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Stabilization of Continuous-Time Singularly Perturbed Switched
Systems

I. MALLOCI, J. DAAFOUZ, Member, |IEEE, C. IUNG, Member, |IEEE

Abstract—In this article, stability of continuous-time  Thus, asymptotic stability of slow and fast manifolds is a
switched linear systems in the singular perturbation form syfficient condition for the stability of the two-time scale
is investigated. We show that the stability of slow and fast system. In this article, we will show that, if no assumption
switched subsystems is not a sufficient condition for stabitly . g e
of the corresponding two-time scale switched system, undem on_the minimal dwell _'S made, Sta_b'_“ty of SlO_V‘_’ and fast
arbitrary switching law. Thus, LMI conditions to design a state- ~ Switched subsystems is not a sufficient condition for sta-
feedback control law stabilizing continuous-time singuldy  bility of a two-time scale switched system. An additional
perturbed switched linear systems are proposed. constraint taking into account the coupling between slow

| INTRODUCTION and fast manifolds has to be considered. We propose LMI

conditions, independently of the singular parametefor

A switched system consists of a set of differential equas'tability analysis and feedback control design of contiraio

tions, where each equation defines the behavior of a Suﬁ)fne singularly perturbed switched linear systems. These

system, and of a law governing the switchings among the,,gitions express the fact that a coupling constraint bas t
subsystems. In the control system framework, one of MOp, garisfied, in addition to stability of slow and fast swétdh

studied properties of switched systems is stability [2], [3 gpsystems, as far as arbitrary switchings may arise. To our
[4], [10], [15]. When the switching law is arbitrary, there ., iedge, this is the first work which points out explicitly

exist two main approaches to assess system stability. ®te fif,o 50t that asymptotic stability of slow and fast switched

one consists in assuming that there is a minimal interval Qsystems is not sufficient for asymptotic stability of a-tw
time between two successive switchings, called dwell timgne cale switched system, under an arbitrary switchite ru

which ensures the stability [6], [13], [16]. If no assumptio 54 which provides a stabilizing control law for this kind of
is made on the dwell time, the existence of a COMMOBy sroms.

Lyapunov function for all the subsystems is required [10], The article is organized as follows. In section II, switched

[1?]' . ‘ ivolve d . i systems in the singular perturbation form are introduced. |
N practice, many systems Involve dynamics operatinge, ., 11, stability problems arising in singularly perbed

on two or more time scgles [1.41' I_n this case, St.andarg/stems when arbitrary switchings occur are discussed. In
control techniques lead to ill-conditioning problems.@itar sqction IV and V, stability analysis and stabilization of

perturbation methods can be used to avoid such nUMeNentinuous singularly perturbed switched linear systemss a

problems [8], [9]. They consist in decomposmg the SySterTsqtudied. In section VI, a numerical example is presented.
into several subsystems, one for each time scale. Thus, a
different controller is designed for each of them. In [5], a
LMI solution for the linear quadratic optimal control desig Il. PRELIMINARIES
is proposed for continuous-time singularly perturbeddine
systems.

Multiple time scale switched systems are of practica¥
interest in many applications. An example is given by the
tail end phase of the rolling process in a hot strip mill,
which has been described in [12]. However, these dynamical , i
systems have been the subject of few investigations an\H,hereE > 0 IS a small scalar paramgter,e R* IS the state
at the moment, the only work addressing two-time scalkector, WhICh.I.S assumed to b_e avallablle for dllrect measure—
switched systems is proposed in [1], where the dwell tim@'€ntu € R’ is the control signal{(M*(e), N'(¢)) : i €
approach is extended to singularly perturbed continuous-t = —_ {1,....A'}} is a family of matrices and () : N — =
switched systems with time delay. Classical solutions fdf the switching signal, which is assumed to be unknown a
LTI singularly perturbed systems are based on the fact thBfiOr- If we assume that the slow and the fast variables are
slow and fast dynamics can be considered as decoupléla‘.a same for each subsysten =, we can write:

Consider the continuous-time switched system in the sin-
ular perturbation form:

i(t) = M7V (e)z(t) + N7V (e)ult) @)

and ArcelorMittal Maizieres Research.
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Corresponding author: Jamal.Daafouz@ensem.inpl-rfancy. dynamics andry € R™ is the state corresponding to the

This work has been supported by grants from “la région LineraFrance” R ES! (t) 2
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slow dynamics, and
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with M}, non-singular matrix for any € =. Each mode
can be written as

M{Q}
M, |” 3)
Ni(e) =

1

ed1(t) = Miy2:1(t) + Mipwa(t) + Nju(t) @)
da(t) = My w1 (t) + Miaxa(t) + Nju(t),
The slow subsystem is:
is(t) = Mng(w + N;US(t) ()
with . . L
Mg = M3, — M3, My, My, (6)
i i i agi Llari
Ng = Ny — My My, Njy.
The fast subsystem is:
edg(t) = Myyayp(t) + Njug(t). @)

The pairs (M:, N¢) and (M:{,;, N¥) are assumed to be

stabilizable in the continuous-time sense, for ang EZ.
This means that each eigenvaluedf or M{, which is in
the right-half complex plane is controllable.

1. MOTIVATION

For two-time scale switched systems, this property does not
hold, unless dwell time constraints are imposed [1].
However, for an arbitrary switching law, which is the
case considered here, a two-time scale switched system
can be unstable for any small value of > 0, even if
slow and fast switched manifolds are asymptotically stable
The interpretation of this phenomenon is that for any fixed
e > 0, one may exhibit a switching law with a sufficiently
high switching frequency which destabilizes the two-time
scale switched system, even if the slow and fast switched
subsystems are asymptotically stable. To illustrate thds, f
let us consider the following example:

(t) = M7 (e)a(t), (14)
with = = {1, 2} and
1 _ [ 0 1 1 _ 0 0
My, = -3 -5 My = —1.3 —0.46]’
[20 10 0 1
M211 = 6 5:| ) M212 = |:2 0:| )
0 1 15 (15)
2 _ 2 _
My = —3.8 —6] Mz = [151 49.6} ’
> _ [0 0 , 1 07
M = —0.3 —0.2]" My, = 0 21

The system (14) has a two-time scale dynamics and matrices
M () are Hurwitz for anyi € = and for anye € (0, £ma4),
with €,,.. = 1072, Nevertheless, asymptotic stability of

Recall that for a continuous-time LTI system in the Singach subsystem € = is not a sufficient condition for the

gular perturbation form

a(t) = M(e)x(t), 8)
with M _ 8_1In1 0 M11 Mlg 9
() = [ 0 InQ] [le Mzz] ’ ©

the fast and slow dynamics can be decoupled using the

transformation [7]:
[l‘f(ﬁ)] _ [ In,
xs(t) —eH(e)

with

itore) (i) @9

I,
M12 — MllL(E) + EL(E)(MQQ — MglL(E)) = 0,
Moy — H(e)M11 + e(Maz — Ma1L(€))H(g)

—eH(e)L(e)Ms; = 0.

(11)
(12)

Consider a scalat, ., > 0. Fore € (0,&,4.], the non-

stability of a switched systems, when the switching tai#)
is arbitrary [10]. Let the fast switched subsystem

ey (t) = M7y Vs (1) (16)
and the slow switched subsystem
Za(t) = M7y (b). (17)

The sufficient stability condition\/i, P; + Py Mi, < 0 of
the fast switched subsystem (16) is verified by the Lyapunov
2 -1
-1 1
sufficient stability conditiom\/ P, + P,M!" < 0 of the slow
switched subsystem (17) is verified by the Lyapunov matrix
p— 0.15 —-0.3
s —-0.3 1.36
To show that asymptotic stability of the fast switched
subsystem (16) and of the slow switched subsystem (17)
does not imply asymptotic stability of the two-time scale

matrix Py = = 0, for any i € =. Also, the

= 0, for anyi € =.

symmetric algebraic Riccati equation (11) and the Sylvestgitched system (14), consider = 10~3 and the ini-

equation (12) admit the approximated solutidic) =
M{*Mys + O(¢), H(s) = M M;" 4 O(e). The trans-
formation (10) leads to the following decoupled system:

{eﬁcf(t) = (M1 + O(e))z(t)

ts(t) = (Ms + O(¢e))xs (2). (13)

tial conditon xz(0) = [0 0 1 1], with z(t) =
[211(t) @12(t) 221(t) w20(t)]". Switching among the
subsystems of (14) eacB)msec, we obtain an unstable
behavior. Fig. 1 and 2 show the “explosion” of the fast
and the slow state variables, respectively. This behavior
does not depend on the value af a switching lawo ()

Hence, asymptotic stability of slow and fast manifolds.(i.ewhich destabilizes the switched system (14)-(15) can be
matricesM, and M;; are Hurwitz) implies asymptotic sta- found for anye € (0,emq.). However, if the switchings

bility of the two-time scale system (8) for amye (0, €142

among the subsystems of (14) are enough slow to respect
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Fig. 1. Slow variables evolution of the system (14) with dbgizing o (t) Fig. 3. Fast variables evolution of the system (1#(t) = {1,2,1,2,...}
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Fig. 2. Fast variables evolution of the system (14) with aeitizing o (t)
Fig. 4. Slow variables evolution of the system (14}t) = {1,2,1,2,...}
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(solid line), o(t) = {1} (dashed line)g(t) = {2} (dotted line)
dwell time conditions, the two-time scale switched system
is asymptotically stable. The convergence to zero of the
state variables is shown in Fig. 3 and 4 for a dwell time okMIs
150 msec. Also the state evolution of each subsystem without i iy i
switchings is given (dashed and dotted line for):he subgyste MU (e)P(e) + Ple)M(e) +Q'(e) <0 (19)
1 and 2, respectively). are verifiedvi € =, then the switched system (18) is stable.
The main objective of this article is to provide LMI sta-

bility conditions for linear switched systems in the sirgul ~ Whene is small, the determination df(¢) is complicated
perturbation form with an arbitrary switching law. We will due to the ill-conditioning of the LMI (19). This problem
show that this corresponds to verify the stability condis@f can be avoided decomposing the two-time scale system
the slow and the fast switched subsystems and an additiomalo two well-behaved subsystems, the slow and the
constraint. fast manifolds [8]. The following theorem states LMI

IV. STABILITY ANALYSIS conditions which verify the stability of the switched syste

(18) independently ot and for any switching law. The

_Consider the autonomous linear switched system in &40t omitted due to space limitations, may be found in [11]
singular perturbation form

@(t) = M"(t)(g):c(t), (18) Theorem 1:/ Assume that there exist matricé$ = P;' -

0, Q = QY =0, P, =P »0,Q =Q =0 of

with M*(e) defined in (3) for anyi € =. The existence of a appropriate dimension such that LMIs

quadratic Lyapunov functio’’ (z,e) = 2/ P(¢)z such that

V(z,e) > 0 and V(z,e) < 0 is a well-known sufficient M, Py +PfM1i1/+Qif <0, (20)
condition for the asymptotic stability of the system (18). | _ , _
is equivalent to the following lemma: M¢Ps + P,Mg + Q4 <0, (21)
i i Vi il
Lemma 1: [10] If there exist matrices?(c) = P(c)’ > 0 Qp  —(MLY'+PrMy) | (22)

andQi(c) = Q'(¢)' = 0 of appropriate dimension such that (*) QL — MLy Y My’



are verifiedvi € =, with Yi = g: Mh TP, QLMY - v Mi,". Then, there exists a positive scalar
) N h=1,h+#i €maaz SUCh that the state-feedback controller gains

Then, there exists a positive scalay,,,, such that the 4 _ _ L o

switched system (18) is asymptotically stabile € (0, €,,q2] K' = [K} K.+ KiM{y  (Miy+ NiK)|,  (29)

and for any switching law. _ ] ] _
with Kj = ZjP;' and K. = Z.P;!, asymptotically
Remark 1: Theorem 1 provides two separate stability constabilize  the  closed-loop  switched  system  (23),
ditions for fast and slow manifolds (20) and (21), respec? ¢ € (0, &mas] and for any switching law.
tively. Moreover, the coupling condition (22) is given. $hi

allows verifying the classical stability conditions givéuy Proof: Let us assume
Lemma 1, for any € (0, e1mqz]. P() andQ?(e) are defined [P (s) Pole
in (30)-(41), for anyi € =. P(e) = P;((E))/ Pjgsﬂ -0, (30)
. V CONT.ROL DESIGN. . Zi(s) _ [Zi(g) Zg(s)] 7 (31)
Consider the linear switched system in the singular per- o _
turbation form Qi(e) = i1((€€)>/ 858} - 0, 32)
#(t) = M7 () (t) + N7 (e)u(t), @) -2 ’
, . wit
with M*(e) andN*(¢) defined in (3) for any € Z. The aim Pi(e) = Py + Py PP (33)
of this section is to design a state-feedback control law N ° ’
u(t) = K70 (e)a(t) (24)  Py(e) =ePy= —e> M}y (MJyP, + NI'ZP),  (34)
stabilizing the closed-loop system (23) for any switchiawg.| h=1
Py(e) = eP, (35)
Lemma 2: If there exist matricesP(¢) = P(e)’ > 0, ; ; PR
Qi(e) = Qi(e) = 0 and Zi(¢) of appropriate dimension Zi(e) = Zp +eZ PR, (36)
such that LMIs Z%(E) — E(Z; + Z}P;1Y1)7 (37)
Mi(e)P(e) + P(e)M(e) + N(e)Z(e)+ . L
©PE) + POME) + N@ZE+ o0 Qi) = Q. -

Zi(e)' Ni(e) + Q'(e) < 0

i _ i i r7i p—1\v i i ! RN
are verifiedV: € =, then the state-feedback control law Q5(e) = —((M7, +NlZfPf )Y' + PrMy, + 25 Ny );

(24) stabilizes asymptotically the continuous-time shtd i i i i i 1N (39)
system (23), withK () = Zi()P(e) 1. Q3(e) = E(Qfl_ (M/ﬂ + N2Z.f/Pfll Y- (40)
Yi'(Mg, + P2y NY)

As in the stability analysis case, whenis small some nd
difficulties to compute the gaink™(¢) arise. This problem N
is due to the ill-conditioning of the constraint (25) and can Yi=— Z M{fl(M{gPs + NP Zh). (41)
be avoided decomposing the two-time scale system into two h=1,h#i
well-behaved subsystems, the slow and the fast manifolds T : .
[8]. The following theorem gives LMI conditions which Substituting (3) and (30)-(32) In (25), we have:
verify the stability of the system (23) independently of [Xi(E) Xﬁ_(E)] (42)
for any switching law. X3(e)" Xi(e)

_ : ey with X{(e), X4() and Xi(¢) defined in the next page (equa-
Thieoremizl. Assurr;e that therle exist nzatrlc%; =Py > tions (43)-(45)). Replacing the values Bie), Z(c), Q' (c)
O'Z_Qf = Qf - 0, Z_f’ P - P = 0,Q, =Q; » 0and and the equations (6), (33)-(41), we obtain the equations
7' of appropriate dimension such that LMIs (46)-(48) (see the next page).

M}, Py + Py M}, + NiZ% + Z}/N{" +Q%F <0, (26) The equation (42) can be written as

MiP,+PM" +NiZi+ Z'NV + QP <0,  (27) e (X} +0(e) e(X5+0(e))
S S S S S S S 7 i . (49)
i i i (%) e(Xs +0(e))
Q; FNiz; 0 - | _
(x) G yi! NEZ} +y For assumptionX; < 0 and X; < 0. This means that
) ) Py 0 =0 (28) there exists a scalaf,,., > 0 such thatX! + O(s) < 0
*) %) () P; and X} — e2XiXiT'Xi + 0O() < 0, Vi € = and
N Ve € (0,emaz]. Hence, using the Schur complement, the
are verifiedvi € 2, with Yi = —  $° Mﬁ_l(Mlths + LMI (25) is verified. SinceP; - 0 and P >~ 0, the LMI
h=1,h#i (30) holds. Furthermore, substituting (38)-(40) in (32 w

NIz, Ft = —(M},Y' + Py Mi," + Z}/Ng") and G' = obtain the LMI (50) which, using the Schur complement,



Xi(e) = e Y My Pi(e) + Pi(e) My + MiyPa(e) + Po(e)Miy + NiZi(e) + Zi(e)' Ni' + Qi(e)), (43)

Xi(e) = eI Mi  Pa(e) + e My Ps(e) + Pi(e) M3y + Pa(e) My + e NI Zi(e) + Zi(e)' N3 + Qi(e), (44
Xi(e) = MiyPs(e) + P3(e) My + My Po(e) + Po(e) Mi, + NiZi(e) + Zi(e)' N3 + Qs(e). (45)
Xi(e) = e Y (M, Py + PyMiy + NiZi + ZVNi' + Q% + 0(e)) = e 71X} + O(e)), (46)
Xi(e) = e(PyMy + O(e)) = e(X3 + O(e)), 47)
Xi(e) =e(MLP, + PSM;" +NIZi 4 Zz/Nj/ +QL+0(e)) = (X! 4+ 0O(e)). (48)
: -1 : —((Mjy + N{ZiP7 )Y + PpMs, + 2 N
Qz(g):[f I, 0} Qf/ i ((i11+i1if_f1 )l Jri/f 31/+ i» 21‘2 y |:In1 0 }>0 (50)
0 Ina] |(0)" QU= (M3 + N3ZyP; )Y =Y (M3 + P Zy N3 )| [0 eln,
Qp+NMZyPZy Ny (MY MY+ ZPNY)  Njzp 0
(%) QL — M3\ Y*' =Y M3y + N3Zy P Z Ny + YV PIY! YD N§Zp+ Y5 |
(%)’ 5% Py 0
(%)’ (%) ()’ Py
(51)

is verified if and only if (50) holds. (28) is no negativewhere K! = Z!P ! are the controller gain of the slow
definite. This implies that the constraint (51) holdsc =.  subsystem and stabilize asymptotically the switched ayste
Thus, also LMI (32) holds. Equations (50) and (51) ar¢23)Vi € = andVe € (0, emaz)-
defined in the next page. Notice that in this case (26) implies that the fast subsystem
must be asymptotically stable in open loop.
In order to findK?, consider
Remark 3: The conditions given in Theorem 2 are the

— % _ zip—1
us(t) = Kyxa(t) = Z,P7 xs(t) (52) design version of the conditions proposed in Theorem 1.
and Thus, conditions of Theorem 1 can be recovered setting
up(t) = Kjap(t) = ZpP; ay (8). (53) Zj=2Z.=0foranyic.

The composite controller is

X , VI. NUMERICAL EXAMPLE
uc(t) = us(t) +up(t) = Kows(t) + Kpayp(t). (54)

Let a continuous-time switched system in the singular

Letting zs(t) = wa(t) and zs(t) = _lxl(t) T perturbation form (4), wittE = {1,2}, ¢ = 0.005 and
My, (1‘4(%:65@) + Njus(t)) = a1(t) + Mj, (M, + 0 1 0 G
N1K%)z,(t), we have 1 1 _
(t) = 2P aa(t) + Z3P; () + el 2}7M12_ [1'5 0],
uc(t) =2, P, "x T -
. 2- . f f 1- . (55) Ml _ 0 0 Ml _ 0 1
ZEPIMY (Mg + N{ZIPT )aa(t). 27 -06 —05]7 727 |21 0]’
When ¢ — 0, substituting (30) and (31) inKi(s) = N} = {0 ] , N} = [0}7
Z(e)iP(e)"" and applying the formula of the inverse of __1 0
partitioned matrix, we find (55), which concludes the proof. vz =0 L e 1000
m 11 __3 -5 12 0o 0|’
Remark 2: LMI conditions of Theorem 2 withZ} = 0 M2 = [0 0 M2 0 0.7
lead to the reduced control law 207103 —02(”72 710 o]’

e R I
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Fig. 6. Closed-loop response in the continuous-time wiltstate-feedback
controller (solid line) and reduced state-feedback cdietr¢dotted line)

(2]

3]
The subsystem is open loop unstable and the subsystem
2 is characterized by a state-space matrix with zero eigen4]
values. Theorem 2 leads to the following controller gains:
K'=[0.4040 0.1511 —65.3601 —60.3074],
K?=[-0.4110 -0.5931 —147.6057 —137.0206].

(5]

(6]
Since M}, and M2, are Hurwitz, a reduced control law may :
-

also be proposed:

K!=[0 0 —99.0779 —88.5710],
KZ2=1[0 0 —347.0992 —310.4213].

(8]
El
Consider the switching law given in Fig. 5 and the initial
conditionz(0) = [0 0 1 0], Fig. 6 shows the results,
with z(t) = [211(t) @12(t) x21(t) a20(t)]". The solid [11]
line represents the state variables evolution using thee ful
state-feedback controller gaid§' and K> while the dotted 15
line represents the state variables evolution using thecest
state-feedback controller gaid§' and K2. Fig. 7 shows the

control signal evolution. [13]

VIl. CONCLUSION

In this article, asymptotic stability of two-time scale
switched systems was investigated. We showed that asymp-
totic stability of slow and fast switched subsystems dods n?15]
imply the asymptotic stability of the corresponding twioni
scale switched systems in the singular perturbation form.
A coupling constraint must also be considered. Hence, wéfl
presented LMI conditions to assess asymptotic stability of
two-time scale switched systems under an arbitrary switghi

[14]

Fig. 7.
feedback controller (solid line) and reduced state-feekllsantroller (dotted

1 P. Kokotovic.

u(t)

0 1 2 3 4
t (sec)

Control signal evolution in the continuous-time lwiull state-

law. For the same class of systems, we also provided state-
feedback control design. A numerical example shows the
validity of our approach.
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