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Abstract In this paper, we investigate the asymptotic behavior of solutions to the initial boundary value prob-
lem for the interaction between the temperature field and the porosity fields in a homogeneous and isotropic
mixture from the linear theory of porous Kelvin—Voigt materials. Our main result is to establish conditions
which insure the analyticity and the exponential stability of the corresponding semigroup. We show that under
certain conditions for the coefficients we obtain a lack of exponential stability. A numerical scheme is given.

1 Introduction

This article is concerned with a special case of a linear theory for the interaction between the temperature
field and the porosity fields in a homogeneous and isotropic mixture from the linear theory of porous Kel-
vin—Voigt materials. The theory of porous mixtures has been investigated by several authors (see, for instance,
[6-8,10] and the references therein). Iesan and Quintanilla [7] considered binary mixtures where the individual
components are modeled as porous Kelvin—Voigt materials, and the volume fraction of each constituent was
considered as an independent kinematical quantity. The authors assumed that the constituents have a common
temperature and that every thermodynamical process that takes place in the mixture satisfies the Clausius—Du-
hem inequality. At the end, they presented as an application the interaction between the temperature field 6 and
the porosity fields # and w in a homogeneous and isotropic mixture. We restrict ourselves to the interaction
between the temperature field and the porosity fields # and w in a homogeneous and isotropic mixture. Under
the same assumptions of Iesan and Quintanilla [7], we have a system of three equations given by:
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P K1 Uy — @11 Uy — @12 Wy — by Uyxr — b1o Wy + a1z u + ata w + bizuy + bia wy)
kO — 16 =0 in (0, L) x (0, 00),

P31 Wit — @12 Uy — @20 Wiy — D21 Uy — b2 Wyny — @14t + aza w + boz uy + bos w, (1.1)
—kp Oyx — 260 =0 1in (0, L) x (0, 00),

€Or — Kk Oxx + ki ttxxr + ko Wyxr + Brus + Powy =0 in (0, L) x (0, 00).

The function u = u(x, t) (and w = w(x, t)) represents the fraction field of a constituent and 6 = 6(x, ¢)
the difference of temperature between the actual state and a reference temperature.

The 24 different parameters of the system (1.1), that is, p?, ki ki, Bi,aij, bij, withi =1,2,j=1,...,4,
ajp = azy, a3 = a4, and c, k, represent some constitutive coefficients (see [7, Eq. (87)] for more details).
However, under assumptions of symmetry, we can make some simplifications. First, mass densities multiplied
each one by the respective constitutive coefficients ,o(l)/q and ,og k2 can be summarized to two single parameters
p1 and py, respectively. Second, we assume the symmetry of B = (b;;), thus by = byy. Third, we assume
a well- balanced exchange coupling between the two fields of porosity, that is, assuming the following sym-
metry relations simplifying the constitutive coefficients ¢V = ¢® = —¢® of the model in [7], it can be
summarized in only one parameter ¢ = a13 = ax4 = —ay4. Finally, applying the well balance, this time to the
rates of the field of porosity, we can make the following simplification C(!V = —C® = —DM = D@ of the
model in [7] which we can summarize in the parameters oy = bj3 = —bj4 = —b23 = by4. In this case, our
equations which govern the fields «, w and 6 in the absence of body loads are given by the system

Ol Uy — A11 Uxy — A12 Wyy — D11 Uy — D12 + Wyxrar (0 — w) + oy (u; — wy)
—k16yx — 160 =0 in (0, L) x (0, 00),

02 Wt — @12 Uxx — A22 Wxx — D12 Uyxr — b2 Wyyr — @ (U — w) — oy (uy — wy) (1.2)
—ky Oy — 260 =0 1in (0, L) x (0, o0),

COr — Kk Oxx +kittyxr +ky wyxr + Brug + Brw, =0 in (0, L) x (0, 00).

We study the system (1.2) with the following initial conditions:
u(x, 0) =uop, u(x,0)=u;, w, 0 =wy, wi(x,0)=wi, 6x,0 =6 in, L) (1.3)
and the Dirichlet boundary conditions:
u@, ) =u(L,t) =0, wO,)=w(L,t)=0, 60,1r)=06(L,t)=0 te (0, c0). (1.4)

We assume that pq, p2, ¢, k, ¢ and o are positive constants. Since coupling is considered, we consider
_(,312 + ,322) (k% + k%) ;é 0, bpt.the signs of B; or k; .do not mat.ter in the analysis. Thf: matrix A = (aij)
is symmetric and positive definite and B = (b;;) # 0 is symmetric and non-negative definite, that is,

ai >0, ayan—ap, >0, by =0, byyby—bi,=0.

These simplifications and savings in the use of 8 parameters, could be questionable from a standpoint of
thermomechanical model. However, our purpose in this work is to investigate the stability of the solutions of
the system (1.2)—(1.4). In this sense, it is a simplification without loss of generality. That is, the same results
presented here and proved for the system (1.2) could be also obtained for the system (1.1).

The asymptotic behavior as t — 00 of solutions to the equations of linear thermoelasticity has been studied
by many authors. We refer to the book of Liu and Zheng [9] for a general survey on these topics. However,
we recall that very few contributions have been performed to study the time behavior of the solutions of non-
classical elastic theories. In this direction, we mention the works [1-3,10,13] and [14]. In [13], the author
treats the theory of elastic mixtures and proves the exponential decay of solutions of the equations of motion
of a mixture of two linear isotropic one-dimensional elastic materials when the diffusive force is a function
which depends on the point and can be localized. The paper [14] deals with the theory of mixtures. The author
states the linear equations of the thermomechanical deformations and studies several suitable conditions to
guarantee the exponential stability of solutions. On the other hand, the exponential stability for the case of the
thermoelastic mixtures has been studied in [1] and [10]. In [10], the authors prove (generically) the asymptotic
stability. In [1], the authors establish conditions to the exponential stability and to the lack of stability of the
semigroup. In [2], the authors investigate the asymptotic behavior of solutions of an initial boundary value
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problem for one-dimensional mixtures. Finally, in [3], the authors investigate the analyticity of the semigroup
associated with the initial boundary value problem treated in [2].

We note that we cannot expect that this system always decays in an exponential way. For instance, in the
case B1+ P2 =0,k1 +ky =0, p2 (a11 +ar2) = p1 (a12 +az) and by + b2 = b12 + by = 0, we can obtain
solutions of the form u = w and 6 = 0. These solutions are undamped and do not decay to zero. These are
very particular cases, but we will see that there are some other cases where the solutions decay, but the decay
is not so fast to be controlled by an exponential. Our main result is to obtain conditions for the coefficients of
the system (1.2) to ensure the exponential stability as well as the analyticity of the semigroup associated with
(1.2)—(1.4). We want to emphasize that we follow the same line of reasoning adopted in the papers [1,2] and
[14].

This paper is organized as follows. Section 2 outlines briefly the notation, and the well-posedness of the
system is established. In Sect. 3, we show the exponential stability of the corresponding semigroup provided
that certain conditions are guaranteed. In Sect. 4, we deal with the analyticity of the semigroup. In Sect. 5, we
show some conditions where we have the lack of exponential stability of the semigroup. Finally, throughout
this paper, C is a generic constant, not necessarily the same at each occasion (it will change from line to line),
which depends in an increasing way on the indicated quantities.

2 The existence of the global solution

In this Section, we use the semigroup approach to show the well-posedness of system (1.2)—(1.4). In the
standard L?(0, L) space, the scalar product and norm are denoted by

L L
(@, ¥)120, 1) =/de, ol 1) =/|¢|2dx.
0 0

We have the Poincaré inequality

ol 720 1) < Crllexliag ) Vo€ Hy(0, L)

where Cp is the Poincaré constant.
We introduce the face space H = H(} 0, L) x H(} (0, L) x L?(0, L) x L*(0, L) x L%*(0, L) equipped
with the inner product given by

L L

((u1, wi, v1, 01, 61), (U2, wa, v2, M, )y =/(011u1xﬁzx + az wix Woy) dX+C/91 0, dx
0

0
L

L
+/012(u1xW2x+w1xﬁzx)dX+a/(M1 —un)(uz—wz)dx+,01/v152dx+,02/mﬁzdx-
0 0 0 0

L L

and the norm induced || - |7¢. We can easily show that the norm || - |7 is equivalent to the usual norm in H.
We also consider the linear operator A : D(A) C H — H

v

n
ﬁ(011M+a12w+b11v+b1277+k19)xx—%(u—w)—‘;—;(v—n)—i-%@
é(012U+Cl22w+b12v+b2277+k29)xx+/%(u_w)"i'%(v_n)"i'%9

%(Ke_klv_kzn)xx_ﬂc—.lv—%n

o~
I < € ©

whose domain D(A) is the subspace of H consisting of vectors (u#, v, w, n, 0) such that
v, n, 0 € Hy(0, L),
KO —kjv—kane H* 0, L),
anu+apw+biv+ban+k6eH O, L),
aputanpw+bppv+bnnt+k 6 e H2(0, L).
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Taking u;, = v and w; = n, (1.2)—(1.4) can be reduced to the following abstract initial value problem for a
first-order evolution equation:

%U(t) =AU(t), UO)=Uy, Vt>0

with U (1) = (u, w, ur, wy, )" and Uy = (uo, wo. w1, wi, 6p)" .
First, we show that the operator A generates a Co-semigroup of contractions on the space H.

Proposition 2.1 The operator A generates a Co-semigroup S 4(t) of contractions on the space H.

Proof We will show that A is a dissipative operator and 0 belongs to the resolvent set of A, denoted by p(A).
Then, our conclusion will follow using the well-known Lumer—Phillips theorem (see [11]). We observe that if

U= (u, w, v, n, 0) € D(A), then
L L L L
(AU, U)yy = all/vxﬁxdx—i—alz/vxwxdx—i—a/vﬁdx—a/vwdx
0 0

0
L

L
nxwxdx—a/nﬁdx—i—a/nwdx
0 0

St~

L
+6112/ Nx Uy dx + ax
0

L L
—/(allu+a12w+b11v+b12n+k19)xﬁxdx—oz/(u—w)idx

0 0
L

L L L
—al/(v—n)ﬁdx—l—,Bl/@idx—i-a/(u—w)ﬁdx—l—al/(v—n)ﬁdx
0 0 0 0

L

L
—/(alzu +anw+bpv+bon+k0),n, dx -I-ﬂz/@ﬁdx
0 0
L L L
—ﬂl/védx —,32/n§dx —/(Ke —kiv—kon), Oy dx.
0 0 0
Taking the real part of the above equality, we obtain
Re (AU, U)y = = bt vxl3ag, 1) = b22 Imxl320, 1)
L
Y Re/ vy dx —ar v =1l 1, — K 16122 1
0
Case I The matrix B is positive definite. In this case, we get

det B det B

Re (AU, Uy < = 16:l1320 1) — T el F 20, 1) — o™ 1320, 1)
— o] ”U - 77”%2(0’ L) <o (21)

Case Il The matrix B is non-negative definite.
(a) b1y > 0implies by = b3, /b1;. Then,

1
Re (AU, Uy = =k 116x1 720, 1) — pr b1 v+ b 2.1

—aillv=nl7aq , <O (2.2)
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(b) b11 = 0 implies b12 = 0. Then,
Re (AU, Uyp = = 10:ll729 1y = b2 Inell3agg 1y — @1 o = nl72 ) <0 (2.3)
Therefore, it results in the three cases that A is dissipative.

On the other hand, we have that 0 € p(A). In fact, given F = (f, g, h, p, ¢) € H, we must show that
there exists a unique U = (u, w, v, 1, 6) in D(A) such that

v=f, n=g in H(, L),
(@nu+apw+biv+bon+ki 0y —a@—w) —a;(v—n)+p16=ph inL*0, L),
(@npu+anw+bpv+bnn+k )y +a@—w) +ar(v—n)+p0=pp in L3O, L),
(0 —kiv—kan)ux — B1v—pan =cq in L*0, L).

Consider v = f and n = g. It is known that there is a unique 6 € HO1 (0, L) satisfying

(6 —kiv—kam)e =cq+pi f+Prge L’ L).
It follows using the Lax—Milgram theorem that there exists a unique vector function (u, w) € HO1 0, L) x
Hg (0, L) such that
(anu+tapw+biv+bon+k0)u—a@—w) =ph+a (v—n) —p10 €L, L).
(apu+anw+bpv+bon+k0)u+a@—w)=pp—oa (—n) —p0 € L0, L).

Moreover, it is easy to show that |U|| < C | F|x for a positive constant C. Therefore, we conclude that

0ep(A).

Theorem 2.2 For any Uy € 'H, there exists a unique solution U(t) = (u, w, us, wy, 0) of (1.2)—(1.4)
satisfying

u, w e C([0, oof: HL(0, L)) N C([0, oo[: L*(0, L)),
0 € C([0, ool: L*(0, L)) N L*(]0, oo[: HE(0, L)).
If Uy € D(A), then

u, we C([0, ool: HE(0, L)) N C3([0, oo[: L*(0, L)),
aiu+appw+ by u, +bipw, + ki 6 € C([0, oo[: H*(0, L)),
apu+anw+bpu +bnw +k 6 € C(0, oo[: H*(0, L)),
0 € C([0, oo[: HJ (0, L)) N C([0, oo[: L*(0, L)).
k0 —kiu, —kowy € C([0, oo[: H*(0, L)).

3 Exponential stability

Our main tool is the following theorem established in Gearhart [4] (see also Huang [5] and Priiss [12]).

Theorem 3.1 Let S(t) be a Co-semigroup of contractions of linear operators on the Hilbert space H with
infinitesimal generator A. Then, S(t) is exponentially stable if and only if

() iRCp(A);
(i) limsupp oo |G AT = A7 £y < 00

where L(H) denotes the space of continuous linear functions in 'H.
Our starting point to show the exponential stability is the following Lemma:
Lemma 3.2 Suppose that only one of the items holds

(a) B is positive definite;
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(b) B is non-negative definite and
(b.1) b1a # —b11 or b1z # —ba;
(b.2) bip = —b11 = —byp, B1=—PB and ki # —ky;
(b.3) bio = —b11 = — by, p2(ai +an) # p1 (a2 +an); 1
(b.4) bjp =—by1 =—bxn, Br=0k, Bp=0ky, 0 #0 and o < % and ki # — k.

Then, iR C p (A).

Proof We show this result by a contradiction argument. Following the arguments given in Liu and Zheng [9],
the proof consists of the following steps:

Step 1 Since 0 € p(A), for any real number A with ||x . A~!|| < 1, the linear bounded operator (i A A~ —I)
is invertible; therefore, i A I — A = A (i A A~! — I) is invertible and its inverse belongs to £(H),
that is, i» € p(A). Moreover, ||(iAI — A)~!|| is a continuous function of A in the interval
(= A== AT

Step2 If sup {||GG A1 — A7 : [A] < A7'71} = M < oo, then for |xo| < [A~!|7! and A € R such
that |[A — Ag| < M1, we have ||[(A — Ag) (i Ao I — A)~!|| < 1. Therefore, the operator

iN[—A=(Grl—AT+ih—2r)(rl —A)H

is invertible with its inverse in L(H), thatis, i A € p(A). Since A is arbitrary, we can conclude that
{i A < AT 4+ M_l} C p(A) and the function ||(i A I — .A)~!| is continuous in the interval
(= 1A= =M AT ).

Step 3 Thus, it follows by item (ii) that if i R C p(A) is not true, then there exists v € R with [ A™']|7! < |o|
such that {i A : [A| < |o|} C p(A) and sup {[[i A1 —A)~'|: |A] < |w|} = oco. Therefore, there
exists a sequence of real numbers (A,),en With A, — wasv — oo and |A,| < |w]|, forall v € N, and
sequences of vector functions U, = (u,, w,, vy, Ny, 6,) € D(A), F, = (fy, v, hv, Pvs @) € H,
such that i A, I — AU, = Fy and |U,||lx = 1, forall v € N, and F, — 0 in H when v — o0, that
is,

iduy —v, = f, — 0 in Hi(0, L),

. N (3.1
idywy —ny =g, —> 0 in Hy(0, L),
i Ay 1 Uy — (@11 Uy +app wy + b1y vy +b12ny + ki 0))xx + o (uy —wy)
+ai (v =) — B16y = prhy — 0 in L0, L), (32)
iy o2y — (@r2uy +axpw, +b1av, +b0n, +k26y)x — o (1, — wy)
— a1 (vy— 1) = B2y = p2py — 0 in L0, L), (33)
idyCOy+ Broy+ Bamy — (k0 — ki vy —kony)ax = cqy —> 0 in L*(0, L). (3.4)
We observe that Re ((i A, I — AU, U,)y — 0 asv — oo.
(a) If det B > 0, it follows from (2.1) that
16uxl720, 1) + 10wxl720g, 1) + I3 1) —> O as v — oo
From (3.1) we obtain
”uvx”iz(o’ L) + ||wvx||%‘2(0’ L) —> 0 asv — o0.
Thus, lim ||U, || = 0 and we have a contradiction.
V—>00
(b)—(b.1) If det B = 0 and by; > 0, then it follows from (2.2) that
16ucl7200, 1) + 0w = ol 7200, 1) + 111 v +D12m)ell7a g ) — O as v — oo. (3.5)

Thus, 6, — 0 and by v, + b12n, — 0in HO1 (0, L). Since (u,),en and (w,),eN are bounded sequences in
H(% (0, L), there exist subsequences, still denoted by (u#,),eN, (Wy)yeN, such that u, — u and w, — w
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in LZ(O, L). From (3.1), we have that v, — v, 9, —> n,vy, — 1y = v —1n,b11 vy, +b12ny, > b11v+b1on
in L2(0, L). It results from (3.5) that

v=mn and bjjv+bipn=0. 3.6)

Since b1y # —b11, we have that v = n = 0. It follows from (3.1) that u = w = 0. On the other hand, we can
conclude from (3.2), (3.3) that

(a1 uy +apwy +bryvy +bppwy)veny and (arz uy + azx wy + b2 vy + b wy)eN (3.7

converge to zero in Hol (0, L). Therefore, from (3.5), we obtain that
ajuy, +apw, -0 and apu,+ayw, — 0 in H(} 0, L).

Since (a;;) is positive definite, it follows that u, — 0, w, — 0 in H(} (0, L). Thus, we have a contradiction
and the result follows. If b1; = 0 then by, > 0, and we can use similar manipulations.
(b)—(b.2) Suppose that b13 = — b1 = — by and 1 = — B>. Multiplying (3.4) by k1 v, + k2 n,,, we have

(iAycBy, kivy + k2 77v>L2(0, L+ (Brvw + Banw, ki vy + k2 7711)L2(0, L)
+ K (Bux, (k1 vy +k2 77v)x>L2(0, L) — (k1 vy + k2 7711))5”%2(& L= (cqv, kv, + ko Uv)LZ(O, L)

Using the Cauchy—Schwartz inequality

1
S Eoy +k2m)elizag gy < lledullzz, oylki v
+ ko 77v||L2((), L+ le”ce\)”LQ(O, L) k1 vy + k2 my ||L2(0, L)
+1B1l oy = moll 20, 1y Ikt vo + k2 mull 20, £y + 62 16ux 1720, 1)

since the sequence (k1 v, + k2 17,) N is bounded in L%(0, L), and using (3.5), we conclude that
ki vy +kan, — 0 in Hg (0, L).

Hence, k1 v 4+ kp n = 0. Since k1 # —k», we have from (3.6) that v = n = 0. We can use similar arguments
to show that u = w = 0 and lim,_. ||U, || = 0.

(b)—(b.3) Similarly, we get that the sequences given in (3.7) converge in HOl (0, L). Using again (3.5),
we obtain that (aj; uy, + a2 wy)yen and (aj2 uy + a2 wy),eN converge in HO1 (0, L). We can conclude that
Uy — u,w, —> w,v, — vandn, — 7nin H(} (0, L). From (3.6), we have v = n, and from (3.1) u = w.
Therefore, from (3.2), (3.3) we have

2 ay] +ap

2 app +ax
—olu e

Uy =0 and —ow u
p1 P2

Uyy = 0.

Since (a1; + a12)/p1 # (a2 + azz)/p2, we conclude that # = 0 and hence w = v = n = 0. The result
follows.
(b)—(b.4). From (3.4), we have

(irycOy, kivy, +k 77U>L2(0, L) +o k1 vy + ko 7711”%2(0, L) + Kk (Bux, (k1 vy + ko 77v))c>L2(0, L)
— NGkt vw + k2 )l G20 1) = (€ qvs k1 vw +kam) 20, 1y

IfQ < 0, then
— kiv + k n 2 + —l kiv + k n 2
( Q) ” 1 Vy 2 v” l2(0, L) 2 ”( 1 Uy 2 v)x” [2(0’ L)

= lleqvliz2, pyllkr vo + k2 nullz20, 1) + [AulllcOullz2(0, 1y l1k1 vy

+kanullz2, ) + 1% (|60 “22(0, L)
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f0<po< %,then

(—o Cp+ DIk vy + k2 ﬂv)x”%z((l L= e gullz20, Ikt vo + k2 mullz20, 1)
+ 1Al lleOuliz2, Ly Ikt v +kamullz2, 1y + & 10vx 220, 1y k1 V0 + k2 M) x Ml 220, 1)-

Therefore, ky v, + kpny, — 0 in HO1 (0, L) and k; v 4+ ko n = 0. Since v = n and k; # — kp, we have that
v = n = 0. We can use similar arguments to show that lim,_,« ||U,||%¢x = 0. In the next theorem, we will
consider only the case in which the matrix B is non-negative definite. However, in the next Section, we will
prove that when B is positive definite, the semigroup S 4(¢) is analytic and therefore it is exponentially stable.

Theorem 3.3 Suppose that B is non-negative definite and at least one of the following items occurs:

(@) b1y # —by1 or b1y # —by;
(b) b1 =—b11=—bn

(b.1) B1=—prand ki # —ka;
(0:2) (1. B2) =0 (k1. ko), 0 # Oand @ < ¢, and ki # — ko
(0.3) p2 (a1 +ai) # p1 (a2 + an).

Then, S A(t) is exponentially stable, that is, there exist two positive constants M > 1 and  such that

ISAM |z < Me H' for every 1 > 0.
Proof From Theorem 3.1 and Lemma 3.2, it is sufficient to prove that (ii) is true. Given A € R and

F=(g h p, g € HletU = (u, w, v, n, 0) € D(A) be the solution of i Al — AU = F, that
is,

iru—v=f in HL(O, L), (3.8)
irw—n=g in Hy, L), (3.9)

irprv—(anpu+anw—+biiv+bian+ki16)yy

+aw—w)+a(v—n)—p160 =ph inL*0, L), (3.10)
iApan—(anpu+anw—+bipv+bynn+kr )

—au—w)—a; (v—n) — P20 =p2p inL*O, L), (3.11)
ircO+Biv+pBan— (kO —kiv—kyn)ye =cq in L0, L). (3.12)

If det B =0 and b;; > O (the other case is similarly analyzed), it follows from (2.2) that

. 1
Re ((in] — AU, Uy = K”@c”%z(o,m‘f‘b—”||b11Ux+b1277x||%2(o’L)+Oll v =nl720, ) G13)

On the other hand, taking the real part of the H-inner product between (i A I — A)U = F and U, we have
Re (ir1 — AU, Uy = Re(F, U)y. (3.14)
Replacing (3.13) into the left-hand side of (3.14), then it follows that there exists a positive constant such that

16x 17200, ) + 1B11 v+ bramallzagg 1)+ 10 =72, 1) < CIF I Ul (3.15)
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Taking the inner product of (3.10) with u and (3.11) with w, using (3.8), (3.9), we obtain

L L L
an/|ux|2dx+a12/wxﬁxdx+/<bnv+bun)xﬁxdx+k1/9xﬁxdx
0 0 0
L L L L L
+oz/(u—w)ﬁdx—i—al/(v—n)ﬁdx—ﬂl/eﬁdx=,01/hﬁdx+,01 /v(v+f)dx,
0 0 0
L L
a22/|wx| dx +alz/uxwxdx+/(b12v+b2277)xwde+k2/9x xdx
0 0
L L L
—oe/(u—w)wdx—otl /(v—n)wdx—ﬁz/Gwdx—pz/pwdx—l—pz/n(n—}—g)dx
0 0

Adding these equalities, using the Young and Cauchy-Schwartz 1nequahtles and performing straightforward
calculations, we obtain

L L

det A 2 det A )
lux|“dx + —— |wy|“dx

2a» 2aq

0 0

L L L
sp1/|v|2dx+pz/|n|2dx+a1/|v—n||u—w|dx

0 0

1/2 L 1/2 L 1/2
+C /|9x| dx /|ux|2dx + /|wx|2dx
L
/|(b11 v+ bian)xlluxldx + pi / v | fldx + pi / || [u|dx
0
+/ [(br2v + Do m)x| lwy| dx + /02/ nllgldx + ,02/ Ipllw|dx. (3.16)
(a) From (3.15) and using that b1y # —b1;, we have
W72, 1) + 1007200, 1) < CUF I3 1U 1y (3.17)
It follows from (3.15), (3.16) and (3.17) that
lxlF2g0, 1)+ Iwellzag 1y < CUFl2 UL, (3.18)
Therefore, from (3.15), (3.17) and (3.18), we conclude that
IGAI — A 'Flly <C|Flny YAeR. (3.19)
(b)—(b.1) Taking the inner product in L2(0, L) of (3.12) by k1 v + kz n and using the Gauss Theorem we
obtain
L L
/|(k1 v+ ko)t dx = “»C/Q(kl v+k277)dx+lc/9x (k1 v+kyn)ydx
0 0
L

+/(/31v+/3277)(k1v+k271)dx—C/Q(k1v+k277)dX-
0

0
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Using the Young and Cauchy—Schwartz inequalities, there exists a positive constant C such that

L L
/|(k1v+k2n)x|2dx§C /eu(klerkzn)dx +C/|6x|2dx
0 0

+ C/ 1B1v+ Banl* dx + C I Flln|U |l

From (3.15), we obtain that

L L
/|(k1 v+kyn))Pdx <C /GM (kiv+kan)dx| + CIFlIlxIU|,- (3.20)
0
On the other hand, multiplying the Egs. (3.10) by k1/p1, (3.11) by k2/p> and adding the result,
we obtain
k k k k k k
i)»(klv—i—kzn):—a(—l——z) u—w)—oap (—]——2) v—n)—i—(]—ﬂ]—i— 2ﬂ2)9
o1 P2 o1 P2 P1 02
k
+k1h+kzp+p—l(a11M+a12w+b11v+b12n+k19)xx
1
(3.21)

k .
+=2 (arau+anw+biv+bnn+k 6, in L*O, L).

Taking the inner product of 6 with i A (kj v 4+ k1) in L0, L), using that by; = by, = — b2,
(3.21) and the Gauss Theorem, it follows that

L L
E— kq ko _ ki ko _
Oirdkiv+kyn)dx = — —apn+ —ap)0iu, + | —ap+ —ax) 0w, |dx
) P1 02 P1 P2

L L
ki k .
—b”(—‘——z)/e (Ex—ﬁx)dx—/ﬁ(hh—l-kzp)dx

P1 P2
k k ‘
+(“31 2ﬂ2)/|9|d ( )/|9x|dx
p1
0
ki ko ky k2
—a|l—-—— Ou—w)dx —og | — — —= 0@ —n)dx.
P P2 pr P2
0 0
Then, from (3.15), we have
L
/9)»1' (ki v+kan)dx| < C6xll 1200, 1) (ltxll 2200, 1) + Il 220, 1)) + C I F Il Ul
0
(3.22)

Substituting (3.22) in (3.20) yields

lGki v+ k2 n)elZa 1y < C 165 l220, 1y (luxllzz, 1y + Nwellz2, 1) + C IF Ul

Using the Poincaré inequality, we obtain

ket v +kamll3a0 1) < CI6xllz20, 1y (luxllz2, £y + lwxli2, 1)) + C IF I U,
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Since k1 # — ky and from (3.15), we conclude that

||U||iz(0, nt ||77||%2(0’ 1 = Cloxll2, 1y (”“x”LZ(Q o) T lwxll 20, L)) + CIFIHIU -
(3.23)
Substituting (3.23) in (3.16) we obtain (3.18). Using (3.18) in (3.23), we get (3.17). Therefore,
(3.19) holds.

(b)—(b.2) Taking the inner product in L2(0, L) of (3.12) with ky v + k> n, using the Gauss Theorem and the
fact that (81, B2) = o (k1, k2), we obtain

L L
(—Q)/|k1v+k2n|2dx+/I(k1v+k277)x|2dx
0 0

L L L

=i)»c/9(k1U—I-kzn)dx—l-lc/Gx(klv—i-kzr])xdx—c/q(k1v+k2n)dx.
0 0 0

Therefore if o < 0,

L L
1
(—Q)/|k1v+k2n|2dX+5/|(k1v+k2n)xlzdx
0 0

L

<c /exi(ﬂl ST Bamydx| + CIFlslUl,,.
0

If 0<po< Cl—P,then

L
(—oCp+ 1)/|(k1 v+ ko )il dx
0

L

<c /9Ai(ﬂ1_v+ﬁz Ddx|+ CIF I Ul,,.
0

From (3.22), we conclude that

L
/ (k1 v+ kam)xl*dx < Cl10xll 20, 1) (luxliz20, 1y + lwxllz20, 2y) + C MU I3 I F Il
0

Since k| # — kp, we obtain

I3, 1, + 1107200, 1) < C18xll 20, 1) (luxll 200, 2y + lwxll 220, 1)) + C U3¢ I Fll34

Similarly, we obtain (3.19).
(b)—(b.3) From (3.15) we have

16511720, 1) + 10x = nxllZao, 1) + 10 = 0ll720, 1) < CHU NI IF 134, (3.24)
for a positive constant C. Hence, from (3.24) we obtain

lux — wyllZa, 1, < CHUI I Fllpg 1] > 1. (3.25)
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Taking the inner product of

b b b b
e (o) () () (222,
Pl P o1 P2 IR o1 P
k k
)] (5 g (B ons
L1 02 Xx L1 P2

o1 P2 p1r P2
with(‘;—'l‘—%z)u—k(%z—‘?;)wandumngthatz)\(u%—w) w+n + (f +g), we get

2
a a
+(£_£)wx
Pl P
L
a a a a
(2 e (2 2)e
P12 pr P
1 1 a a a a
+a<—+—)/|u—w|‘(i—E)u—k(ﬁ—ﬁ)w
L1 P2 2 L1 P2 L1 P2
| L
1 a a a a
+a1(—+—)/|v—n|‘( 1 12)u+(£—£)w’dx
T R %) , P1

P2 P£1 P2
L
al an ann ann
foenln e (-2
L1 P1 P2

[vy — nxldx

dx

a a a a
/|U_n|‘( 1 12) +<12 zz)gdx
M
k
o (52 (22
P1 P2 L1 02
a a a
(11 12>u+<12+ 22)w‘dx
o1 P2 p1 M

dx.

a a a a
e e 2).

P1 P2

Using the Cauchy—Schwartz and Young inequalities, we obtain

[(p2a11 — p1ai2) ux + (p2 a2 — p1a) wx”%z(o L
< C (v =nlz20, ) Ul + Ul |1 Flix) 1A >1, C>0.

By hypothesis, from (3.25) and the last estimate, we have

el 1)+ lwxlFa0 1y = € (Il =nll2, 1) 10l + U N3¢ [ Fllz) 3] > 1, € > 0.

(3.26)
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Now, taking the inner product in LZ(O, L) of (3.10) with u, (3.11) with w and using (3.8), (3.9),

we obtain
L L
/|v|2dx— /|ux| dx+—/|u| dx+ wxﬁxdx—ﬁ wii dx
0 ,010
ﬂ /Gudx—/vfdx—/hudx+—/(buvx—l—bunx)uxdx
o1
0 0 0
L L
o] _ o] — —
+—/vudx——/nudx+k1/9xuxdx (3.27)
P1 L1
0 0 0
and

L
/|n|2dx= /)122 Uy Wy x——/ dx+—/|wx| dx + — /|w| dx
0
L
iz/Qde—/ ngdx — / E/(b12vx+b22nx)wxdx
0 0

0
L L

L
_U [ war+ & anerkz/exﬁx dx. (3.28)
P1 P1

0 0 0

Combining (3.24), (3.26), (3.27) and (3.28) yields
191220, 1y + 100220 1) < € (10 = nll20, ) 10Ul + 10N I Fla) 1Al > 1. C > 0.
The last estimate together with (3.16) implies
s 220 1) + e 220, 1) < € (10 = nll200, 1y 1U o + 1U Nl [ Fllzg).
Therefore, there exists a positive constant C such that
IIUII% <C(lv=nl20, ) Ul + Ul IIFllg) 1Al > 1.
From (3.24)
IGAT = A)'Fllyg < ClIFllgg 1A > 1.

The result follows.

4 Analyticity

In this Section, we will show that the semigroup S 4(#) is analytic. In order to show this, our main tool will be
the following theorem whose proof can be found in Liu and Zheng [9].

Theorem 4.1 Let S(t) be a Co-semigroup of contractions of linear operators in a Hilbert space H with
infinitesimal generator A. Suppose that i R C p(A). Then, S(t) is analytic if and only if

limsup [AGAT —A) " gm) < oo 4.1

|A]—o00
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From Lemma 3.2, we have that the imaginary axis is contained in p(A). Thus, in order to prove that the
semigroup S 4(¢) is analytic it remains to show (4.1). With this aim, in the next theorems of this Section,
we will show that there is a positive constant C, independent on X, such that

ANGAT = Ay <C VreR.
Theorem 4.2 Suppose that B is positive definite. Then, the semigroup S A(t) is analytic.

Proof Given A € Rand F = (f, g, h, p, q) € H, let U = (u, w, v, n, 0) € D(A) be the solution of
(irI— AU = F, that is,

iru—v=f in H}(0, L), 4.2)
irw—n=g in H(0, L), (4.3)
irprv—(ajgu+apw+byv+bian+k 0)
+o@—w)+ar(w—n) —pi6=ph inL*0, L), 4.4)
iApan—(anpu+anw—+biav+bynn+kr0)x
—a@—w)—ar(v—n)— P20 =pap inL*0, L), (4.5)
ircO+Biv+pBan— (kO —kiv—kyn) =cq in L0, L). (4.6)
It results from
Re (i » 1 — AU, U)y = Re (F, Uy 4.7
and (2.1) that
16x 1720, 1) + 10x 17200, 1) + Imx 1720, 1) + 10 = 220, 1) < C I F U3 (4.8)

for a positive constant C. From (3.16) and Young’s inequality, there exists a positive constant C such that
el Fa0. 1)+ lwxlfag 1y + e = wigag 1) < ClGB1 Y +bramilTag 1) +ClB12v+ bl 4,
vl 20, 1) + 1172, £y + CIF I3 IU I3+ C llv = 0l 720, 1)
From (4.8), we get
Ul = CIFIn (4.9)
for a positive constant C. On the other hand, since Im((i A I — A)U, U)y = Im(F, U)y, we have
MU, < 1Im(AU, Up| + U 1% F I (4.10)

with

L L L
Im(AU, U)y = 2ia Im/vxﬁxdx-l—Zia]z Im/vxwxdx-l—Zioz Im/(v—n)(u—w)dx
0 0 0

L L L
+2iap Im/nxﬁxdx—i—Ziagz Im/nxwxdx—Zi,Bl Im/Hde
0 0 0
L L L
—-2iB Im/@ﬁdx—i—Zikz Im/@xﬁxdx—i-Zikl Im/@xﬁxdx. 4.11)
0 0 0

It follows from (4.8), (4.9), (4.10) and (4.11) that there exists a positive constant C such that

MUl <CIFlln VAeR < [AIGAT—A) ey <C VieR. 4.12)
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Theorem 4.3 Suppose that B is non-negative definite and only one of the below items occurs:

(@) (b12 # —bi1orbip #—bp) and (biika # bioky or biaky # by ky);
(b) b1y =—b11=—bxn

(b.1) B1 =—po and ki # —ko;
(©.2) (B1, B2) =0 (ki, k2), 0 #0 and o < c%nkl # —ko;
(b.3) p2 (ar1 + az) # p1 (a2 +axn) and ky # —k;.

Then, the semigroup S A(t) is analytic.

Proof Given A € Rand F = (f, g, h, p,q) € H,let U = (u, w, v, n, ) € D(A) be the solution of
(4.2)—(4.6) and suppose b11 > 0. It results from (2.2), (4.7) that

16x17200, 1) + 10 = 1ll720 1y + @11V +b12m)xl7a, ) < CHU NI Il 4.13)

We prove in Theorem 3.3 that there exists a positive constant C such that

laxl 3200, )+ 1wellZa g 1y + 10172, 1) + 10072, 1) < CUF I3 U Il (4.14)
Taking the inner product of (4.6) with k1 v + k> n, we obtain

L

L L
/ikc@(klv+k2n)dx+/(,31v+ﬂ2n)(k1v—l—kzr])dx—/(/cé—klv—kzn)xx(klv—i-kzn)dx
0 0

0
L

=c/q(k1v+k2n)dx.
0

Using the Gauss theorem we obtain

—(cO,ir(kiv+kam)i2o, )+ (Brv+fon kiv+kan)2, 1y
+ i (O, (kiv+kamx)r20, 1) — ki v+ k2 77)x||i2(0, L) =¢(q, kiv+kan)i2, 1)

Using the Young and Cauchy—Schwartz inequalities, we get
IGki v +kamel2a 1) < C U Fllag+ C B + Banl2ag, 1y + C U0 i ki Av +ikakn) 2o, 1.
From (4.14), we have
Ikt v+ ka )l 1) < C Ul Fllzg+ C (0. i ki Av +ika An) 2, 1) - 4.15)
From (4.4), (4.5) and performing straightforward calculations, we obtain

kian kiaiz
(O, Mx)LZ(o, L) —

(0, lkl AV +lk2)\,77>L2(0‘ L) = — (9)(v wx>L2(0’ L)

ki ky aiz kaans
—E(Qx, (briv+biamx)i20,1) — o (Ox, ux) —

02 (Ox, wx>L2((), L)

ka k% k% 2
s (Ox, (b12v+bxmx)r20,1) — o + s 1011720, 1,

(k1 kz)(@ )
—al— - — , U — w2
P P LoD

ki kz) kit ko po 2
—a(———)O, v—n)p +({—+—=)1I9]
(/01 P2 L*6.L) p1 2 L2©. L)

+ (9, kl l’l +k2 p)L2(O, L)
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Then from (4.13), (4.14), we get
[0, ikiAv+ikadn)i2o, )l < CINUIHIFH#,
for a positive constant C. The last estimate together with (4.15) implies
IGr v +kamelZa 1) < CIUIIF . (4.16)
(a) Since by k1 # bi3 kp, it results from (4.13), (4.16) that

lellF a0, 1) + Imel7 20 1y < CIUI% I F I3, (4.17)
for a positive constant C. We conclude from (4.11), (4.13), (4.14) and (4.17) that
Im({AU, U)n| < CIIFInlIUlx.
From (4.10), we have
MU, < CIF U %

Following the same reasoning as above, we obtain (4.12). The proof of the item (b) is similar. O

5 About the lack of exponential stability

In this Section, we will show that there are cases where the lack of exponential stability of the semigroup
occurs. However, we observe that the case

bi1 =by =—>b1p, p2(ai1 +ap) =(axn+app)pr, P1#—PF and ki #—k;

is not studied in this work.

To show the lack of exponential stability, we will show that the condition (b) of Theorem 4.1 is not true.
To do this, it is sufficient to show the existence of sequences F, € H, &, € R such that (F)),c is bounded,
|£,) = coand |(i& [ — A)7'F,| > 00 as v — oo.

We denote by ¢, € HO1 (0, L) N H%(0, L) and A, € R the sequences of eigenvectors and eigenvalues,
respectively, of the operator — 83, that is,

— @uxx = Ay, in (0, L)

withO <A <X <. <Xy <---, A, = 00 as v — oo and such that the sequence (¢,), 1S an
orthonormal basis of L2(0, L).

Theorem 5.1 Suppose that b1y = by = — b1y and py (a1 + a12) = (ax + aiz) p1. Moreover, assume that
only one of the following items is true:

(@) 1 =— P2 and k|
(b) B1 # — B2 and ki

Then, S A(t) is not exponentially stable.

—ky;
— k.

Proof First of all, we observe that b1; # 0 and k1 # 0.
For each v € N, we take F, = (0, O, a,ol_1 Oy, b,02_1 vy, 0) € 'H, with a, b € R, and we denote by
U, = (u,, wy, vy, ny, 6,) the solution of the resolvent equation

irx1—-—AU,=F,, reR (5.1)
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For each v € N, the solutions of (5.1) are of the form u, = A, ¢, w, = B, ¢, and 6, = C,, ¢,. Thus, we get
the system

vy =iAuy, Ny =1Alw,, 5.2)

—p1 A2 Ay + Ay (@1 +iAb1) Ay + Ay (@12 — i Ab1p) By + Ay k1 G,

+a(Ay = By) +iarA(A, — By)) — 1 C, =a, (5.3)

— P2 A2 By + Ay (a2 — i Ab11) Ay + Ay (@22 + i Ab11) By + Ay ko Gy

—a(Ay — By) —iaj A (A, — By) — o C, =D, 54
Gehtich)Cotin(Br—kid) Ay +ik(Ba—kahy) By = 0. (5.5)

Adding (5.3) with (5.4), we get
A
(_ e (a1 +ai2) Ay
P1
(a) Substitutinga =b =1, B1 = — B and k; = —kp in (5.6), we obtain

(_ 24 lantan) by
P1

Taking A = &, = /“Hp@xu — 1in (5.1), it results from (5.7) that

P1Ay + 02 By =2,

) (p1 Ay + p2 By) + (A (k1 +k2) — (B1 + B1)) Cy = a + b. (5.6)

) (o1 Ay + 02 By) = 2. (5.7)

i.e.,
. 2 02
A, =1 —1 B, with 11 = — and ©n=—. (5.8)
P1 P1

Substituting (5.8) into (5.5), we get
it & (Br—kiry) i(1+w)é& (B —kidy) B

C,=— . 5.9
! KAy +ick KXy +icé, Y (5:9)
Now, substituting (5.8), (5.9) into (5.3), we obtain
g, = Ptio
R,+1iS,

P,=(—1+4at4+p1T1)kAy —KapT )»12} —cay T Ef—cbn T éfkv,
Ov=(—c+(@+atp+upDé+ ke —crian—2pkir)é A
+ (bt + T kD) &y AL
Ry=mpr+a(l+m))kh —c(l+1)ani; —ca(1+1)& —c(l+ 1) b & Ay,
Sy =(np+0+w)(catpDE+ (1 +0)kar—can—2Bk)é A
+ (14 12) (k biy + kD) £ A7
Since
7]
14+ 1

lim |B,| =
V—>00
it follows

lim |, ]| = lim &, |B,| = oo.
V—> 00 V—>00



162

M. S. Alves et al.

Therefore,
lim [|Uy |l = oo.
V—=>00

The proof follows.
(b) Substitutinga = — 81, b = — B and k| = — k3 in (5.6), we obtain

(_ 32y antan xv) (01 Ay + P2 Bo) — (B1 + B2) Cu = — (B1 + o).

P1

Taking A = &, =,/ % Ay in (5.1), it follows from (5.10) that
C,=1.
Substituting (5.11) into (5.5), we get

o —cé& +ikhy _,32+k1)\v
v (Br—kiry)  Pr—kiky

v

We obtain from (5.3)
— Ay kq
a—aph +ig (0 +biiry)

A, — B, =

Substituting (5.12) into (5.13) and performing straightforward calculations, we obtain

v

_ Bi—kiay |:—C§u +ikhy ki (@ —api, —i& (o1 +bi1Ay))

|

(5.10)

5.11)

(5.12)

(5.13)

(BB L& (B — ki) (0 — a2 ) + &2 (@1 + by a)?
Therefore,
1 Ay ki ‘i:v Ay (le] +b11}\u) (,31 —k )w)
ImBy=—— |k — — 3 3 7 |
Bi+B)L & (@—anr)+§& (a1 +biiry)
i.e.,
1
ImB) = ———
(B1 + B2)
8 Ay . ar Brki &y +bui BrkiEyhy — ot kT Ey Ay — k3 i1 §) A2
& o2&, —2aann & +ah A28 +al gy + 201 by £y Ay + b2 £, A2
Thus,

. 1 K\ o
lim Im B, = ——{k+— ] lim — = o0.
v—>00 (B1 + B2) byy Jv—oo &,
Hence, lim,_, « | By| = oo. Therefore,

L

lim 11720, ,, = lim /m B,wy|*dx = lim |y, B,| = 0.
V—00 , V—00 V—00
0
Consequently, lim,_,  ||U, ||¢ = 0o. The proof follows and the theorem is complete.

6 Numerical examples

The following numerical examples show the asymptotic behavior of the solution of (1.2) due to the exponential
stability when the conditions (a) or (b) of Lemma 3.2 are verified, and the lack of exponential stability, when

they are not verified.
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(a) Lack of exponential stability: [31 =b, =b,, =k =1.0; [32 =b,,=k,=-1.0
T T T T

I
e L

B2 = b2 = ko = —1.0); b exponential stability (81 = by1 = by = b2 = k1 = 1.0, B2 = ko = —1.0); ¢ exponential stability
(B1=b11 =byn =k =ky=1.0,8, =b1p =—1.0)

6.1 Example I. Amplitudes for sample sinusoidal initial condition

We consider here a similar example as in the above Section. That is, we choose L = 7, and we suppose that the
solutions are of the formu,, = A, (7) sin(nx), w, = B, (t) sin(nx), v, = A, (¢) sin(nx), n, = B, (t) sin(nx),
and 6, = C,(¢) sin(nx). In this case, the amplitudes (A,, B, C,) verify the following system of ODEs:

L1 A;l/ = —n2 (allA,, +d]23n +b]]A;+blzBr/l+k] 9) —a(A” _Bn)—Ol] (A;_B;;)'i'ﬂl Cn’
p2 B = —n* (a2 Ay + az By + bio A}, + by B)) +a (Ay — By) + o1 (A, — B) + B2 Cy,
¢Cp=—n*(kCy—ki A, —ka B},) — p1 A, — B2 B, (6.14)

Thus, we consider the system (6.14) with the parameter values aj; =ax =1.0,a;2=0.0, and p; =p2
=a=a1=c=k=1.0.

Figure 1 represents the evolution in time of the three amplitudes A,,, B,,, and C,,, and the derivatives A;l
and B), (which are the amplitudes of v and 7, respectively), for n = 100. For the numerical simulation, we
use the Runge—Kutta—Fehlberg method RKF45, with the standard solver ode45 () of MATLAB. The case (a)
is a simulation for 0 < ¢ < 5.0, and the cases (b) and (c¢) are simulations for 0 < ¢ < 0.001.
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The first Fig. 1(a) represents an example with lack of exponential stability when the hypotheses of
Theorem 5.1 are verified:

bi1 = by =—bi1a, p2(ai1 +ap) = (axn +ap)pr, ki =—k.

The second Fig. 1(b) represents an exponential stability example when the following hypothesis of
Theorem 3.3 is verified: B is non-negative definite and

bia # —b1 or by # —bn.

More precisely, we take b1, = by = bjp = 1.
The third Fig. 1(c) represents again an exponentially stable case when the following hypothesis of
Theorem 3.3 is verified:

bio=—bi=—bn, B1=—PF, ki #—k.

More precisely, we take 1 = by; = by = k1 = ko = 1.0, B =bp = —1.0.
We observe clearly in the Figs. 1(b) and (c) that the 5 amplitudes A, (¢), B,(t), A),(t), B}, (t) and C, (1)
tend to zero very fast. However, both (b) and (c) are exponentially stable.

6.2 Example II. Asymptotic behavior for a small initial condition

Here, we compute numerically the solution of the system (2.2), with L = 1.0,7 = 2.0, and the initial
condition:

0 0.0 <x <04, 0 i£0.0<x <04,
10(x —04) if04<x <05, o _ | 206-04 ifoasx=os,
1006—x) if05<x<06 "T0=12006-x) if05<x<06
0 i£0.6<x <10 0 i£06<x <10

v(x, 0) = (6.15)

and u(x, 0) = w(x, 0) = 6(x, 0) = 0.0. We remark that the initial condition defined in (6.15) has two peaks
of height 1 and 2, respectively, and support in (0.4; 0.6). Additionally, we consider the same parameter values
of Example I, aj1 =a» =1.0,a12 =0.0,and pj = pp =a =0 =c=«k = 1.0.

In order to compare these numerical results with those of Example I and the previous Sect. 5, we assume
that

u(x, 1) = D Ap@) sink — Dmwx, wx, 1) = > B(t) sink — D,
k=1 k=1

O(x, 1) =D Ci() costk — 1) x, (6.16)
k=1

and therefore, we extend the initial conditions (6.15) by odd functions, in the interval (— L, 0).

On the other hand, if we discretize the space dimension (— L, L) = (=1, 1) in 2 N — 1 subintervals
Ij =(éx, (j+1Ddx),withédx =1/(2N),and j = —N,..., N — 1 and we approximate the solution
U(x, t) of the system (2.2) by piecewise functions equal to U;(¢) in each subinterval, then we can take the
Discrete Fourier Transform of the solution:

2N
Up(t) = Z Uj(t) e ™1 (=DU=D/N, (6.17)
j=1

and we reconstruct the solution by the Inverse Discrete Fourier Transform:

2N

P e
Uj([)zﬁZUk(t)er”(k D(j ])/N' (6.18)
k=1
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We note that if we define Uy (t) = @@j(t), wi(t), vjt), n;), §j(t))T, then Ay (t) = —Im(u;(t)), Bx(t) =
—Im(w; (1)), Ck(t) = —Im(6;(¢)) and the following system of ODE:s is verified:

0= W, =
01512=—ﬂz(k—1)2(011Mk+a12wk+b11vk+b1znk+k16k)—oz(uk—wk)—al(vk—nk)Jrﬁle,
P27 = —7? (k — 1)? (ar2 ik + a Wi + b1o U + boa T + ko O) + o (x — W) + 1 (T — M) + B2 O
clp = =% (k= 1? (k O — k1 O — ko Tik) — B1 Ok — B2 k. (6.19)

We make simulations for N = 1024 using in this case the Stiff solver odel5s () of MATLAB to compute
each one of the 1024 system of Eqgs. (6.19), and we reconstruct the solution by the Inverse Discrete Fourier
Transform (6.18).

Figures 2 and 3 represent the evolution of the solutions (#, w, v, 1, €), with the same parameters b;; and
Bi of Example I, cases (a), (b) and (c). Figure 2 shows the lack of exponential stability with 81 = bj] = by =
k1 = 1.0, o = b1p = ko = —1.0, and Fig. 3 shows the exponential stability with 81 = bj| = by = b1y =
k1 = 1.0, B2 = kp = —1.0. In both figures, u(x, t) is graphed at the top left, w(x, ) at the top right, v(x, f)
at the bottom left, n(x, ) at the bottom right, and 6 (x, ¢) at the center.

Finally, in Fig. 4, it is represented the norm H of the numerical solution of (2.2) for the 5 first cases of
Example I ((a), (b) and (c)). More precisely, we plot the function:

D) — us 2 2
. Zh (M) +(M) +v§(z)+w§(r)+(9,-(t)—h29£(z)) .

14

Fig. 2 Example II. Lack of exponential stability. Numerical solutions u, w, v, n, 6. Case B1 = b11 = by = k1 = 1.0, 2 =
byp =k =-1.0
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Fig. 3 Example II. Exponential stability. Numerical solutions u, w, v, n, 0. Case f1 = by = by = b;p = k1 = 1.0, 2 =

ko =-1.0

norm |[.||

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time t

Fig. 4 Example II. Evolution in time of # — ||U (-, t)| /7 for: a Lack of exponential stability 81 = b1 = by =k; = 1.0, o =
b1y = ko = —1.0; b Exponential stability 81 = b11 = by = k; = ko = 1.0, B2 = bj» = —1.0; ¢ Exponential stability
Pr=bii=bn=br=k =10, o=k =-1.0

We observe that in general, in the cases of lack of exponential stability, the curves diverge when t — oo
(case (a)), and the curves tend to zero in the exponentially stable cases ((b) and (c)).
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