized with opposite transmission of the outgoing
backscattered Brillouin pulses, determine the boundary
conditions

E(0,¢t) = E,[1 + cos(2nt/r,)]/2
+ fJpE (L, t)[1 — cos(2wt/7,)]/2,

Eo(L, t) = {pE0, t)[1 — cos(2nt/7,)]/2

that simulate the experimental situation. fis a phase factor
depending on the optical path, lying in the interval [-1,+1].
Here we arbitrarily take f = 1. The numerical results are
plotted in Figs. 15-18 for L/A = 40, u = 5, and g = 5 X 1073,
which represent a peak amplitude E, = 1.4 MV/m or a peak
power of approximately P = 25 mW. Of course, the nonlin-
ear SBS gain in the presence of the variable pump input is
variable too, yielding a smaller mean power coupled into the
fiber. This is taken into account in the computation of the
C3W-SBS equations, for which all the dimensionless vari-
ables are parameterized to the peak amplitude Ej.

Figure 15 shows the train of backscattered Brillouin
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pulses obtained by integration of Egs. (5)—-(7). For long
times the Stokes-pulse amplitude shows a small linear
growth. Taking into account the optical Kerr effect de-
scribed by Egs. (11), (12), and (7), which result is plotted in
Fig. 16, we obtain an almost stable saturated regime of
backscattered Stokes pulses. Figure 17a is an enlargement
of part of Fig. 16 containing several pulses in order to show
the similarity with the experimental results and the stability
of the system. The experimental behavior of the transmit-
ted pump shown in Fig. 10b, which exhibits depletion, is in
good quantitative agreement with that shown in Fig. 17b.
The optical Kerr effect limits the Stokes-pulse compression,
as is shown in Fig. 17¢, and corresponds better to the experi-
mental recording. Figure 18 shows the envelope spatial
distribution of the field amplitudes |E;(x, t)! in the fiber at

‘two consecutive times during one period of the stabilized

pulsed regime.

5. CONCLUSION

A ring optical-fiber oscillator may be designed to produce,
by SBS, a quasi-periodic train of compressed Stokes pulses
amplified to several times (~10) the peak pump level. This
result is obtained by modulating the pump wave coupling
and the oscillator feedback by an AOM synchronized at the
round-trip photon frequency. Such a device could be the
basis of an all-optical-cw pumped clock if the modulator is
driven by the Stokes pulse train itself.

In order to describe the dynamical evolution of this inter-
action properly, we have developed a numerical model based
on the coherent partial differential equations for Brillouin
scattering, which permits the optical Kerr effect to be taken
into account and the limitations of the more classical inten-
sity model to be known more precisely. Numerical and
experimental results agree quantitatively. Moreover, this
coherent model provides the possibility of generating quasi-
soliton Stokes pulses in a SBS fiber-ring laser.32
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