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Stabilization of Continuous-Time Singularly Perturbed Switched
Systems

I. M ALLOCI , J. DAAFOUZ, Member, IEEE, C. IUNG, Member, IEEE

Abstract— In this article, stability of continuous-time
switched linear systems in the singular perturbation form
is investigated. We show that the stability of slow and fast
switched subsystems is not a sufficient condition for stability
of the corresponding two-time scale switched system, underan
arbitrary switching law. Thus, LMI conditions to design a state-
feedback control law stabilizing continuous-time singularly
perturbed switched linear systems are proposed.

I. INTRODUCTION

A switched system consists of a set of differential equa-
tions, where each equation defines the behavior of a sub-
system, and of a law governing the switchings among the
subsystems. In the control system framework, one of most
studied properties of switched systems is stability [2], [3],
[4], [10], [15]. When the switching law is arbitrary, there
exist two main approaches to assess system stability. The first
one consists in assuming that there is a minimal interval of
time between two successive switchings, called dwell time,
which ensures the stability [6], [13], [16]. If no assumption
is made on the dwell time, the existence of a common
Lyapunov function for all the subsystems is required [10],
[15].

In practice, many systems involve dynamics operating
on two or more time scales [14]. In this case, standard
control techniques lead to ill-conditioning problems. Singular
perturbation methods can be used to avoid such numerical
problems [8], [9]. They consist in decomposing the system
into several subsystems, one for each time scale. Thus, a
different controller is designed for each of them. In [5], a
LMI solution for the linear quadratic optimal control design
is proposed for continuous-time singularly perturbed linear
systems.

Multiple time scale switched systems are of practical
interest in many applications. An example is given by the
tail end phase of the rolling process in a hot strip mill,
which has been described in [12]. However, these dynamical
systems have been the subject of few investigations and,
at the moment, the only work addressing two-time scale
switched systems is proposed in [1], where the dwell time
approach is extended to singularly perturbed continuous-time
switched systems with time delay. Classical solutions for
LTI singularly perturbed systems are based on the fact that
slow and fast dynamics can be considered as decoupled.
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Thus, asymptotic stability of slow and fast manifolds is a
sufficient condition for the stability of the two-time scale
system. In this article, we will show that, if no assumption
on the minimal dwell is made, stability of slow and fast
switched subsystems is not a sufficient condition for sta-
bility of a two-time scale switched system. An additional
constraint taking into account the coupling between slow
and fast manifolds has to be considered. We propose LMI
conditions, independently of the singular parameterε, for
stability analysis and feedback control design of continuous-
time singularly perturbed switched linear systems. These
conditions express the fact that a coupling constraint has to
be satisfied, in addition to stability of slow and fast switched
subsystems, as far as arbitrary switchings may arise. To our
knowledge, this is the first work which points out explicitly
the fact that asymptotic stability of slow and fast switched
subsystems is not sufficient for asymptotic stability of a two-
time scale switched system, under an arbitrary switching rule,
and which provides a stabilizing control law for this kind of
systems.

The article is organized as follows. In section II, switched
systems in the singular perturbation form are introduced. In
section III, stability problems arising in singularly perturbed
systems when arbitrary switchings occur are discussed. In
section IV and V, stability analysis and stabilization of
continuous singularly perturbed switched linear systems are
studied. In section VI, a numerical example is presented.

II. PRELIMINARIES

Consider the continuous-time switched system in the sin-
gular perturbation form:

ẋ(t) = Mσ(t)(ε)x(t) + Nσ(t)(ε)u(t) (1)

whereε > 0 is a small scalar parameter,x ∈ R
n is the state

vector, which is assumed to be available for direct measure-
ment,u ∈ R

r is the control signal,{(M i(ε), N i(ε)) : i ∈
Ξ = {1, ...,N}} is a family of matrices andσ(t) : N → Ξ
is the switching signal, which is assumed to be unknown a
priori. If we assume that the slow and the fast variables are
the same for each subsystemi ∈ Ξ, we can write:

x(t) =

[

x1(t)
x2(t)

]

, (2)

where x1 ∈ R
n1 is the state corresponding to the fast

dynamics andx2 ∈ R
n2 is the state corresponding to the



slow dynamics, and

M i(ε) =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

,

N i(ε) =

[

ε−1In1
0

0 In2

] [

N i
1

N i
2

]

,

(3)

with M i
11 non-singular matrix for anyi ∈ Ξ. Each modei

can be written as
{

εẋ1(t) = M i
11x1(t) + M i

12x2(t) + N i
1u(t)

ẋ2(t) = M i
21x1(t) + M i

22x2(t) + N i
2u(t),

(4)

The slow subsystem is:

ẋs(t) = M i
sxs(t) + N i

sus(t) (5)

with
M i

s = M i
22 − M i

21M
i
11

−1
M i

12

N i
s = N i

2 − M i
21M

i
11

−1
N i

1.
(6)

The fast subsystem is:

εẋf (t) = M i
11xf (t) + N i

1uf(t). (7)

The pairs (M i
s, N

i
s) and (M i

11, N
i
1) are assumed to be

stabilizable in the continuous-time sense, for anyi ∈ Ξ.
This means that each eigenvalue ofM i

s or M i
11 which is in

the right-half complex plane is controllable.

III. MOTIVATION

Recall that for a continuous-time LTI system in the sin-
gular perturbation form

ẋ(t) = M(ε)x(t), (8)

with

M(ε) =

[

ε−1In1
0

0 In2

] [

M11 M12

M21 M22

]

, (9)

the fast and slow dynamics can be decoupled using the
transformation [7]:

[

xf (t)
xs(t)

]

=

[

In1
L(ε)

−εH(ε) In2
− εH(ε)L(ε)

] [

x1(t)
x2(t)

]

, (10)

with

M12 − M11L(ε) + εL(ε)(M22 − M21L(ε)) = 0, (11)

M21 − H(ε)M11 + ε(M22 − M21L(ε))H(ε)

− εH(ε)L(ε)M21 = 0.
(12)

Consider a scalarεmax > 0. For ε ∈ (0, εmax], the non-
symmetric algebraic Riccati equation (11) and the Sylvester
equation (12) admit the approximated solutionL(ε) =
M−1

11 M12 + O(ε), H(ε) = M21M
−1
11 + O(ε). The trans-

formation (10) leads to the following decoupled system:
{

εẋf (t) = (M11 + O(ε))xf (t)

ẋs(t) = (Ms + O(ε))xs(t).
(13)

Hence, asymptotic stability of slow and fast manifolds (i.e.
matricesMs andM11 are Hurwitz) implies asymptotic sta-
bility of the two-time scale system (8) for anyε ∈ (0, εmax].

For two-time scale switched systems, this property does not
hold, unless dwell time constraints are imposed [1].

However, for an arbitrary switching law, which is the
case considered here, a two-time scale switched system
can be unstable for any small value ofε > 0, even if
slow and fast switched manifolds are asymptotically stable.
The interpretation of this phenomenon is that for any fixed
ε > 0, one may exhibit a switching law with a sufficiently
high switching frequency which destabilizes the two-time
scale switched system, even if the slow and fast switched
subsystems are asymptotically stable. To illustrate this fact,
let us consider the following example:

ẋ(t) = Mσ(t)(ε)x(t), (14)

with Ξ = {1, 2} and

M1
11 =

[

0 1
−3 −5

]

, M1
12 =

[

0 0
−1.3 −0.46

]

,

M1
21 =

[

20 10
6 5

]

, M1
22 =

[

0 1
2 0

]

,

M2
11 =

[

0 1
−3.8 −6

]

, M2
12 =

[

1 5
151 49.6

]

,

M2
21 =

[

0 0
−0.3 −0.2

]

, M2
22 =

[

1 0.7
0 2

]

.

(15)

The system (14) has a two-time scale dynamics and matrices
M i(ε) are Hurwitz for anyi ∈ Ξ and for anyε ∈ (0, εmax],
with εmax = 10−2. Nevertheless, asymptotic stability of
each subsystemi ∈ Ξ is not a sufficient condition for the
stability of a switched systems, when the switching lawσ(t)
is arbitrary [10]. Let the fast switched subsystem

εẋf (t) = M
σ(t)
11 xf (t) (16)

and the slow switched subsystem

ẋs(t) = Mσ(t)
s xs(t). (17)

The sufficient stability conditionM i
11Pf + PfM i′

11 ≺ 0 of
the fast switched subsystem (16) is verified by the Lyapunov

matrix Pf =

[

2 −1
−1 1

]

≻ 0, for any i ∈ Ξ. Also, the

sufficient stability conditionM i
sPs +PsM

i′

s ≺ 0 of the slow
switched subsystem (17) is verified by the Lyapunov matrix

Ps =

[

0.15 −0.3
−0.3 1.36

]

≻ 0, for any i ∈ Ξ.

To show that asymptotic stability of the fast switched
subsystem (16) and of the slow switched subsystem (17)
does not imply asymptotic stability of the two-time scale
switched system (14), considerε = 10−3 and the ini-
tial condition x(0) =

[

0 0 1 1
]′

, with x(t) =
[

x11(t) x12(t) x21(t) x22(t)
]′

. Switching among the
subsystems of (14) each30 msec, we obtain an unstable
behavior. Fig. 1 and 2 show the “explosion” of the fast
and the slow state variables, respectively. This behavior
does not depend on the value ofε: a switching lawσ(t)
which destabilizes the switched system (14)-(15) can be
found for any ε ∈ (0, εmax]. However, if the switchings
among the subsystems of (14) are enough slow to respect



−2 0 2 4 6 8 10 12 14 16 18

x 10
8

−8

−6

−4

−2

0

2

4

6

8
x 10

8

x
11

(t)

x 12
(t

)

Fig. 1. Slow variables evolution of the system (14) with destabilizing σ(t)
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Fig. 2. Fast variables evolution of the system (14) with destabilizing σ(t)

dwell time conditions, the two-time scale switched system
is asymptotically stable. The convergence to zero of the
state variables is shown in Fig. 3 and 4 for a dwell time of
150 msec. Also the state evolution of each subsystem without
switchings is given (dashed and dotted line for the subsystem
1 and 2, respectively).

The main objective of this article is to provide LMI sta-
bility conditions for linear switched systems in the singular
perturbation form with an arbitrary switching law. We will
show that this corresponds to verify the stability conditions of
the slow and the fast switched subsystems and an additional
constraint.

IV. STABILITY ANALYSIS

Consider the autonomous linear switched system in the
singular perturbation form

ẋ(t) = Mσ(t)(ε)x(t), (18)

with M i(ε) defined in (3) for anyi ∈ Ξ. The existence of a
quadratic Lyapunov functionV (x, ε) = x′P (ε)x such that
V (x, ε) > 0 and V̇ (x, ε) < 0 is a well-known sufficient
condition for the asymptotic stability of the system (18). It
is equivalent to the following lemma:

Lemma 1: [10] If there exist matricesP (ε) = P (ε)′ ≻ 0
andQi(ε) = Qi(ε)

′
� 0 of appropriate dimension such that
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Fig. 3. Fast variables evolution of the system (14):σ(t) = {1, 2, 1, 2, ...}
(solid line), σ(t) = {1} (dashed line),σ(t) = {2} (dotted line)
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Fig. 4. Slow variables evolution of the system (14):σ(t) = {1, 2, 1, 2, ...}
(solid line), σ(t) = {1} (dashed line),σ(t) = {2} (dotted line)

LMIs

M i(ε)P (ε) + P (ε)M i(ε)
′
+ Qi(ε) ≺ 0 (19)

are verified∀ i ∈ Ξ, then the switched system (18) is stable.

Whenε is small, the determination ofP (ε) is complicated
due to the ill-conditioning of the LMI (19). This problem
can be avoided decomposing the two-time scale system
into two well-behaved subsystems, the slow and the
fast manifolds [8]. The following theorem states LMI
conditions which verify the stability of the switched system
(18) independently ofε and for any switching law. The
proof, omitted due to space limitations, may be found in [11].

Theorem 1: Assume that there exist matricesPf = Pf
′ ≻

0, Qi
f = Qi

f

′
≻ 0, Ps = Ps

′ ≻ 0, Qi
s = Qi

s

′
≻ 0 of

appropriate dimension such that LMIs

M i
11Pf + PfM i

11

′
+ Qi

f ≺ 0, (20)

M i
sPs + PsM

i
s

′
+ Qi

s ≺ 0, (21)
[

Qi
f −(M i

11Y
i + PfM i

21
′
)

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′

]

≻ 0 (22)



are verified∀ i ∈ Ξ, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
Mh

12Ps.

Then, there exists a positive scalarεmax such that the
switched system (18) is asymptotically stable∀ ε ∈ (0, εmax]
and for any switching law.

Remark 1: Theorem 1 provides two separate stability con-
ditions for fast and slow manifolds (20) and (21), respec-
tively. Moreover, the coupling condition (22) is given. This
allows verifying the classical stability conditions givenby
Lemma 1, for anyε ∈ (0, εmax]. P (ε) andQi(ε) are defined
in (30)-(41), for anyi ∈ Ξ.

V. CONTROL DESIGN

Consider the linear switched system in the singular per-
turbation form

ẋ(t) = Mσ(t)(ε)x(t) + Nσ(t)(ε)u(t), (23)

with M i(ε) andN i(ε) defined in (3) for anyi ∈ Ξ. The aim
of this section is to design a state-feedback control law

u(t) = Kσ(t)(ε)x(t) (24)

stabilizing the closed-loop system (23) for any switching law.

Lemma 2: If there exist matricesP (ε) = P (ε)′ ≻ 0,
Qi(ε) = Qi(ε)

′
� 0 and Zi(ε) of appropriate dimension

such that LMIs

M i(ε)P (ε) + P (ε)M i(ε)
′
+ N i(ε)Zi(ε)+

Zi(ε)
′
N i(ε)

′
+ Qi(ε) ≺ 0

(25)

are verified∀ i ∈ Ξ, then the state-feedback control law
(24) stabilizes asymptotically the continuous-time switched
system (23), withKi(ε) = Zi(ε)P (ε)−1.

As in the stability analysis case, whenε is small some
difficulties to compute the gainsKi(ε) arise. This problem
is due to the ill-conditioning of the constraint (25) and can
be avoided decomposing the two-time scale system into two
well-behaved subsystems, the slow and the fast manifolds
[8]. The following theorem gives LMI conditions which
verify the stability of the system (23) independently ofε,
for any switching law.

Theorem 2: Assume that there exist matricesPf = Pf
′ ≻

0, Qi
f = Qi

f

′
≻ 0, Zi

f , Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0 and

Zi
s of appropriate dimension such that LMIs

M i
11Pf + PfM i

11

′
+ N i

1Z
i
f + Zi

f

′
N i

1

′
+ Qi

f ≺ 0, (26)

M i
sPs + PsM

i
s

′
+ N i

sZ
i
s + Zi

s

′
N i

s

′
+ Qi

s ≺ 0, (27)








Qi
f F i N i

1Z
i
f 0

(⋆)′ Gi Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0 (28)

are verified∀ i ∈ Ξ, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps +

Nh
1 Zh

s ), F i = −(M i
11Y

i + PfM i
21

′
+ Zi

f

′
N i

2
′
) and Gi =

Qi
s −M i

21Y
i −Y i′M i

21
′
. Then, there exists a positive scalar

εmax such that the state-feedback controller gains

Ki =
[

Ki
f Ki

s + Ki
fM i

11
−1

(M i
12 + N i

1K
i
s)

]

, (29)

with Ki
f = Zi

fP−1
f and Ki

s = Zi
sP

−1
s , asymptotically

stabilize the closed-loop switched system (23),
∀ ε ∈ (0, εmax] and for any switching law.

Proof: Let us assume

P (ε) =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

≻ 0, (30)

Zi(ε) =
[

Zi
1(ε) Zi

2(ε)
]

, (31)

Qi(ε) =

[

Qi
1(ε) Qi

2(ε)
Qi

2(ε)
′ Qi

3(ε)

]

≻ 0, (32)

with
P1(ε) = Pf + εP2P

−1
s P ′

2, (33)

P2(ε) = εP2 = −ε

N
∑

h=1

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ), (34)

P3(ε) = εPs, (35)

Zi
1(ε) = Zi

f + εZi
sP

−1
s P2

′, (36)

Zi
2(ε) = ε(Zi

s + Zi
fP−1

f Y i), (37)

Qi
1(ε) = ε−1Qi

f , (38)

Qi
2(ε) = −((M i

11 + N i
1Z

i
fP−1

f )Y i + PfM i
21

′
+ Zi

f

′
N i

2

′
),

(39)
Qi

3(ε) = ε(Qi
s − (M i

21 + N i
2Z

i
fP−1

f )Y i−

Y i′(M i
21

′
+ P−1

f Zi
f

′
N i

2

′
))

(40)

and

Y i = −
N

∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ). (41)

Substituting (3) and (30)-(32) in (25), we have:
[

X i
1(ε) X i

2(ε)
X i

2(ε)
′ X i

3(ε)

]

(42)

with X i
1(ε), X i

2(ε) andX i
3(ε) defined in the next page (equa-

tions (43)-(45)). Replacing the values ofP (ε), Zi(ε), Qi(ε)
and the equations (6), (33)-(41), we obtain the equations
(46)-(48) (see the next page).

The equation (42) can be written as
[

ε−1(X i
f + O(ε)) ε(X i

2 + O(ε))

(⋆)′ ε(X i
s + O(ε))

]

. (49)

For assumptionX i
f ≺ 0 and X i

s ≺ 0. This means that
there exists a scalarεmax > 0 such thatX i

s + O(ε) ≺ 0

and X i
f − ε2X i

2X
i
s

−1
X i

2
′

+ O(ε) ≺ 0, ∀ i ∈ Ξ and
∀ ε ∈ (0, εmax]. Hence, using the Schur complement, the
LMI (25) is verified. SincePf ≻ 0 and Ps ≻ 0, the LMI
(30) holds. Furthermore, substituting (38)-(40) in (32), we
obtain the LMI (50) which, using the Schur complement,



X i
1(ε) = ε−1(M i

11P1(ε) + P1(ε)M
i
11

′
+ M i

12P2(ε)
′ + P2(ε)M

i
12

′
+ N i

1Z
i
1(ε) + Zi

1(ε)
′N i

1

′
+ Qi

1(ε)), (43)

X i
2(ε) = ε−1M i

11P2(ε) + ε−1M i
12P3(ε) + P1(ε)M

i
21

′
+ P2(ε)

′M i
22

′
+ ε−1N i

1Z
i
2(ε) + Zi

1(ε)
′N i

2

′
+ Qi

2(ε), (44)

X i
3(ε) = M i

22P3(ε) + P3(ε)M
i
22

′
+ M i

21P2(ε) + P2(ε)
′
M i

21

′
+ N i

2Z
i
2(ε) + Zi

2(ε)
′N i

2

′
+ Q3(ε). (45)

X i
1(ε) = ε−1(M i

11Pf + PfM i
11

′
+ N i

1Z
i
f + Zi

f

′
N i

1

′
+ Qi

f + O(ε)) = ε−1(X i
f + O(ε)), (46)

X i
2(ε) = ε(P ′

2M
i
22

′
+ O(ε)) = ε(X i

2 + O(ε)), (47)

X i
3(ε) =ε(M i

sPs + PsM
i
s

′
+ N i

sZ
i
s + Zi

s

′
N i

s

′
+ Qi

s + O(ε)) = ε(X i
s + O(ε)). (48)

Qi(ε) =

[

ε−1In1
0

0 In2

]

[

Qi
f −((M i

11 + N i
1Z

i
fP−1

f )Y i + PfM i
21

′
+ Zi

f

′
N i

2
′
)

(⋆)′ Qi
s − (M i

21 + N i
2Z

i
fP−1

f )Y i − Y i′(M i
21

′
+ P−1

f Zi
f

′
N i

2
′
)

]

[

In1
0

0 εIn2

]

≻ 0 (50)









Qi
f + N i

1Z
i
fP−1

f Zi
f

′
N i

1
′

−(M i
11Y

i + PfM i
21

′
+ Zi

f

′
N i

2
′
) N i

1Z
i
f 0

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′
+ N i

2Z
i
fP−1

f Zi
f

′
N i

2
′
+ Y i′P−1

f Y i Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0.

(51)

is verified if and only if (50) holds. (28) is no negative
definite. This implies that the constraint (51) holds∀ i ∈ Ξ.
Thus, also LMI (32) holds. Equations (50) and (51) are
defined in the next page.

In order to findKi, consider

us(t) = Ki
sxs(t) = Zi

sP
−1
s xs(t) (52)

and
uf(t) = Ki

fxf (t) = Zi
fP−1

f xf (t). (53)

The composite controller is

uc(t) = us(t) + uf (t) = Ki
sxs(t) + Ki

fxf (t). (54)

Letting xs(t) = x2(t) and xf (t) = x1(t) +

M i
11

−1
(M i

12xs(t) + N i
1us(t)) = x1(t) + M i

11
−1

(M i
12 +

N i
1K

i
s)xs(t), we have

uc(t) =Zi
sP

−1
s x2(t) + Zi

fP−1
f x1(t)+

Zi
fP−1

f M i
11

−1
(M i

12 + N i
1Z

i
sP

−1
s )x2(t).

(55)

When ε → 0, substituting (30) and (31) inKi(ε) =
Z(ε)iP (ε)

−1 and applying the formula of the inverse of
partitioned matrix, we find (55), which concludes the proof.

Remark 2: LMI conditions of Theorem 2 withZi
f = 0

lead to the reduced control law

u(t) = Ki
r

[

x1(t)
x2(t)

]

=
[

0 Ki
s

]

[

x1(t)
x2(t)

]

, (56)

where Ki
s = Zi

sP
−1
s are the controller gain of the slow

subsystem and stabilize asymptotically the switched system
(23) ∀ i ∈ Ξ and∀ ε ∈ (0, εmax].

Notice that in this case (26) implies that the fast subsystem
must be asymptotically stable in open loop.

Remark 3: The conditions given in Theorem 2 are the
design version of the conditions proposed in Theorem 1.
Thus, conditions of Theorem 1 can be recovered setting
Zi

f = Zi
s = 0 for any i ∈ Ξ.

VI. NUMERICAL EXAMPLE

Let a continuous-time switched system in the singular
perturbation form (4), withΞ = {1, 2}, ε = 0.005 and

M1
11 =

[

0 1
−1 −2

]

, M1
12 =

[

0 0
1.5 0

]

,

M1
21 =

[

0 0
−0.6 −0.5

]

, M1
22 =

[

0 1
2.1 0

]

,

N1
1 =

[

0
−1

]

, N1
2 =

[

0
0

]

,

M2
11 =

[

0 1
−3 −5

]

, M2
12 =

[

0 0
0 0

]

,

M2
21 =

[

0 0
−0.3 −0.2

]

, M2
22 =

[

0 0.7
0 0

]

,

N2
1 =

[

0
−1

]

, N2
2 =

[

0
0

]

.
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Fig. 5. Switching lawσ(t)
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Fig. 6. Closed-loop response in the continuous-time with full state-feedback
controller (solid line) and reduced state-feedback controller (dotted line)

The subsystem1 is open loop unstable and the subsystem
2 is characterized by a state-space matrix with zero eigen-
values. Theorem 2 leads to the following controller gains:

K1 =
[

0.4040 0.1511 −65.3601 −60.3074
]

,

K2 =
[

−0.4110 −0.5931 −147.6057 −137.0206
]

.

SinceM1
11 andM2

11 are Hurwitz, a reduced control law may
also be proposed:

K1
r =

[

0 0 −99.0779 −88.5710
]

,

K2
r =

[

0 0 −347.0992 −310.4213
]

.

Consider the switching law given in Fig. 5 and the initial
condition x(0) =

[

0 0 1 0
]′

, Fig. 6 shows the results,
with x(t) =

[

x11(t) x12(t) x21(t) x22(t)
]′

. The solid
line represents the state variables evolution using the full
state-feedback controller gainsK1 andK2 while the dotted
line represents the state variables evolution using the reduced
state-feedback controller gainsK1

r andK2
r . Fig. 7 shows the

control signal evolution.

VII. CONCLUSION

In this article, asymptotic stability of two-time scale
switched systems was investigated. We showed that asymp-
totic stability of slow and fast switched subsystems does not
imply the asymptotic stability of the corresponding two-time
scale switched systems in the singular perturbation form.
A coupling constraint must also be considered. Hence, we
presented LMI conditions to assess asymptotic stability of
two-time scale switched systems under an arbitrary switching

0  1 2 3 4
−35

−30
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Fig. 7. Control signal evolution in the continuous-time with full state-
feedback controller (solid line) and reduced state-feedback controller (dotted
line)

law. For the same class of systems, we also provided state-
feedback control design. A numerical example shows the
validity of our approach.
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