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Abstract In this paper, we investigate the asymptotic behavior of solutions to the initial boundary value prob-
lem for the interaction between the temperature field and the porosity fields in a homogeneous and isotropic
mixture from the linear theory of porous Kelvin–Voigt materials. Our main result is to establish conditions
which insure the analyticity and the exponential stability of the corresponding semigroup. We show that under
certain conditions for the coefficients we obtain a lack of exponential stability. A numerical scheme is given.

1 Introduction

This article is concerned with a special case of a linear theory for the interaction between the temperature
field and the porosity fields in a homogeneous and isotropic mixture from the linear theory of porous Kel-
vin–Voigt materials. The theory of porous mixtures has been investigated by several authors (see, for instance,
[6–8,10] and the references therein). Iesan and Quintanilla [7] considered binary mixtures where the individual
components are modeled as porous Kelvin–Voigt materials, and the volume fraction of each constituent was
considered as an independent kinematical quantity. The authors assumed that the constituents have a common
temperature and that every thermodynamical process that takes place in the mixture satisfies the Clausius–Du-
hem inequality. At the end, they presented as an application the interaction between the temperature field θ and
the porosity fields u and w in a homogeneous and isotropic mixture. We restrict ourselves to the interaction
between the temperature field and the porosity fields u and w in a homogeneous and isotropic mixture. Under
the same assumptions of Ieşan and Quintanilla [7], we have a system of three equations given by:
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ρ0
1 κ1 utt − a11 uxx − a12wxx − b11 uxxt − b12wxxt + a13 u + a14w + b13 ut + b14wt )

− k1 θxx − β1 θ = 0 in (0, L)× (0, ∞),

ρ0
2 κ1wt t − a12 uxx − a22wxx − b21 uxxt − b22wxxt − a14 u + a24w + b23 ut + b24wt (1.1)

−k2 θxx − β2 θ = 0 in (0, L)× (0, ∞),

c θt − κ θxx + k1 uxxt + k2wxxt + β1 ut + β2wt = 0 in (0, L)× (0, ∞).

The function u = u(x, t) (and w = w(x, t)) represents the fraction field of a constituent and θ = θ(x, t)
the difference of temperature between the actual state and a reference temperature.

The 24 different parameters of the system (1.1), that is, ρ0
i , κi , ki , βi , ai j , bi j ,with i = 1, 2, j = 1, . . . , 4,

a12 = a21, a23 = a14, and c, κ , represent some constitutive coefficients (see [7, Eq. (87)] for more details).
However, under assumptions of symmetry, we can make some simplifications. First, mass densities multiplied
each one by the respective constitutive coefficients ρ0

1κ1 and ρ0
2κ2 can be summarized to two single parameters

ρ1 and ρ2, respectively. Second, we assume the symmetry of B = (bi j ), thus b12 = b21. Third, we assume
a well- balanced exchange coupling between the two fields of porosity, that is, assuming the following sym-
metry relations simplifying the constitutive coefficients ζ (1) = ζ (2) = −ζ (3) of the model in [7], it can be
summarized in only one parameter α = a13 = a24 = −a14. Finally, applying the well balance, this time to the
rates of the field of porosity, we can make the following simplification C (1) = −C (2) = −D(1) = D(2) of the
model in [7] which we can summarize in the parameters α1 = b13 = −b14 = −b23 = b24. In this case, our
equations which govern the fields u, w and θ in the absence of body loads are given by the system

ρ1 utt − a11 uxx − a12wxx − b11 uxxt − b12 + wxxtα (u − w)+ α1 (ut − wt )

−k1 θxx − β1 θ = 0 in (0, L)× (0, ∞),

ρ2wt t − a12 uxx − a22wxx − b12 uxxt − b22wxxt − α (u − w)− α1 (ut − wt ) (1.2)

−k2 θxx − β2 θ = 0 in (0, L)× (0, ∞),

c θt − κ θxx + k1 uxxt + k2wxxt + β1 ut + β2wt = 0 in (0, L)× (0, ∞).

We study the system (1.2) with the following initial conditions:

u(x, 0) = u0, ut (x, 0) = u1, w(x, 0) = w0, wt (x, 0) = w1, θ(x, 0) = θ0 in (0, L) (1.3)

and the Dirichlet boundary conditions:

u(0, t) = u(L , t) = 0, w(0, t) = w(L , t) = 0, θ(0, t) = θ(L , t) = 0 t ∈ (0, ∞). (1.4)

We assume that ρ1, ρ2, c, κ, α and α1 are positive constants. Since coupling is considered, we consider(
β2

1 + β2
2

) (
k2

1 + k2
2

) �= 0, but the signs of βi or ki do not matter in the analysis. The matrix A = (ai j )
is symmetric and positive definite and B = (bi j ) �= 0 is symmetric and non-negative definite, that is,

a11 > 0, a11 a22 − a2
12 > 0, b11 ≥ 0, b11 b22 − b2

12 ≥ 0.

These simplifications and savings in the use of 8 parameters, could be questionable from a standpoint of
thermomechanical model. However, our purpose in this work is to investigate the stability of the solutions of
the system (1.2)–(1.4). In this sense, it is a simplification without loss of generality. That is, the same results
presented here and proved for the system (1.2) could be also obtained for the system (1.1).

The asymptotic behavior as t → ∞ of solutions to the equations of linear thermoelasticity has been studied
by many authors. We refer to the book of Liu and Zheng [9] for a general survey on these topics. However,
we recall that very few contributions have been performed to study the time behavior of the solutions of non-
classical elastic theories. In this direction, we mention the works [1–3,10,13] and [14]. In [13], the author
treats the theory of elastic mixtures and proves the exponential decay of solutions of the equations of motion
of a mixture of two linear isotropic one-dimensional elastic materials when the diffusive force is a function
which depends on the point and can be localized. The paper [14] deals with the theory of mixtures. The author
states the linear equations of the thermomechanical deformations and studies several suitable conditions to
guarantee the exponential stability of solutions. On the other hand, the exponential stability for the case of the
thermoelastic mixtures has been studied in [1] and [10]. In [10], the authors prove (generically) the asymptotic
stability. In [1], the authors establish conditions to the exponential stability and to the lack of stability of the
semigroup. In [2], the authors investigate the asymptotic behavior of solutions of an initial boundary value



Stabilization of a system modeling temperature and porosity fields 147

problem for one-dimensional mixtures. Finally, in [3], the authors investigate the analyticity of the semigroup
associated with the initial boundary value problem treated in [2].

We note that we cannot expect that this system always decays in an exponential way. For instance, in the
case β1 +β2 = 0, k1 + k2 = 0, ρ2 (a11 + a12) = ρ1 (a12 + a22) and b11 + b12 = b12 + b22 = 0, we can obtain
solutions of the form u = w and θ = 0. These solutions are undamped and do not decay to zero. These are
very particular cases, but we will see that there are some other cases where the solutions decay, but the decay
is not so fast to be controlled by an exponential. Our main result is to obtain conditions for the coefficients of
the system (1.2) to ensure the exponential stability as well as the analyticity of the semigroup associated with
(1.2)–(1.4). We want to emphasize that we follow the same line of reasoning adopted in the papers [1,2] and
[14].

This paper is organized as follows. Section 2 outlines briefly the notation, and the well-posedness of the
system is established. In Sect. 3, we show the exponential stability of the corresponding semigroup provided
that certain conditions are guaranteed. In Sect. 4, we deal with the analyticity of the semigroup. In Sect. 5, we
show some conditions where we have the lack of exponential stability of the semigroup. Finally, throughout
this paper, C is a generic constant, not necessarily the same at each occasion (it will change from line to line),
which depends in an increasing way on the indicated quantities.

2 The existence of the global solution

In this Section, we use the semigroup approach to show the well-posedness of system (1.2)–(1.4). In the
standard L2(0, L) space, the scalar product and norm are denoted by

〈ϕ, ψ〉L2(0, L) =
L∫

0

ϕ ψ dx, ‖ϕ‖2
L2(0, L) =

L∫

0

|ϕ|2 dx .

We have the Poincaré inequality

‖ϕ‖2
L2(0, L) ≤ CP ‖ϕx‖2

L2(0, L) ∀ ϕ ∈ H1
0 (0, L)

where CP is the Poincaré constant.
We introduce the face space H = H1

0 (0, L) × H1
0 (0, L) × L2(0, L) × L2(0, L) × L2(0, L) equipped

with the inner product given by

〈(u1, w1, v1, η1, θ1), (u2, w2, v2, η2, θ2)〉H =
L∫

0

(a11 u1x u2x + a22w1x w2x ) dx + c

L∫

0

θ1 θ2 dx

+
L∫

0

a12 (u1x w2x + w1x u2x ) dx + α

L∫

0

(u1 − w1) (u2 − w2) dx + ρ1

L∫

0

v1 v2 dx + ρ2

L∫

0

η1 η2 dx .

and the norm induced ‖ · ‖H. We can easily show that the norm ‖ · ‖H is equivalent to the usual norm in H.
We also consider the linear operator A : D(A) ⊂ H → H

A

⎛

⎜⎜
⎜
⎝

u
w
v
η
θ

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎝

v
η

1
ρ1
(a11 u + a12w + b11 v + b12 η + k1 θ)xx − α

ρ1
(u − w)− α1

ρ2
(v − η)+ β1

ρ1
θ

1
ρ2
(a12 u + a22w + b12 v + b22 η + k2 θ)xx + α

ρ1
(u − w)+ α1

ρ2
(v − η)+ β2

ρ2
θ

1
c (κ θ − k1 v − k2 η)xx − β1

c v − β2
c η

⎞

⎟
⎟⎟
⎟⎟
⎠

whose domain D(A) is the subspace of H consisting of vectors (u, v, w, η, θ) such that

v, η, θ ∈ H1
0 (0, L),

κ θ − k1 v − k2 η ∈ H2(0, L),

a11 u + a12w + b11 v + b12 η + k1 θ ∈ H2(0, L),

a12 u + a22w + b12 v + b22 η + k2 θ ∈ H2(0, L).
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Taking ut = v and wt = η, (1.2)–(1.4) can be reduced to the following abstract initial value problem for a
first-order evolution equation:

d

dt
U (t) = AU (t), U (0) = U0, ∀ t > 0

with U (t) = (u, w, ut , wt , θ)
T and U0 = (u0, w0, u1, w1, θ0)

T .
First, we show that the operator A generates a C0-semigroup of contractions on the space H.

Proposition 2.1 The operator A generates a C0-semigroup SA(t) of contractions on the space H.
Proof We will show that A is a dissipative operator and 0 belongs to the resolvent set of A, denoted by ρ(A).
Then, our conclusion will follow using the well-known Lumer–Phillips theorem (see [11]). We observe that if
U = (u, w, v, η, θ) ∈ D(A), then

〈AU, U 〉H = a11

L∫

0

vx ux dx + a12

L∫

0

vx wx dx + α

L∫

0

v u dx − α

L∫

0

v w dx

+ a12

L∫

0

ηx ux dx + a22

L∫

0

ηx wx dx − α

L∫

0

η u dx + α

L∫

0

ηw dx

−
L∫

0

(a11 u + a12w + b11 v + b12 η + k1 θ)x vx dx − α

L∫

0

(u − w) v dx

−α1

L∫

0

(v − η) v dx + β1

L∫

0

θ v dx + α

L∫

0

(u − w) η dx + α1

L∫

0

(v − η) η dx

−
L∫

0

(a12 u + a22w + b12 v + b22 η + k2 θ)x ηx dx + β2

L∫

0

θ η dx

−β1

L∫

0

v θ dx − β2

L∫

0

η θ dx −
L∫

0

(κ θ − k1 v − k2 η)x θ x dx .

Taking the real part of the above equality, we obtain

Re 〈AU, U 〉H = − b11 ‖vx‖2
L2(0, L) − b22 ‖ηx‖2

L2(0, L)

−2 b12 Re

L∫

0

vx ηx dx − α1 ‖v − η‖2
L2(0, L) − κ ‖θx‖2

L2(0, L).

Case I The matrix B is positive definite. In this case, we get

Re 〈AU, U 〉H ≤ − κ ‖θx‖2
L2(0, L) − det B

2 b22
‖vx‖2

L2(0, L) − det B

2 b11
‖ηx‖2

L2(0, L)

− α1 ‖v − η‖2
L2(0, L) ≤ 0. (2.1)

Case II The matrix B is non-negative definite.
(a) b11 > 0 implies b22 = b2

12/b11. Then,

Re 〈AU, U 〉H = − κ ‖θx‖2
L2(0, L) − 1

b11
‖b11 vx + b12 ηx‖2

L2(0, L)

−α1 ‖v − η‖2
L2(0, L) ≤ 0. (2.2)
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(b) b11 = 0 implies b12 = 0. Then,

Re 〈AU, U 〉H = − κ ‖θx‖2
L2(0, L) − b22 ‖ηx‖2

L2(0, L) − α1 ‖v − η‖2
L2(0, L) ≤ 0. (2.3)

Therefore, it results in the three cases that A is dissipative.

On the other hand, we have that 0 ∈ ρ(A). In fact, given F = ( f, g, h, p, q) ∈ H, we must show that
there exists a unique U = (u, w, v, η, θ) in D(A) such that

v = f, η = g in H1
0 (0, L),

(a11 u + a12w + b11 v + b12 η + k1 θ)xx − α (u − w)− α1 (v − η)+ β1 θ = ρ1 h in L2(0, L),

(a12 u + a22w + b12 v + b22 η + k2 θ)xx + α (u − w)+ α1 (v − η)+ β2 θ = ρ2 p in L2(0, L),

(κ θ − k1 v − k2η)xx − β1 v − β2 η = c q in L2(0, L).

Consider v = f and η = g. It is known that there is a unique θ ∈ H1
0 (0, L) satisfying

(κ θ − k1 v − k2 η)xx = c q + β1 f + β2 g ∈ L2(0, L).

It follows using the Lax–Milgram theorem that there exists a unique vector function (u, w) ∈ H1
0 (0, L) ×

H1
0 (0, L) such that

(a11 u + a12w + b11 v + b12 η + k1 θ)xx − α (u − w) = ρ1 h + α1 (v − η)− β1 θ ∈ L2(0, L).
(a12 u + a22w + b12 v + b22 η + k2 θ)xx + α (u − w) = ρ2 p − α1 (v − η)− β2 θ ∈ L2(0, L).

Moreover, it is easy to show that ‖U‖H ≤ C ‖F‖H for a positive constant C. Therefore, we conclude that
0 ∈ ρ (A) .
Theorem 2.2 For any U0 ∈ H, there exists a unique solution U (t) = (u, w, ut , wt , θ) of (1.2)–(1.4)
satisfying

u, w ∈ C([0, ∞[: H1
0 (0, L)) ∩ C1([0, ∞[: L2(0, L)),

θ ∈ C([0, ∞[: L2(0, L)) ∩ L2(]0, ∞[: H1
0 (0, L)).

If U0 ∈ D(A), then

u, w ∈ C1([0, ∞[: H1
0 (0, L)) ∩ C2([0, ∞[: L2(0, L)),

a11 u + a12w + b11 ut + b12wt + k1 θ ∈ C([0, ∞[: H2(0, L)),

a12 u + a22w + b12 ut + b22wt + k2 θ ∈ C([0, ∞[: H2(0, L)),

θ ∈ C([0, ∞[: H1
0 (0, L)) ∩ C1([0, ∞[: L2(0, L)).

κ θ − k1 ut − k2wt ∈ C([0, ∞[: H2(0, L)).

3 Exponential stability

Our main tool is the following theorem established in Gearhart [4] (see also Huang [5] and Prüss [12]).

Theorem 3.1 Let S(t) be a C0-semigroup of contractions of linear operators on the Hilbert space H with
infinitesimal generator A. Then, S(t) is exponentially stable if and only if

(i) i R ⊂ ρ(A);
(ii) lim sup|λ|→∞

∥∥(i λ I − A)−1
∥∥L(H) < ∞

where L(H) denotes the space of continuous linear functions in H.
Our starting point to show the exponential stability is the following Lemma:

Lemma 3.2 Suppose that only one of the items holds

(a) B is positive definite;
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(b) B is non-negative definite and
(b.1) b12 �= −b11 or b12 �= − b22;
(b.2) b12 = − b11 = − b22, β1 = −β2 and k1 �= − k2;
(b.3) b12 = − b11 = − b22, ρ2 (a11 + a12) �= ρ1 (a12 + a22);
(b.4) b12 = − b11 = − b22, β1 = � k1, β2 = � k2, � �= 0 and � < 1

CP
, and k1 �= − k2.

Then, i R ⊂ ρ (A).
Proof We show this result by a contradiction argument. Following the arguments given in Liu and Zheng [9],
the proof consists of the following steps:

Step 1 Since 0 ∈ ρ(A), for any real number λ with ‖λA−1‖ < 1, the linear bounded operator (i λA−1 − I )
is invertible; therefore, i λ I − A = A (i λA−1 − I ) is invertible and its inverse belongs to L(H),
that is, i λ ∈ ρ(A). Moreover, ‖(i λ I − A)−1‖ is a continuous function of λ in the interval(− ‖A−1‖−1, ‖A−1‖−1

)
.

Step 2 If sup
{‖(i λ I − A)−1‖ : |λ| < ‖A−1‖−1

} = M < ∞, then for |λ0| < ‖A−1‖−1 and λ ∈ R such
that |λ− λ0| < M−1, we have ‖(λ− λ0) (i λ0 I − A)−1‖ < 1. Therefore, the operator

i λ I − A = (i λ0 I − A) (I + i (λ− λ0) (i λ0 I − A)−1)

is invertible with its inverse in L(H), that is, i λ ∈ ρ(A). Since λ0 is arbitrary, we can conclude that{
i λ : |λ| < ‖A−1‖−1 + M−1

} ⊂ ρ(A) and the function ‖(i λ I −A)−1‖ is continuous in the interval(− ‖A−1‖−1 − M−1, ‖A−1‖−1 + M−1
)
.

Step 3 Thus, it follows by item (ii) that if i R ⊂ ρ(A) is not true, then there exists ω ∈ R with ‖A−1‖−1 ≤ |ω|
such that {i λ : |λ| < |ω|} ⊂ ρ(A) and sup

{‖(i λ I − A)−1‖ : |λ| < |ω|} = ∞. Therefore, there
exists a sequence of real numbers (λν)ν∈N with λν → ω as ν → ∞ and |λν | < |ω|, for all ν ∈ N, and
sequences of vector functions Uν = (uν, wν, vν, ην, θν) ∈ D(A), Fν = ( fν, gν, hν, pν, qν) ∈ H,
such that (i λν I − A)Uν = Fν and ‖Uν‖H = 1, for all ν ∈ N, and Fν → 0 in H when ν → ∞, that
is,

i λν uν − vν = fν −→ 0 in H1
0 (0, L),

(3.1)
i λν wν − ην = gν −→ 0 in H1

0 (0, L),

i λν ρ1 vν − (a11 uν + a12wν + b11 vν + b12 ην + k1 θν)xx + α (uν − wν)

+ α1 (vν − ην)− β1 θν = ρ1 hν −→ 0 in L2(0, L), (3.2)

i λν ρ2 ην − (a12 uν + a22wν + b12 vν + b22 ην + k2 θν)xx − α (uν − wν)

− α1 (vv − ηv)− β2 θv = ρ2 pν −→ 0 in L2(0, L), (3.3)

i λν c θv + β1 vν + β2 ην − (κ θν − k1 vν − k2 ην)xx = c qv −→ 0 in L2(0, L). (3.4)

We observe that Re 〈(i λν I − A)Uν, Uν〉H → 0 as ν → ∞.

(a) If det B > 0, it follows from (2.1) that

‖θνx‖2
L2(0, L) + ‖vνx‖2

L2(0, L) + ‖ηνx |2L2(0, L) −→ 0 as ν → ∞.

From (3.1) we obtain

‖uνx‖2
L2(0, L) + ‖wνx‖2

L2(0, L) −→ 0 as ν −→ ∞.

Thus, lim
ν→∞ ‖Uν‖H = 0 and we have a contradiction.

(b)–(b.1) If det B = 0 and b11 > 0, then it follows from (2.2) that

‖θνx‖2
L2(0, L) + ‖vν − ην‖2

L2(0, L) + ‖(b11 vν + b12 ην)x‖2
L2(0, L) −→ 0 as ν → ∞. (3.5)

Thus, θν → 0 and b11 vν + b12 ην → 0 in H1
0 (0, L). Since (uν)ν∈N and (wν)ν∈N are bounded sequences in

H1
0 (0, L), there exist subsequences, still denoted by (uν)ν∈N, (wν)ν∈N, such that uν → u and wν → w
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in L2(0, L). From (3.1), we have that vν → v, ην → η, vν − ην → v − η, b11 vν + b12 ην → b11 v + b12 η
in L2(0, L). It results from (3.5) that

v = η and b11 v + b12 η = 0. (3.6)

Since b12 �= −b11, we have that v = η = 0. It follows from (3.1) that u = w = 0. On the other hand, we can
conclude from (3.2), (3.3) that

(a11 uν + a12wν + b11 vν + b12wν)ν∈N and (a12 uν + a22wν + b12 vν + b22wν)ν∈N (3.7)

converge to zero in H1
0 (0, L). Therefore, from (3.5), we obtain that

a11 uν + a12wν → 0 and a12 uν + a22wν → 0 in H1
0 (0, L).

Since (ai j ) is positive definite, it follows that uν → 0, wν → 0 in H1
0 (0, L). Thus, we have a contradiction

and the result follows. If b11 = 0 then b22 > 0, and we can use similar manipulations.
(b)–(b.2) Suppose that b12 = − b11 = − b22 and β1 = −β2. Multiplying (3.4) by κ1 vν + κ2 ην , we have

〈i λν c θν, k1 vν + k2 ην〉L2(0, L) + 〈β1 vν + β2 ην, k1 vν + k2 ην〉L2(0, L)

+ κ 〈θνx , (k1 vν + k2 ην)x 〉L2(0, L) − ‖(k1 vν + k2 ην)x‖2
L2(0, L) = 〈c qν, k1 vν + k2 ην〉L2(0, L).

Using the Cauchy–Schwartz inequality

1

2
‖(k1 vν + k2 ην)x‖2

L2(0, L) ≤ ‖c qν‖L2(0, L)‖k1 vν

+ k2 ην‖L2(0, L) + |λν |‖c θν‖L2(0, L)‖k1 vν + k2 ην‖L2(0, L)

+ |β1| ‖vν − ην‖L2(0, L)‖k1 vν + k2 ην‖L2(0, L) + κ2 ‖θνx‖2
L2(0, L),

since the sequence (k1 vν + k2 ην)ν∈N is bounded in L2(0, L), and using (3.5), we conclude that

k1 vν + k2 ην −→ 0 in H1
0 (0, L).

Hence, k1 v + k2 η = 0. Since k1 �= −k2, we have from (3.6) that v = η = 0. We can use similar arguments
to show that u = w = 0 and limν→∞ ‖Uν‖H = 0.

(b)–(b.3) Similarly, we get that the sequences given in (3.7) converge in H1
0 (0, L). Using again (3.5),

we obtain that (a11 uν + a12wν)ν∈N and (a12 uν + a22wν)ν∈N converge in H1
0 (0, L). We can conclude that

uν → u, wν → w, vν → v and ην → η in H1
0 (0, L). From (3.6), we have v = η, and from (3.1) u = w.

Therefore, from (3.2), (3.3) we have

−ω2 u − a11 + a12

ρ1
uxx = 0 and − ω2 u − a12 + a22

ρ2
uxx = 0.

Since (a11 + a12)/ρ1 �= (a12 + a22)/ρ2, we conclude that u = 0 and hence w = v = η = 0. The result
follows.

(b)–(b.4). From (3.4), we have

〈i λν c θν, k1 vν + k2 ην〉L2(0, L) + � ‖k1 vν + k2 ην‖2
L2(0, L) + κ 〈θνx , (k1 vν + k2 ην)x 〉L2(0, L)

− ‖(k1 vν + k2 ην)x‖2
L2(0, L) = 〈c qν, k1 vν + k2 ην〉L2(0, L).

If � < 0, then

(− �) ‖k1 vν + k2 ην‖2
L2(0, L) + 1

2
‖(k1 vν + k2 ην)x‖2

L2(0, L)

≤ ‖c qν‖L2(0, L)‖k1 vν + k2 ην‖L2(0, L) + |λν | ‖c θν‖L2(0, L) ‖k1 vν

+ k2 ην‖L2(0, L) + κ2 ‖θνx‖2
L2(0, L).



152 M. S. Alves et al.

If 0 < � < 1
CP
, then

(− � CP + 1) ‖(k1 vν + k2 ην)x‖2
L2(0, L) ≤ ‖c qν‖L2(0, L)‖k1 vν + k2 ην‖L2(0, L)

+ |λν | ‖c θν‖L2(0, L) ‖k1 vν + k2 ην‖L2(0, L) + κ ‖θνx ‖L2(0, L) ‖(k1 vν + k2 ην)x‖L2(0, L).

Therefore, k1 vν + k2 ην → 0 in H1
0 (0, L) and k1 v + k2 η = 0. Since v = η and k1 �= − k2, we have that

v = η = 0. We can use similar arguments to show that limν→∞ ‖Uν‖H = 0. In the next theorem, we will
consider only the case in which the matrix B is non-negative definite. However, in the next Section, we will
prove that when B is positive definite, the semigroup SA(t) is analytic and therefore it is exponentially stable.

Theorem 3.3 Suppose that B is non-negative definite and at least one of the following items occurs:

(a) b12 �= − b11 or b12 �= − b22;
(b) b12 = − b11 = − b22

(b.1) β1 = −β2 and k1 �= − k2;
(b.2) (β1, β2) = � (k1, k2), � �= 0 and � < 1

CP
, and k1 �= − k2;

(b.3) ρ2 (a11 + a12) �= ρ1 (a12 + a22).

Then, SA(t) is exponentially stable, that is, there exist two positive constants M > 1 and μ such that

‖SA(t)‖L(H) ≤ M e−μ t for every t ≥ 0.

Proof From Theorem 3.1 and Lemma 3.2, it is sufficient to prove that (ii) is true. Given λ ∈ R and
F = ( f, g, h, p, q) ∈ H, let U = (u, w, v, η, θ) ∈ D(A) be the solution of (i λ I − A)U = F, that
is,

i λ u − v = f in H1
0 (0, L), (3.8)

i λw − η = g in H1
0 (0, L), (3.9)

i λ ρ1 v − (a11 u + a12w + b11 v + b12 η + k1θ)xx

+ α (u − w)+ α1 (v − η)− β1 θ = ρ1 h in L2(0, L), (3.10)

i λ ρ2 η − (a12 u + a22w + b12 v + b22 η + k2 θ)xx

− α (u − w)− α1 (v − η)− β2 θ = ρ2 p in L2(0, L), (3.11)

i λ c θ + β1 v + β2 η − (κθ − k1 v − k2 η)xx = c q in L2(0, L). (3.12)

If det B = 0 and b11 > 0 (the other case is similarly analyzed), it follows from (2.2) that

Re 〈(i λ I − A)U, U 〉H = κ ‖θx‖2
L2(0, L) + 1

b11
‖b11 vx + b12 ηx‖2

L2(0, L) + α1 ‖v − η‖2
L2(0, L). (3.13)

On the other hand, taking the real part of the H-inner product between (i λ I − A)U = F and U , we have

Re 〈(i λ I − A)U, U 〉H = Re〈F, U 〉H. (3.14)

Replacing (3.13) into the left-hand side of (3.14), then it follows that there exists a positive constant such that

‖θx‖2
L2(0, L) + ‖(b11 v + b12 η)x‖2

L2(0, L) + ‖v − η‖2
L2(0, L) ≤ C ‖F‖H‖U‖H . (3.15)
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Taking the inner product of (3.10) with u and (3.11) with w, using (3.8), (3.9), we obtain

a11

L∫

0

|ux |2 dx + a12

L∫

0

wx ux dx +
L∫

0

(b11 v + b12 η)x ux dx + k1

L∫

0

θx ux dx

+α
L∫

0

(u − w) u dx + α1

L∫

0

(v − η) u dx − β1

L∫

0

θ u dx = ρ1

L∫

0

h u dx + ρ1

L∫

0

v (v + f ) dx,

a22

L∫

0

|wx |2 dx + a12

L∫

0

ux wx dx +
L∫

0

(b12 v + b22 η)x wx dx + k2

L∫

0

θx wx dx

−α
L∫

0

(u − w)w dx − α1

L∫

0

(v − η)w dx − β2

L∫

0

θ w dx = ρ2

L∫

0

pw dx + ρ2

L∫

0

η (η + g) dx .

Adding these equalities, using the Young and Cauchy–Schwartz inequalities and performing straightforward
calculations, we obtain

det A

2 a22

L∫

0

|ux |2 dx + det A

2 a11

L∫

0

|wx |2 dx

≤ ρ1

L∫

0

|v|2 dx + ρ2

L∫

0

|η|2 dx + α1

L∫

0

|v − η| |u − w| dx

+ C

⎛

⎝
L∫

0

|θx |2 dx

⎞

⎠

1/2 ⎡

⎢
⎣

⎛

⎝
L∫

0

|ux |2 dx

⎞

⎠

1/2

+
⎛

⎝
L∫

0

|wx |2 dx

⎞

⎠

1/2⎤

⎥
⎦

+
L∫

0

|(b11 v + b12 η)x | |ux | dx + ρ1

L∫

0

|v| | f | dx + ρ1

L∫

0

|h| |u| dx

+
L∫

0

|(b12 v + b22 η)x | |wx | dx + ρ2

L∫

0

|η| |g| dx + ρ2

L∫

0

|p| |w| dx . (3.16)

(a) From (3.15) and using that b12 �= −b11, we have

‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) ≤ C ‖F‖H ‖U‖H . (3.17)

It follows from (3.15), (3.16) and (3.17) that

‖ux‖2
L2(0, L) + ‖wx‖2

L2(0, L) ≤ C ‖F‖H ‖U‖H . (3.18)

Therefore, from (3.15), (3.17) and (3.18), we conclude that

‖(i λ I − A)−1 F‖H ≤ C ‖F‖H ∀ λ ∈ R. (3.19)

(b)–(b.1) Taking the inner product in L2(0, L) of (3.12) by k1 v + k2 η and using the Gauss Theorem we
obtain

L∫

0

|(k1 v + k2 η)x |2 dx = i λ c

L∫

0

θ (k1 v + k2 η) dx + κ

L∫

0

θx (k1 v + k2 η)x dx

+
L∫

0

(β1 v + β2 η) (k1 v + k2 η) dx − c

L∫

0

q (k1 v + k2 η) dx .
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Using the Young and Cauchy–Schwartz inequalities, there exists a positive constant C such that

L∫

0

|(k1 v + k2 η)x |2 dx ≤ C

∣
∣∣
∣∣
∣

L∫

0

θ λ i (k1 v + k2 η) dx

∣
∣∣
∣∣
∣
+ C

L∫

0

|θx |2 dx

+ C

L∫

0

|β1 v + β2 η|2 dx + C ‖F‖H‖U‖H .

From (3.15), we obtain that

L∫

0

|(k1 v + k2 η)x |2 dx ≤ C

∣
∣∣
∣∣∣

L∫

0

θ λ i (k1 v + k2 η) dx

∣
∣∣
∣∣∣
+ C ‖F‖H ‖U‖H . (3.20)

On the other hand, multiplying the Eqs. (3.10) by k1/ρ1, (3.11) by k2/ρ2 and adding the result,
we obtain

i λ (k1 v + k2 η) = −α
(

k1

ρ1
− k2

ρ2

)
(u − w)− α1

(
k1

ρ1
− k2

ρ2

)
(v − η)+

(
k1β1

ρ1
+ k2 β2

ρ2

)
θ

+ k1 h + k2 p + k1

ρ1
(a11 u + a12w + b11 v + b12 η + k1 θ)xx

+ k2

ρ2
(a12 u + a22w + b12 v + b22 η + k2 θ)xx in L2(0, L). (3.21)

Taking the inner product of θ with i λ (k1 v + k2 η) in L2(0, L), using that b11 = b22 = − b12,
(3.21) and the Gauss Theorem, it follows that

L∫

0

θ i λ (k1 v + k2 η) dx = −
L∫

0

[(
k1

ρ1
a11 + k2

ρ2
a12

)
θx ux +

(
k1

ρ1
a12 + k2

ρ2
a22

)
θx wx

]
dx

− b11

(
k1

ρ1
− k2

ρ2

) L∫

0

θx (vx − ηx ) dx −
L∫

0

θ (k1 h + k2 p) dx

+
(

k1 β1

ρ1
+ k2 β2

ρ2

) L∫

0

|θ |2 dx −
(

k2
1

ρ1
+ k2

2

ρ2

) L∫

0

|θx |2 dx

− α

(
k1

ρ1
− k2

ρ2

) L∫

0

θ (u − w) dx − α1

(
k1

ρ1
− k2

ρ2

) L∫

0

θ (v − η) dx .

Then, from (3.15), we have
∣
∣∣
∣∣
∣

L∫

0

θ λ i (k1 v + k2 η) dx

∣
∣∣
∣∣
∣
≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖F‖H‖U‖H .

(3.22)

Substituting (3.22) in (3.20) yields

‖(k1 v + k2 η)x‖2
L2(0, L) ≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖F‖H‖U‖H .

Using the Poincaré inequality, we obtain

‖k1 v + k2 η‖2
L2(0, L) ≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖F‖H‖U‖H .
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Since k1 �= − k2 and from (3.15), we conclude that

‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) ≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖F‖H‖U‖H .

(3.23)

Substituting (3.23) in (3.16) we obtain (3.18). Using (3.18) in (3.23), we get (3.17). Therefore,
(3.19) holds.

(b)–(b.2) Taking the inner product in L2(0, L) of (3.12) with k1 v + k2 η, using the Gauss Theorem and the
fact that (β1, β2) = � (k1, k2), we obtain

(− �)
L∫

0

|k1 v + k2 η|2 dx +
L∫

0

|(k1 v + k2 η)x |2 dx

= i λ c

L∫

0

θ (k1 v + k2 η) dx + κ

L∫

0

θx (k1 v + k2 η)x dx − c

L∫

0

q (k1 v + k2 η) dx .

Therefore if � < 0,

(− �)
L∫

0

|k1 v + k2 η|2 dx + 1

2

L∫

0

|(k1 v + k2 η)x |2 dx

≤ C

∣∣∣
∣∣
∣

L∫

0

θ λ i (β1 v + β2 η) dx

∣∣∣
∣∣
∣
+ C ‖F‖H‖U‖H .

If 0 < � < 1
CP

, then

(− � CP + 1)

L∫

0

|(k1 v + k2 η)x |2 dx

≤ C

∣∣
∣∣
∣∣

L∫

0

θ λ i (β1 v + β2 η) dx

∣∣
∣∣
∣∣
+ C ‖F‖H‖U‖H .

From (3.22), we conclude that

L∫

0

|(k1 v + k2 η)x |2 dx ≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖U‖H ‖F‖H.

Since k1 �= − k2, we obtain

‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) ≤ C ‖θx‖L2(0, L)

(‖ux‖L2(0, L) + ‖wx‖L2(0, L)

)+ C ‖U‖H ‖F‖H.

Similarly, we obtain (3.19).
(b)–(b.3) From (3.15) we have

‖θx‖2
L2(0, L) + ‖vx − ηx‖2

L2(0, L) + ‖v − η‖2
L2(0, L) ≤ C ‖U‖H ‖F‖H, (3.24)

for a positive constant C. Hence, from (3.24) we obtain

‖ux − wx‖2
L2(0, L) ≤ C ‖U‖H ‖F‖H |λ| > 1. (3.25)
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Taking the inner product of

i λ (v − η)−
[(

a11

ρ1
− a12

ρ2

)
u +

(
a12

ρ1
− a22

ρ2

)
w +

(
b11

ρ1
− b12

ρ2

)
v +

(
b12

ρ1
− b22

ρ2

)
η

+
(

k1

ρ1
− k2

ρ2

)
θ

]

xx
+
(
α

ρ1
− α

ρ2

)
(u − v)+

(
α1

ρ1
− α1

ρ2

)
(v − η)−

(
β1

ρ1
− β2

ρ2

)
θ = h − p

with
(

a11
ρ1

− a12
ρ2

)
u +

(
a12
ρ1

− a22
ρ2

)
w and using that i λ (u + w) = (v + η)+ ( f + g), we get

L∫

0

∣
∣∣
∣

(
a11

ρ1
− a12

ρ2

)
ux +

(
a12

ρ1
− a22

ρ2

)
wx

∣
∣∣
∣

2

dx

≤ b11

(
1

ρ1
+ 1

ρ2

) L∫

0

∣∣
∣∣

(
a11

ρ1
− a12

ρ2

)
ux +

(
a12

ρ1
− a22

ρ2

)
wx

∣∣
∣∣ | vx − ηx | dx

+ α

(
1

ρ1
+ 1

ρ2

) L∫

0

|u − w|
∣∣∣
∣

(
a11

ρ1
− a12

ρ2

)
u +

(
a12

ρ1
− a22

ρ2

)
w

∣∣∣
∣ dx

+α1

(
1

ρ1
+ 1

ρ2

) L∫

0

|v − η|
∣
∣∣
∣

(
a11

ρ1
− a12

ρ2

)
u +

(
a12

ρ1
− a22

ρ2

)
w

∣
∣∣
∣ dx

+
L∫

0

|v − η|
∣∣
∣∣

(
a11

ρ1
− a12

ρ2

)
v +

(
a12

ρ1
− a22

ρ2

)
η

∣∣
∣∣ dx

+
L∫

0

|v − η|
∣
∣∣
∣

(
a11

ρ1
− a12

ρ2

)
f +

(
a12

ρ1
− a22

ρ2

)
g

∣
∣∣
∣ dx

+
∣
∣∣∣
k1

ρ1
− k2

ρ2

∣
∣∣∣

L∫

0

|θx |
∣
∣∣∣

(
a11

ρ1
− a12

ρ2

)
ux +

(
a12

ρ1
+ a22

ρ2

)
wx

∣
∣∣∣ dx

+
∣∣
∣∣
β1

ρ1
− β2

ρ2

∣∣
∣∣

L∫

0

|θ |
∣∣
∣∣

(
a11

ρ1
− a12

ρ2

)
u +

(
a12

ρ1
+ a22

ρ2

)
w

∣∣
∣∣ dx

+
L∫

0

|h − p|
∣
∣∣
∣

(
a11

ρ1
+ a12

ρ2

)
u +

(
a12

ρ1
− a22

ρ2

)
w

∣
∣∣
∣ dx .

Using the Cauchy–Schwartz and Young inequalities, we obtain

‖(ρ2a11 − ρ1a12) ux + (ρ2 a12 − ρ1 a22) wx‖2
L2(0, L)

≤ C
(‖v − η‖L2(0, L) ‖U‖H + ‖U‖H ‖F‖H

) |λ| > 1, C > 0.

By hypothesis, from (3.25) and the last estimate, we have

‖ux‖2
L2(0, L) + ‖wx‖2

L2(0, L) ≤ C
(‖v − η‖L2(0, L) ‖U‖H + ‖U‖H ‖F‖H

) |λ| > 1, C > 0.

(3.26)
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Now, taking the inner product in L2(0, L) of (3.10) with u, (3.11) with w and using (3.8), (3.9),
we obtain

L∫

0

|v|2 dx = a11

ρ1

L∫

0

|ux |2 dx + α

ρ1

L∫

0

|u|2 dx + a12

ρ1

L∫

0

wx ux dx − α

ρ1

L∫

0

w u dx

− β1

ρ1

L∫

0

θ u dx −
L∫

0

v f dx −
L∫

0

h u dx + 1

ρ1

L∫

0

(b11 vx + b12 ηx )ux dx

+ α1

ρ1

L∫

0

v u dx − α1

ρ1

L∫

0

η u dx + k1

L∫

0

θx ux dx (3.27)

and

L∫

0

|η|2 dx = a12

ρ2

L∫

0

ux wx dx − α

ρ2

L∫

0

uw dx + a22

ρ2

L∫

0

|wx |2 dx + α

ρ2

L∫

0

|w|2 dx

− β2

ρ2

L∫

0

θ w dx −
∫ L

0
η g dx −

L∫

0

pw dx + 1

ρ2

L∫

0

(b12 vx + b22 ηx ) wx dx

− α1

ρ1

L∫

0

v w dx + α1

ρ1

L∫

0

ηw dx + k2

L∫

0

θx ux dx . (3.28)

Combining (3.24), (3.26), (3.27) and (3.28) yields

‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) ≤ C
(‖ v − η‖L2(0, L) ‖U‖H + ‖U‖H ‖F‖H

) |λ| > 1, C > 0.

The last estimate together with (3.16) implies

‖ux‖2
L2(0, L) + ‖wx‖2

L2(0, L) ≤ C
(‖ v − η‖L2(0, L) ‖U‖H + ‖U‖H ‖F‖H

)
.

Therefore, there exists a positive constant C such that

‖U‖2
H ≤ C

(‖ v − η‖L2(0, L) ‖U‖H + ‖U‖H ‖F‖H
) |λ| > 1.

From (3.24)

‖(i λ I − A)−1 F‖H ≤ C ‖F‖H |λ| > 1.

The result follows.

4 Analyticity

In this Section, we will show that the semigroup SA(t) is analytic. In order to show this, our main tool will be
the following theorem whose proof can be found in Liu and Zheng [9].

Theorem 4.1 Let S(t) be a C0-semigroup of contractions of linear operators in a Hilbert space H with
infinitesimal generator A. Suppose that i R ⊂ ρ(A). Then, S(t) is analytic if and only if

lim sup
|λ|→∞

‖λ (i λ I − A)−1‖L(H) < ∞. (4.1)
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From Lemma 3.2, we have that the imaginary axis is contained in ρ(A). Thus, in order to prove that the
semigroup SA(t) is analytic it remains to show (4.1). With this aim, in the next theorems of this Section,
we will show that there is a positive constant C, independent on λ, such that

|λ| ‖(i λ I − A)−1‖H ≤ C ∀ λ ∈ R.

Theorem 4.2 Suppose that B is positive definite. Then, the semigroup SA(t) is analytic.

Proof Given λ ∈ R and F = ( f, g, h, p, q) ∈ H, let U = (u, w, v, η, θ) ∈ D(A) be the solution of
(i λ I − A)U = F, that is,

i λ u − v = f in H1
0 (0, L), (4.2)

i λw − η = g in H1
0 (0, L), (4.3)

i λ ρ1 v − (a11 u + a12w + b11 v + b12 η + k1 θ)xx

+ α (u − w)+ α1 (v − η)− β1 θ = ρ1 h in L2(0, L), (4.4)

i λ ρ2 η − (a12 u + a22w + b12 v + b22 η + k2 θ)xx

− α (u − w)− α1 (v − η)− β2 θ = ρ2 p in L2(0, L), (4.5)

i λ c θ + β1 v + β2 η − (κθ − k1 v − k2 η)xx = c q in L2(0, L). (4.6)

It results from

Re 〈(i λ I − A)U, U 〉H = Re 〈F, U 〉H (4.7)

and (2.1) that

‖θx‖2
L2(0, L) + ‖vx‖2

L2(0, L) + ‖ηx‖2
L2(0, L) + ‖v − η‖L2(0, L) ≤ C ‖F‖H‖U‖H (4.8)

for a positive constant C. From (3.16) and Young’s inequality, there exists a positive constant C such that

‖ux‖2
L2(0, L) + ‖wx‖2

L2(0, L) + ‖u − w|2L2(0, L) ≤ C ‖(b11 v + b12 η)x‖2
L2(0, L)+ C ‖(b12 v + b22 η)x‖2

L2(0, L)

+‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) + C ‖F‖H‖U‖H + C ‖v − η‖2
L2(0, L).

From (4.8), we get

‖U‖H ≤ C ‖F‖H (4.9)

for a positive constant C. On the other hand, since Im〈(i λ I − A)U, U 〉H = Im〈F, U 〉H, we have

λ ‖U‖2
H ≤ | Im〈AU, U 〉H| + ‖U‖H‖F‖H, (4.10)

with

Im〈AU, U 〉H = 2 i a11 Im

L∫

0

vx ux dx + 2 i a12 Im

L∫

0

vx wx dx + 2 i α Im

L∫

0

(v − η) (u − w) dx

+ 2 i a12 Im

L∫

0

ηx ux dx + 2 i a22 Im

L∫

0

ηx wx dx − 2 i β1 Im

L∫

0

θ v dx

− 2 i β2 Im

L∫

0

θ η dx + 2 i k2 Im

L∫

0

θx ηx dx + 2 i k1 Im

L∫

0

θx vx dx . (4.11)

It follows from (4.8), (4.9), (4.10) and (4.11) that there exists a positive constant C such that

λ ‖U‖H ≤ C ‖F‖H ∀ λ ∈ R ⇐⇒ |λ| ‖(i λ I − A)−1‖L(H) ≤ C ∀ λ ∈ R. (4.12)

��
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Theorem 4.3 Suppose that B is non-negative definite and only one of the below items occurs:

(a) (b12 �= −b11 or b12 �= −b22) and (b11k2 �= b12 k1 or b12 k2 �= b22 k1);
(b) b12 = − b11 = − b22

(b.1) β1 = −β2 and k1 �= − k2;
(b.2) (β1, β2) = � (k1, k2), � �= 0 and � < 1

CP
, k1 �= − k2;

(b.3) ρ2 (a11 + a12) �= ρ1 (a12 + a22) and k2 �= − k1.

Then, the semigroup SA(t) is analytic.

Proof Given λ ∈ R and F = ( f, g, h, p, q) ∈ H, let U = (u, w, v, η, θ) ∈ D(A) be the solution of
(4.2)–(4.6) and suppose b11 > 0. It results from (2.2), (4.7) that

‖θx‖2
L2(0, L) + ‖v − η‖2

L2(0, L) + ‖(b11 v + b12 η)x‖2
L2(0, L) ≤ C ‖U‖H‖F‖H. (4.13)

We prove in Theorem 3.3 that there exists a positive constant C such that

‖ux‖2
L2(0, L) + ‖wx‖2

L2(0, L) + ‖v‖2
L2(0, L) + ‖η‖2

L2(0, L) ≤ C ‖F‖H‖U‖H. (4.14)

Taking the inner product of (4.6) with k1 v + k2 η, we obtain

L∫

0

i λ c θ (k1 v + k2 η) dx +
L∫

0

(β1 v + β2 η) (k1 v + k2 η) dx −
L∫

0

(κ θ − k1 v − k2 η)xx (k1 v + k2 η) dx

= c

L∫

0

q (k1 v + k2 η) dx .

Using the Gauss theorem we obtain

− 〈c θ, i λ (k1 v + k2 η)〉L2(0, L) + 〈β1 v + β2 η, k1 v + k2 η〉L2(0, L)

+ κ 〈θx , (k1 v + k2 η)x 〉L2(0, L) − ‖(k1 v + k2 η)x‖2
L2(0, L) = c 〈q, k1 v + k2 η〉L2(0, L).

Using the Young and Cauchy–Schwartz inequalities, we get

‖(k1 v + k2 η)x‖2
L2(0, L) ≤ C ‖U‖H‖F‖H + C ‖β1 v + β2 η‖2

L2(0, L) + C |〈θ, i k1 λ v + i k2 λ η〉L2(0, L)|.
From (4.14), we have

‖(k1 v + k2 η)x‖2
L2(0, L) ≤ C ‖U‖H‖F‖H + C |〈 θ, i k1 λ v + i k2 λη〉L2(0, L)|. (4.15)

From (4.4), (4.5) and performing straightforward calculations, we obtain

〈θ, i k1 λ v + i k2 λ η〉L2(0, L) = − k1a11

ρ1
〈θx , ux 〉L2(0, L) − k1a12

ρ1
〈θx , wx 〉L2(0, L)

− k1

ρ1
〈θx , (b11 v + b12 η)x 〉L2(0, L) − k2 a12

ρ2
〈θx , ux 〉 − k2a22

ρ2
〈θx , wx 〉L2(0, L)

− k2

ρ2
〈θx , (b12 v + b22 η)x 〉L2(0, L) −

(
k2

1

ρ1
+ k2

2

ρ2

)

‖θx‖2
L2(0, L)

− α

(
k1

ρ1
− k2

ρ2

)
〈θ, u − w〉L2(0, L)

− α1

(
k1

ρ1
− k2

ρ2

)
〈θ, v − η〉L2(0, L) +

(
k1β1

ρ1
+ k2 β2

ρ2

)
‖θ‖2

L2(0, L)

+ 〈θ, k1 h + k2 p〉L2(0, L).
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Then from (4.13), (4.14), we get

|〈θ, i k1 λ v + i k2 λ η〉L2(0, L)| ≤ C ‖U‖H‖F‖H,

for a positive constant C. The last estimate together with (4.15) implies

‖(k1 v + k2 η)x‖2
L2(0, L) ≤ C ‖U‖H‖F‖H. (4.16)

(a) Since b11 k1 �= b12 k2, it results from (4.13), (4.16) that

‖vx‖2
L2(0, L) + ‖ηx‖2

L2(0, L) ≤ C ‖U‖H ‖F‖H, (4.17)

for a positive constant C. We conclude from (4.11), (4.13), (4.14) and (4.17) that

|Im〈AU, U 〉H| ≤ C ‖F‖H‖U‖H.

From (4.10), we have

λ ‖U‖2
H ≤ C ‖F‖H‖U‖H.

Following the same reasoning as above, we obtain (4.12). The proof of the item (b) is similar. ��

5 About the lack of exponential stability

In this Section, we will show that there are cases where the lack of exponential stability of the semigroup
occurs. However, we observe that the case

b11 = b22 = − b12, ρ2 (a11 + a12) = (a22 + a12) ρ1, β1 �= −β2 and k1 �= − k2

is not studied in this work.
To show the lack of exponential stability, we will show that the condition (b) of Theorem 4.1 is not true.

To do this, it is sufficient to show the existence of sequences Fν ∈ H, ξν ∈ R such that (Fν)ν∈N is bounded,
|ξν | → ∞ and ‖(i ξν I − A)−1 Fν‖ → ∞ as ν → ∞.

We denote by ϕν ∈ H1
0 (0, L) ∩ H2(0, L) and λν ∈ R the sequences of eigenvectors and eigenvalues,

respectively, of the operator − ∂2
x , that is,

−ϕνxx = λνϕν in (0, L)

with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , λν → ∞ as ν → ∞ and such that the sequence (ϕν)ν∈N is an
orthonormal basis of L2(0, L).

Theorem 5.1 Suppose that b11 = b22 = − b12 and ρ2 (a11 + a12) = (a22 + a12) ρ1. Moreover, assume that
only one of the following items is true:

(a) β1 = −β2 and k1 = − k2;
(b) β1 �= −β2 and k1 = − k2.

Then, SA(t) is not exponentially stable.

Proof First of all, we observe that b11 �= 0 and k1 �= 0.
For each ν ∈ N, we take Fν = (0, 0, a ρ−1

1 ϕν, b ρ−1
2 ϕν, 0) ∈ H, with a, b ∈ R, and we denote by

Uν = (uν, wν, vν, ην, θν) the solution of the resolvent equation

(i λ I − A)Uν = Fν, λ ∈ R. (5.1)
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For each ν ∈ N, the solutions of (5.1) are of the form uν = Aν ϕν, wν = Bν ϕν and θν = Cν ϕν. Thus, we get
the system

vν = i λ uν, ην = i λwν, (5.2)

− ρ1 λ
2 Aν + λν (a11 + i λ b11) Aν + λν (a12 − i λ b11) Bν + λν k1 Cν

+ α (Aν − Bν)+ i α1 λ (Aν − Bν)− β1 Cν = a, (5.3)

− ρ2 λ
2 Bν + λν (a12 − i λ b11) Aν + λν (a22 + i λ b11) Bν + λν k2 Cν

− α (Aν − Bν)− iα1 λ (Aν − Bν)− β2 Cν = b, (5.4)

(i c λ+ κ λν)Cν + i λ (β1 − k1 λν) Aν + i λ (β2 − k2 λν) Bν = 0. (5.5)

Adding (5.3) with (5.4), we get
(

− λ2 + (a11 + a12) λν

ρ1

)
(ρ1 Aν + ρ2 Bν)+ (λν (k1 + k2)− (β1 + β1))Cν = a + b. (5.6)

(a) Substituting a = b = 1, β1 = −β2 and k1 = −k2 in (5.6), we obtain
(

− λ2 + (a11 + a12) λν

ρ1

)
(ρ1 Aν + ρ2 Bν) = 2. (5.7)

Taking λ = ξν =
√

a11+a12
ρ1

λν − 1 in (5.1), it results from (5.7) that

ρ1 Aν + ρ2 Bν = 2,

i.e.,

Aν = τ1 − τ2 Bν with τ1 = 2

ρ1
and τ2 = ρ2

ρ1
. (5.8)

Substituting (5.8) into (5.5), we get

Cν = − i τ1 ξν (β1 − k1 λν)

κ λν + i c ξν
+ i (1 + τ2) ξν (β1 − k1 λν)

κ λν + i c ξν
Bν. (5.9)

Now, substituting (5.8), (5.9) into (5.3), we obtain

Bν = Pν + i Qν

Rν + i Sν

where

Pν = (− 1 + α τ1 + ρ1 τ1) κ λν − κ a12 τ1 λ
2
ν − c α1 τ1 ξ

2
ν − c b11 τ1 ξ

2
ν λν,

Qν = (− c + (α + c) τ1 ρ1 + τ1 β
2
1 ) ξν + (κ α1 τ1 − c τ1 a12 − 2 β1 k1 τ1) ξν λν

+ (κ b11 τ1 + τ1 k2
1) ξν λ

2
ν,

Rν = (τ2 ρ1 + α (1 + τ2)) κ λν − κ(1 + τ2) a12 λ
2
ν − c α1 (1 + τ2) ξ

2
ν − c (1 + τ2) b11 ξ

2
ν λν,

Sν = (c τ2 ρ1 + (1 + τ2) (c α + β2
1 ) ξν + (1 + τ2) (κ α1 − c a12 − 2 β1 k1) ξν λν

+ (1 + τ2) (κ b11 + k2
1) ξν λ

2
ν.

Since

lim
ν→∞ |Bν | = τ1

1 + τ2

it follows

lim
ν→∞ ‖ην‖ = lim

ν→∞ ξν |Bν | = ∞.
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Therefore,

lim
ν→∞ ‖Uν‖H = ∞.

The proof follows.
(b) Substituting a = −β1, b = −β2 and k1 = − k2 in (5.6), we obtain

(
− λ2 + a11 + a12

ρ1
λν

)
(ρ1 Aν + ρ2 Bν)− (β1 + β2)Cν = − (β1 + β2). (5.10)

Taking λ = ξν =
√

a11+a12
ρ1

λν in (5.1), it follows from (5.10) that

Cν = 1. (5.11)

Substituting (5.11) into (5.5), we get

Aν = − c ξν + i κ λν
ξν (β1 − k1 λν)

− β2 + k1 λν

β1 − k1 λν
Bν. (5.12)

We obtain from (5.3)

Aν − Bν = − λν k1

α − a12 λν + i ξν (α1 + b11 λν)
. (5.13)

Substituting (5.12) into (5.13) and performing straightforward calculations, we obtain

Bν = β1 − k1 λν

(β1 + β2)

[− c ξν + i κ λν
ξν (β1 − k1 λν)

+ k1 λν (α − a12 λν − i ξν (α1 + b11 λν))

(α − a12 λν)2 + ξ2
ν (α1 + b11 λν)2

]
.

Therefore,

Im Bν = 1

(β1 + β2)

[
κ
λν

ξν
− k1 ξν λν (α1 + b11 λν) (β1 − k1 λν)

(α − a12 λν)2 + ξ2
ν (α1 + b11 λν)2

]
,

i.e.,

Im Bν = 1

(β1 + β2)

× λν

ξν

[

κ − α1 β1 k1 ξν + b11 β1 k1 ξν λν − α1 k2
1 ξν λν − k2

1 b11 ξν λ
2
ν

α2 ξ−1
ν − 2α a12 λν ξ

−1
ν + a2

12 λ
2
ν ξ

−1
ν + α2

1 ξν + 2 α1 b11 ξν λν + b2
11 ξν λ

2
ν

]

.

Thus,

lim
ν→∞ Im Bν = 1

(β1 + β2)

(

κ + k2
1

b11

)

lim
ν→∞

λν

ξν
= ∞.

Hence, limν→∞ |Bν | = ∞. Therefore,

lim
ν→∞ ‖ην‖2

L2(0, L) = lim
ν→∞

L∫

0

|γν Bν wν |2 dx = lim
ν→∞ |γν Bν | = ∞.

Consequently, limν→∞ ‖Uν‖H = ∞. The proof follows and the theorem is complete.

6 Numerical examples

The following numerical examples show the asymptotic behavior of the solution of (1.2) due to the exponential
stability when the conditions (a) or (b) of Lemma 3.2 are verified, and the lack of exponential stability, when
they are not verified.
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Fig. 1 Example I. Different evolution of the amplitudes: a lack of exponential stability (β1 = b11 = b22 = k1 = 1.0,
β2 = b12 = k2 = −1.0); b exponential stability (β1 = b11 = b22 = b12 = k1 = 1.0, β2 = k2 = −1.0); c exponential stability
(β1 = b11 = b22 = k1 = k2 = 1.0, β2 = b12 = −1.0)

6.1 Example I. Amplitudes for sample sinusoidal initial condition

We consider here a similar example as in the above Section. That is, we choose L = π, and we suppose that the
solutions are of the form un = An(t) sin(nx), wn = Bn(t) sin(nx), vn = A′

n(t) sin(nx), ηn = B ′
n(t) sin(nx),

and θn = Cn(t) sin(nx). In this case, the amplitudes (An, Bn, Cn) verify the following system of ODEs:

ρ1 A′′
n = − n2 (a11 An + a12 Bn + b11 A′

n + b12 B ′
n + k1 θ

)− α (An − Bn)− α1 (A
′
n − B ′

n)+ β1 Cn,

ρ2 B ′′
n = − n2 (a12 An + a22 Bn + b12 A′

n + b22 B ′
n

)+ α (An − Bn)+ α1 (A
′
n − B ′

n)+ β2 Cn,

c C ′
n = − n2 (κ Cn − k1 A′

n − k2 B ′
n

)− β1 A′
n − β2 B ′

n . (6.14)

Thus, we consider the system (6.14) with the parameter values a11 = a22 = 1.0, a12 = 0.0, and ρ1 = ρ2
=α=α1 = c = κ = 1.0.

Figure 1 represents the evolution in time of the three amplitudes An, Bn, and Cn, and the derivatives A′
n

and B ′
n (which are the amplitudes of v and η, respectively), for n = 100. For the numerical simulation, we

use the Runge–Kutta–Fehlberg method RKF45, with the standard solver ode45() of Matlab. The case (a)
is a simulation for 0 ≤ t ≤ 5.0, and the cases (b) and (c) are simulations for 0 ≤ t ≤ 0.001.
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The first Fig. 1(a) represents an example with lack of exponential stability when the hypotheses of
Theorem 5.1 are verified:

b11 = b22 = − b12, ρ2 (a11 + a12) = (a22 + a12) ρ1, k1 = − k2.

The second Fig. 1(b) represents an exponential stability example when the following hypothesis of
Theorem 3.3 is verified: B is non-negative definite and

b12 �= − b11 or b12 �= − b22.

More precisely, we take b12 = b11 = b12 = 1.
The third Fig. 1(c) represents again an exponentially stable case when the following hypothesis of

Theorem 3.3 is verified:

b12 = − b11 = − b22, β1 = −β2, k1 �= − k2.

More precisely, we take β1 = b11 = b22 = k1 = k2 = 1.0, β2 = b12 = −1.0.
We observe clearly in the Figs. 1(b) and (c) that the 5 amplitudes An(t), Bn(t), A′

n(t), B ′
n(t) and Cn(t)

tend to zero very fast. However, both (b) and (c) are exponentially stable.

6.2 Example II. Asymptotic behavior for a small initial condition

Here, we compute numerically the solution of the system (2.2), with L = 1.0, T = 2.0, and the initial
condition:

v(x, 0) =

⎧
⎪⎨

⎪⎩

0 if 0.0 ≤ x ≤ 0.4,
10 (x − 0.4) if 0.4 ≤ x ≤ 0.5,
10 (0.6 − x) if 0.5 ≤ x ≤ 0.6,
0 if 0.6 ≤ x ≤ 1.0,

η(x, 0) =

⎧
⎪⎨

⎪⎩

0 if 0.0 ≤ x ≤ 0.4,
20 (x − 0.4) if 0.4 ≤ x ≤ 0.5,
20 (0.6 − x) if 0.5 ≤ x ≤ 0.6,
0 if 0.6 ≤ x ≤ 1.0,

(6.15)

and u(x, 0) = w(x, 0) = θ(x, 0) = 0.0. We remark that the initial condition defined in (6.15) has two peaks
of height 1 and 2, respectively, and support in (0.4; 0.6). Additionally, we consider the same parameter values
of Example I, a11 = a22 = 1.0, a12 = 0.0, and ρ1 = ρ2 = α = α1 = c = κ = 1.0.

In order to compare these numerical results with those of Example I and the previous Sect. 5, we assume
that

u(x, t) =
∞∑

k=1

Ak(t) sin(k − 1) π x, w(x, t) =
∞∑

k=1

Bk(t) sin(k − 1) π x,

θ(x, t) =
∞∑

k=1

Ck(t) cos(k − 1) π x, (6.16)

and therefore, we extend the initial conditions (6.15) by odd functions, in the interval (− L , 0).
On the other hand, if we discretize the space dimension (− L , L) = (−1, 1) in 2 N − 1 subintervals

I j = ( j δ x, ( j + 1) δ x), with δ x = 1/(2 N ), and j = − N , . . . , N − 1 and we approximate the solution
U (x, t) of the system (2.2) by piecewise functions equal to U j (t) in each subinterval, then we can take the
Discrete Fourier Transform of the solution:

Ũk(t) =
2 N∑

j=1

U j (t) e−π i (k−1)( j−1)/N , (6.17)

and we reconstruct the solution by the Inverse Discrete Fourier Transform:

U j (t) = 1

2 N

2 N∑

k=1

Ũk(t) eπ i (k−1)( j−1)/N . (6.18)
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We note that if we define Ũk(t) = (̃u j (t), w̃ j (t), ṽ j (t), η̃ j (t), θ̃ j (t))T , then Ak(t) = − Im(̃u j (t)), Bk(t) =
− Im(w̃ j (t)),Ck(t) = − Im(θ̃ j (t)) and the following system of ODEs is verified:

ũ′
k = ṽk, w̃′

k = η̃k,

ρ1 ṽ
′
k = −π2 (k − 1)2

(
a11 ũk + a12 w̃k + b11 ṽk + b12 η̃k + k1 θ̃k

)− α (̃uk − w̃k)− α1 (̃vk − η̃k)+ β1 θ̃k,

ρ2 η̃
′
k = −π2 (k − 1)2

(
a12 ũk + a22 w̃k + b12 ṽk + b22 η̃k + k2 θ̃k

)+ α (̃uk − w̃k)+ α1 (̃vk − η̃k)+ β2 θ̃k,

c θ̃ ′
k = −π2 (k − 1)2

(
κ θ̃k − k1 ṽk − k2 η̃k

)− β1 ṽk − β2 η̃k . (6.19)

We make simulations for N = 1024 using in this case the Stiff solver ode15s() of Matlab to compute
each one of the 1024 system of Eqs. (6.19), and we reconstruct the solution by the Inverse Discrete Fourier
Transform (6.18).

Figures 2 and 3 represent the evolution of the solutions (u, w, v, η, θ), with the same parameters bi j and
βi of Example I, cases (a), (b) and (c). Figure 2 shows the lack of exponential stability with β1 = b11 = b22 =
k1 = 1.0, β2 = b12 = k2 = −1.0, and Fig. 3 shows the exponential stability with β1 = b11 = b22 = b12 =
k1 = 1.0, β2 = k2 = −1.0. In both figures, u(x, t) is graphed at the top left, w(x, t) at the top right, v(x, t)
at the bottom left, η(x, t) at the bottom right, and θ(x, t) at the center.

Finally, in Fig. 4, it is represented the norm H of the numerical solution of (2.2) for the 5 first cases of
Example I ((a), (b) and (c)). More precisely, we plot the function:

t �→

√√√
√√

N∑

j=1

h

⎡

⎣
(

u j (t)− u j−1(t)

h

)2

+
(
w j (t)− u j−1(t)

h

)2

+ v2
j (t)+ w2

j (t)+
(

θ j (t)− h
∑

�

θ�(t)

)2
⎤

⎦.

Fig. 2 Example II. Lack of exponential stability. Numerical solutions u, w, v, η, θ. Case β1 = b11 = b22 = k1 = 1.0, β2 =
b12 = k2 = −1.0
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Fig. 3 Example II. Exponential stability. Numerical solutions u, w, v, η, θ. Case β1 = b11 = b22 = b12 = k1 = 1.0, β2 =
k2 = −1.0
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Fig. 4 Example II. Evolution in time of t �→ ‖U ( · , t)‖H for: a Lack of exponential stability β1 = b11 = b22 = k1 = 1.0, β2 =
b12 = k2 = −1.0; b Exponential stability β1 = b11 = b22 = k1 = k2 = 1.0, β2 = b12 = −1.0; c Exponential stability
β1 = b11 = b22 = b12 = k1 = 1.0, β2 = k2 = −1.0

We observe that in general, in the cases of lack of exponential stability, the curves diverge when t → ∞
(case (a)), and the curves tend to zero in the exponentially stable cases ((b) and (c)).
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