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Abstract. The aim of this paper is to investigate the stabilization of a hybrid system
composed of a plate equation with variable coefficients and two ordinary differential
equations under some suitable feedbacks. A rational energy decay rate is established by
the multiplier method and the Riemannian geometry method, and the uniform energy
decay rate for a simplified system is obtained.

1. Introduction. We consider the stabilization problem of a hybrid system with
variable coefficients where, for convenience, our problems start out on a Riemannian
manifold M of dimension 2 with a metric g = (•,•). For the classical case where M = R2
and g is the dot product, the problem mentioned above has been well studied by Rao [1]
and others. Here we use the Riemannian geometry method to obtain the stabilization
results for the elastic plate with variable coefficients and dynamical boundary control.
This method is first introduced into the boundary control problem by Yao [2] for the
wave equation.

Our paper is organized as follows. In Sec. 2, we introduce some notation with which
we are working. In Sec. 3, we establish the rational energy decay rate for the smooth
solution to the system. In Sec. 4, we consider a simplified plate model, and obtain the
uniform energy decay rate of the system.
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2. Some notation. We introduce some notation in the Riemannian manifold in
preparation for our system of the elastic plate with dynamical boundary control. It
should be mentioned that all definitions and notation in this section are standard and
classical in the literature.

Let (M,g) be a Riemannian manifold with Riemannian metric g = (■,■). For each
x G M, Mx is the tangential space of M at x. We use x(M) for the set of all vector
fields on M. Denote the set of all fc-order tensor fields and all fc-forms on M by Tk(M)
and Ak(M) respectively, where k is a nonnegative integer.

It is well known that, for each x G M, the fc-order tensor space Tk on Mx is an inner
product space, and its inner product (•,•) is defined in the following way. Let e\,e2 be
an orthonormal basis of Mx, and for any a,/3 G Tk, x G M, define

2

{a,/3)Tk= ^2 a(eil,...,eih)(3(eil,...,eik) at x. (2.1)

Let £7 be a bounded region of M with a regular boundary T. Then Tk(Q) is an inner
product space with inner product (•, ■) in the following sense:

(Ti,T2)Tfc(fi) = [ {TuT2)n dx, TuT2 g Tk(n), (2.2)
J n

where dx is the volume element of M in its Riemannian metric g.
The completion of Tk(Q) in the inner product (2.2) is denoted by L2(fl,Tk). In

particular, L2($7, A) = L2(f2, T). The completion of C°°(fi) in the following inner product
is defined by L2(fl):

{f,h)L2(Q)= ( f(x)h(x)dx, f,heC°°(fl). (2.3)
Jn

Let D be the Levi-Civita connection on M in the Riemannian metric g. For U e
x{M),DU is the covariant differential of U, which is a second-order covariant tensor
field in the following sense:

DU(X, Y) = DyU(X) = (DyU, X), VX,YeMx, x G M. (2.4)

For any T G T2(M), the trace of T at x is defined by
2

tr T = (2.5)
i=1

where ei,e2 is an orthonormal basis of Mx. It is obvious that trT G C°°(M) if T G
T2(M). The exterior derivative d: Ak(M) —► Afc+1(Af) satisfies d2 = 0. There is a
first-order differential operator 5: Afc+1(M) —> Ak(M), which is the formal adjoint of d
and characterized by

(da,/3)L2(0jAfc+i) = (a, 5/3)L2(n,Afe)i

for a G Ak(Q) and /? G Afe+1(f2) with compact support.
The Sobolev space Hk(i1) is the completion of with respect to the norm

ll/llfffc(fi) = Ei=i W&fWlw) + ll/lli2(n)' for f G where Dlf is the zth
covariant differential of / in the metric g, and || ■ ||x,2(n,T'=)) II ' lli2(n) are the induced
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norms in the inner products (2.2), (2.3), respectively. For details on the Sobolev spaces
on the Riemannian manifolds, we refer to Hebey [3] or Taylor [4],

The following Green formulae are due to Taylor [4, Chapter 2, §10]:

(da,/3)L2(QAfc+i) = {a,Sp)L2(QAk) + L (v A a, p)Tk+1 dY (2.6)

for a G Afc(fi) and /? G Afc+1(fi) and

(6a,(3)L2(n,Ak) = (®,df3)L2(n Ak+i) - L {lv/\ a, (3)^ dY (2-7)

for a G Afc+1(f2) and (3 € Afc(f2), where dr is the line element of T and v is the unit
normal of Y pointing towards the exterior of T. For a G Afe+1(f2) and the unit normal
v, lva G Tk(Ti) is defined by ...,Xk) = a(v, Xu ..., Xk), VX\,..., Xk G X(H)
and A is the exterior product of differential forms.

In the case of dimension 2, the Ricci tensor is a second-order covariant tensor field,
given by

2
Ricci(X, Y)(x) = R(ye^F)> vx>Y e M*> x e M> (2.8)

i=1

where e\, is an orthonormal basis of Mx and R is the curvature tensor of the Levi-Civita
connection (for details, see Wu [5]). It is easy to check from (2.8) that

Ricci(X, Y) = k{x)(X, Y) VX, Y G Mx, xe M, (2.9)

where k(x) is the Gaussian curvature function on M. We denote by A: C2(R2) —► C(R2)
the Laplace operator in the Riemannian metric g. Then we have

= Wi s C2(R2), (2.10)

where gtj = g{gfj-, gfj), G{x) = det(&_,•), and gikgk3 = Sf, x = (xi,x2) is the classical
coordinate system.

It follows from Yao [2, Lemma 2.1] that

A h=Y V V/iG
^ \dx%dx3)t,j=i x /

We will use many times the following divergence formulae:

Cl{Rz). (2.11)

/ divXdx = / {X,v)dT, (2.12)
J si Jt

where divX is the divergence of the vector field X in the Riemannian metric g, and v is
the normal of Y pointing towards the exterior of T.
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3. Rational energy decay rate. We keep all the notation as in Sec. 2. Let
denote a bounded domain in the Riemannian manifold (M,g) with smooth boundary
F consisting of two disjoint parts F0 U Ti = T. Here we will consider a curvy plate
with the dynamic boundary whose middle surface, is part of a surface M and where
the extension effects along the tangential direction are neglected. We assume that the
material undergoing change obeys Hooke's law. Then the potential energy is to be defined
by

Pn = f [(1 - p)\D2y\2 + p,(tr D2y)2}dx, (3.1)
J a

where y is the displacement of the plate along the normal and 0 < p < \ is the Poisson
coefficient. The energy produced by the dynamic boundary is to be defined by

Pr = J f \d„y'\2dr + p[ \y'\2 dT, (3.2)
Jri Jri

where p > 0 is the linear boundary density and J > 0 is the bending moment of inertia
of the boundary.

If there is no external force, then the equations of motion for y are obtained by setting
to zero the first variation of the Lagrangian:

rT[\y'\2 - Pn(y) - PrAv)\dt (3.3)
/Jo

(the "Principle of the Virtual Work"). Then the variation of (3.3) is taken with respect
to kinematically admissible displacements.

We obtain, as the result of calculation by the variation of (3.3), the following system:

y" + A2y — (1 — p)6(k dy) = 0 in $7 x [0, oo),

y = dvy = 0 on T0 x [0, oo),

Jdvy" + Ay + (1 - n)B\y = 0 on Ti x [0, oo),
py" - dvAy - (1 - p)B2y = 0 onTi x [0,oo),

2/(0) = 2/o, 2/'(0) = 2/1 on 0,

where v is the unit normal along V pointing towards the exterior of T and A: C2(M) —►
C(M) is the Laplace operator in the Riemannian metric g. In the above equations, k
is the Gaussian curvature function on M; d is the exterior derivative; 5 is the formal
adjoint of d; B\,B2 are the boundary operators defined by

B\y — —D2y(T,r) (3.4)

and
r\

B2y= ~^{D2y{T, v)) + kdvy, (3.5)

respectively, where D2y is the Hessian of y, which is a second-order tensor, r is the
tangential along curve F, and duy = = (v,Dy). In this section, we will consider the
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control problem:

y" + A2y — (1 — /i)S(kdy) = 0 in x [0, oo),
y = dvy = 0 on T0 x [0, oo),

Jdvy" + Ay + (1 - n)B\y = m onTi x [0, oo), (3.6)
py" - dvAy - (1 - n)B2y = f onTi x [0, oo),

2/(0) = 2/o, 2/'(0) = 2/1 on n,

where m, f are the feedbacks to be defined by

m = -dvy', f = -1/'. (3.7)

Also, we will establish the rational energy decay rate for the smooth solution of system
(3.6) and (3.7).

Remark 3.1. The term (1 —fj,)5(kdy) in the system (3.6) comes from the curvedness
of the metric. For the flat case where M = R2 and k = 0, system (3.6) is the same as in
Rao [1],

Well posedness and regularity. In the following, we will discuss briefly the well
posedness and the smoothness of solutions to the system (3.6) and (3.7). The idea is the
same as in Rao [1] since the variable coefficients do not influence the regularity of the
problem.

Let

Ay = A2y - (1 - n)S(kdy).

By Lemma 3.1 below, the equation in (3.6) then becomes

y" + Ay = 0.
By a similar argument in the sense of a semigroup of contractions in [1], we can obtain

the existence and uniqueness of a solution to the system (3.6) and (3.7).
Let S = {u = (y, 2,£,t?) € W x H2o(f2) x L2(ri) x L2(ri)} such that £ = duz\rl and

77 = z|rj, where W is defined by

A2jel2(Sl),

W = < Ay + (1 - n)Biy = vx e L2(Ti),
[c>i/Ay + (1 - n)B2y = v2 e £2(Fi).

If the initial data uo G S, then system (3.6) has a solution y satisfying

y(t) e C°(R+;H§) n C1(R+; H2o(n)) n C2(i?+; L2(f2));

y\Tl e C2(R+; L2(Ti)); dvy\Tl € C2(R+;L2(rj).

By the elliptic theory, we can obtain the regularity of the solutions to the system (3.6)
and (3.7). In fact, if initial data y(0) = yo G i/p^+2(Q), yt(0) = yi £ H^+2( 17), for
k > 1, then we have (yo> 2/1) ̂yi Iri., 3/i |ri) £ S. Therefore, system (3.6) has a solution
y(t) satisfying

(y(0), yt (0), dvyt (0) |ri, yt0) |rx) = (yo,yi,dI/y1\r1,yi\r1)-
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On the other hand, we have

ytt(o) - -Ay(o) e H4rko-2(n)-

j/t(0) = t/1e^+2(fi)c^o(O).

Set (f> = yt. Then <f> satisfies

4>tt + A(j) — 0,
<t>\r0 = dv4>\T0 = 0;

Jdv4>" + A<p + (1 - n)Bi<f> = mi,
p<t>' - dvA<j> - (1 - n)B2<t> = fi,

with initial data {yt(0),ytt(0),dI/ytt(0)\r1,ytt{.0)\T1) G S.
From the system (3.6), we obtain that ytt is a strong solution of the system with initial

data (yt(0),ytt(0),<9^(0)1^,2/tt(0)|ri) G S, and therefore we have

ytt G C2(R+; L2(fl)), ytt\Tl G C2(R+-,L2(Ti)), dvyttk G C2 (R+■ L2 {Y,)),

and

(Utt)tt + Ayu — 0,
+ (1 - p)Biytt = -dv(yu)t ~ Jdv{ytt)tt, (3-8)

^-dvAytt - (1 - fJ.)B2ytt = -(ytt)t - p{ytt)tt-

By system (3.6) and (3.8), we have

A~y = (ytt)tt G L2(£l),
Ay + (1 - pi)Biy = -dvyt - Jdvytt G //2(Fi),
-d„Ay - (1 - p)B2y = -yt - pytt £ #2(Fi).

It is easy to check that A is an elliptic operator (see Taylor [4]). Thus from elliptic
theory, we obtain y G If the initial data have more regularity, then we obtain
more regularity of solutions by repeating the above steps.

The following formula is key to our problems, which is something like the classical
Green's formula presenting the relationship between the interior and the boundary.

Lemma 3.1. Let y,u G H4(fl) be given such that all the terms in the following formulae
are well defined, where F is a closed curve. Then we have

/ [A2y — (1 — p)S(k dy)\u dx = / a(y,u)dxJ q ' .hi
- j[Ay + (1 - p)Biy\^dY + j + (1 - p)B2y]udY,

(3.9)

where

a(y,u) = (1 — p)(D2y, D2u)T2 + /x(tr D2ytr D2u). (3.10)

Proof. Since y is a function, we have 6y = 0, and

8Ah dy = 5d5dy — A2Hy, (3-11)
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where Ah is the Hodge-Laplacian on forms, and Ah = —A if it is applied to functions
and Ah dy = —dAy.

Since dy = Dy, it follows from Yao [6, Theorem 2.2], and formulae (2.6), (3.11) that

f /n2„. n2
Jq(D y, D u)T2 dx

= (Ddy,Ddu)L2(n,T2) = / (Ddy,Ddu)dx,
J o

= / [(A// dy — k dy, du) dx + / (Dvdy,du)dT,
id ir

= / (A2Hy - 8{kdy))udx (3.12)
Jn

+ J u[(u, AHdy)-k^]dT + J D2y{v,du)dT,

= f [{A2y — 5(k dy))u\dx
Jn
+ J^[D2y(u, v)% + D2y(y, r)f ] df - jf «[^ + fcgji] dr.

Since tr D2y = Ay, by Green's formula, we have

/ tr D2ytr D2u dx — / A2yudx + /
J n in ir

<9u 5Ay
Ay--u—±

ov ou
dT. (3.13)

Since F is a closed curve,

J D2y(v,T)^dT = - J u^(D2y(v,T))dT. (3.14)

Furthermore, we have

Ay = D2y{y, v) + D2y(r, t) on F. (3.15)

By (3.11)—(3.15) and (3.10), we get formulae (3.9). □
Let H be a vector field on the Riemannian manifold (M, g) such that

DH{X,X) = b{x)\X\2 VXeMx, x eU, (3.16)

where b(x) is a function on fl. We also assume that the vector H satisfies

bo = min&(x) > 0 (3-17)

and

(H, v) <0, Vz e r0; (H, u) > 0 Mx e Ti. (3.18)

We say that the vector field H satisfies Assumption A if H is such that relations (3.16)-
(3.18) hold. We say that the vector field H satisfies Assumption B if H is such that not
only conditions (3.16)—(3.18) hold but also the following inequality is true:

20i(02 + 03)<1, (3.19)
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where

62 — max\k\\H(x)\, (3.20)

93 = ma.x\D2H(x)\, (3.21)

k is the Gauss curvature function, and 6\ is the best constant such that the following
inequality is true:

[ \Dy\2 dx < 6\ [ a(y, y) dx Vy € H2o(Q). (3.22)
Jn Jo.

Remark 3.2. The geometric condition (3.16) is used in Yao [7] for some observability
inequalities of the Euler-Bernoulli equation with variable coefficients. For any Riemann-
ian manifold, the existence of such a vector field on f2 C M has been proved by Yao
[8]. Assumption A is enough to get the uniform stabilization of the simplified model; see
Theorem 4.1 in Sec. 4. However, since we encounter difficulties when we try to use the
traditional method of compactness-uniqueness to eliminate the lower term in the proof
of Theorem 3.1 below, we make assumption (3.19) to overcome it. For the classical case
where H = x — xq and k = 0, Assumption B is true since D2H = 0, and therefore we
have 9\ (02 + #3) = 0. One can also find some other nontrivial examples in Yao [8] to
satisfy Assumption B.

Furthermore, set

T{G,F) = (1 -n)(G,F) + ntiGtiF,
where G, F are second-order tensors and

L{y) = R(Dy,;H,-) + D2H(Dy,-,-),

where denotes the position of the variable. It is easy to check that a(y, y) =
T(D2y, D2y).

Lemma 3.2. Letting H satisfy (3.16), we have

I a(y,H(y))dx =\ [ a{y, y)(H, v) dT + [ ba(y,y)dx
Jn 1J r Jn

+ / T(D2y,L(y))dx.
(3.23)

- v-12"
JQ

Proof. Given x £ f2, let E\,E2 be a normal frame field normal at x. By the following
identity (see Wu [5, §2, Lemma 4]),

D2T{---,X,Y) = D2T(■ ■■:Y,X) + (RxyT){■ ■ ■), (3.24)
we have

D2(H(y))(Ei,Ej)
= EjEi(Dy(H)) = Ej(D2y(Ei, H) + Dy{DEiH))

= D:iy{El,H,E3) + D2y{E^DE.H) + Ej(Dy,DEM) (3.25)
= DH(D2y)(Ei, Ej) + R(Dy, Ei, H, Ej)

+ D2y{Eu DEjH) + Ej(Dy, DEiH) at x.
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Since (DEiEj)(x) = 0 for 1 < i, j < 2,

Ej(Dy,DE H) = D2H(Dy, Et, Ej) + DH(DE Dy, Ei)
(3 26)

= lDyD2H{Ei,Ej) + D2y(DEiH,Ej) at x.

Inserting (3.26) into (3.25) yields

D2(H(y)) = DH(D2y) + D2y(-, D.H) + D2y(D.H, •) + L(y). (3.27)

On the other hand, given x £ fl, let E\,E2 be a frame field normal at x. By direct
computation, we have

2
H(trD2y) = DHD2y(Ei, Ei) = tr(DHD2y) at x. (3.28)

i= 1

Since D2y is a symmetric, second-order tensor field, we have by Yao [8, Prop. 2.1] and
formula (3.27)

(D2y,D2(H(y)))T2 = \H{\D2y\2n) + 2b\D2y\2 + (D2y, L(y))T,, (3.29)
tr D2ytr D2(H(y)) — ̂ H((tr D2y)2) + 2b(tr D2y)2 + tr D2ytr L(y). (3.30)

Combining the divergence formula with (3.29) and (3.30), we obtain (3.23). □

Lemma 3.3. Let y £ H4(fl) satisfy the following conditions:

'yeH2o(n), A2y £ L2(fl),
Ay + (1 - n)Biy = vY £ L2(Ti), (3.31)
<9„Ay + (1 - n)B2y = v2 £ L2(Ti).

Then we have

/'A2J n

< -

[A y - (1 - fi)6(k dy)]H(y) dx

\ [ a(y,y)dx + C0 [ (|^i|2 + |v2|2) dT (3.32)
Jn Jrn.

[ T(D2y, L(y)) dx,
J n

+

where Co is a positive constant depending only on the domain U.

Proof. For a simple reason, we start with v\ £ H%(Ti), and v2 £ H^(T\). Since
y £ H4(C2), by Lemma 3.1 and Lemma 3.2, we have

Jn
[A y - (1 - n)8{kdy)\{H{y))dx

= [ ba(y,y)dx+ f v2(H(y))dT (3.33)
Jn J r

-J vxdv(H(y))dT + ̂  J a(y,y){H,i>) dT + J T(D2y,L(y)) dx.
Since y = duy = 0 on To, by Yao [7, Lemma 2.1], we have

du = Ay(H,v), B\ — 0, and H(y) = 0 on r0.
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Thus,

[ [&2y- (1 - fi)6{kdy)\{H{y))dx
JQ

= [ a(y,y)dx+ [ v2(H{y))dT
Jo. J rx

- ^ «idv(H{y)) dT + \jr a(y> ") + fn T(D'2y> L(y))dx

> [ a(y,y)dx + f v2(H(y))dT
Jo. JTi

~ [ vld„(H(y))dT+l- [ (1 - n)\D2y\2T2(H, v) dT + [ T(D2y, L(y)) dx.
JTi z Jri 1 Jn

(3.34)
Now a straightforward computation shows that

\d„{H{y))\ < \DH(Dy, u)\ + \D2y{H, u)\,

\dv{H{y))\2 < 2(\DH\2TJDy\2 + \D2y\2TJH\2).
It follows that, for any A > 0,

[ v1du(H(y))dr>-\ [ \Vl\2dr-^- [ \duy\2 dT

JU lT\ ^ (3-35)
~Tjr IDWrJT:

where r = supxeri\DH\tx and R = supxGri \H\, and

jT v2(H(y))dT>-xJ^ \V2\2dF-^J^ \Dy\2dT. (3.36)

Inserting (3.35), (3.36) into (3.34), we get

I [A2y - (1 - n)S(kdy)](H(y)) dx
Jn

> [ a(y, y) dx — X f (|vi|2 + \v2\2) dT (3.37)
Jfi J rx

-jxjr ^d-y\2 + r2\dv\2) dT + ja T(D2y> L(y))

provided A > We obtain (3.32) by taking A > 0 large enough in (3.37) such that

[ {r2\duy\2 + R2\Dy\2)dT < A [ a(y,y)dx Vj/6^0(O).
Jri Jn

If v\,v2 G L2(Ti), then by a standard argument of density (see Lemma 3.1 in Rao [9]),
the proof is complete. □

Let y be a smooth solution of the system (3.6)-(3.7). We define the associated energy
by

E(t) = \ \\y'\2 + a(y,y)\dx + J^(p\y'\2 + J\d„y'\2) dT^ .
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Then using equations (3.6), (3.7), and formulae (3.9), we have

— E(t) = —1|y ||^2(p) — 11dvy'\\2h2(F) < 0.

Therefore, E(t) is a nonincreasing function.

Theorem 3.1. Let Assumption B hold. For any smooth solution y to problem (3.6) and
(3.7), there exists a constant K > 0 depending only on the initial data of y such that
the following rational energy decay rate holds:

2 KE(t)<E{ 0)%—j. Vt>0. (3.38)

Proof. Letting 0 < T < S < +oo, we multiply the plate equation in (3.6) from both
sides by E(t)H(y) and integrate over Q x [T, S] by parts. We then obtain on one hand

[ [ E(t)H(y)y" dxdt
Jt Jo.

r S pS n

= - E{t)H(y)y'dx - E'(t)H(y)y'dxdt (3.39)
.Jn J t Jt Jn

+ \ f f E(t)A\v(H\y'\2)dxdt - \ [ f E(t)\y'\2{H,v) dTdt.
£ Jt Jn 1 Jt Jra

By the Cauchy-Schwarz inequality we have

' n
H(y)y' dx < C^it). (3.40)

Then it follows that

S rS
E(t)H(y)y' dx

Un
[ E(t)H(y)y' dx - [ [ E'(t)H(y)y' dxdt

Jn \t Jt Jn
fs

> -C1(E2(T) + E2(S)) + C1 J E'(t)E(t) (3.41)

> -2CiE2{T).

Inserting (3.41) into (3.39), we have

rs
[ E(t)H(y)y" dxdt>- 2C1E2(T) + b f [ E(t)\y'\

Jn Jt Jn

E(t)\y'\2 dT dt,
R fs (3.42)

2

where 6 = min^ b(x).

it Jr.
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On the other hand, by Lemma 3.3, we obtain

i-s
- [ [ E(t)H(y)[A2y + (1 - fi)S(kdy)] dxdt

Jt Jn

\ [S [ E(t)a(y, y) dx dt + [ E(t) [ T(D2y,L(y))dx (3.43)
* Jt Jn Jt Jn

< -- 2

+ Co f [ E{t)(\py" + y'? + \Jd„y" + dvy'\2) dTdt.
Jt Jri

Therefore, combining (3.42), (3.43) and the plate equation, we have

rs
E2{t) dtLT

S
2

+

(T) + f E(t) f T(D2y,L(y))dx (3.44)
Jt Jn

C2 f f E(t)(\y'\2 + \d„y'\2 + \y"\2 + \d„y"\2) dT dt.
j t j r i

< 2C\E

rS

We now eliminate the term E(t) JQT(D2y, L(y)) dx in (3.44) by the assumption

(3.22).
By the Cauchy inequality, we have

(3.45)

(3.46)

'/ T(D2y,L(y))dx] < f T(D2y,D2y)dx [ T(L(y),L(y)) dx
\Jn J J n Jn

= [ a(y,y)dx [ T(L(y),L(y))dx.
Jn Jn

On the other hand, it is not difficult to obtain

T(R(Dy,;H,-),R{Dy,;H,-))
= (1 - n)\H\2k2\Dy\2 + n(H(y))2k2 < k2\H\2\Dy\2

and

T(lDyD2H,lDyD2H) < |D2H\2\Dy\2. (3.47)

From (3.46), (3.47), by the Cauchy inequality again, we have

[ T(L(y), L(y)) dx < (02 + 03)2 f \Dy\2 dx
Jn Jn

< 0\{02 + 03)2 [ a(y,y)dx t3'48)
Jn

<2 e2(e2 + e3)2E(t).

Combining inequalities (3.45) and (3.48) yields

rS p pS

/ / T(D2y,L(y))dxdt < 26>i(02 + 03) / E2(t)dt. (3.49)
Jt Jn Jt
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By (3.44), (3.49) and (3.22), we get
rs

?2(J E2(t) dt < 2CiE2(T)
rS

+ C2E(T) f [ (\y'\2 + \duy'\2 + \y"\2 + \d,y"\2)dTdt,
J T J P J,

where the constants C\, C2 may be different from those in (3.44).
Now define the energy of high-order Ei (t) by

Ei(t) = ^{I^a(y,y) + \y"\2) + Jjr \dvy"\2 dT + p \y"\2a

Then by Lemma 3.1, < 0. Thus,

(3.50)

dt

rS
E2{t)dt<KE{t)E{ 0), (3.51)

/, "
2 /ll„, i|2where we have put K = 2C\ + C2 + C2ll-E^i(0)||2/||uo||^

Finally, we deduce the rational energy decay rate from (3.51) according to the following
classical result (see Komornik [10] and Lagnese [11]). □

Lemma 3.4. Let E: R+ —> R+ be a nonincreasing function. Assume that there exists
a positive constant K such that

/;

Then we have

E2(t) dt < KE(0)E(T), VT > 0.

v*>o.

4. Uniform stabilization of a simplified model. In this section, we consider the
following simplified model, in which the bending moment of inertia of the boundary J is
neglected:

y" + A2y — (1 — n)S(kdy) = 0 in Q x [0, 00),
y = duy = 0 on F0 x [0, 00),

Ay + (1 - p)Bxy = -d^y' onTixjO, 00),

py" - duAy - (1 - p)B2y = -y' on Ti x [0,oo).

(4.1)

Let

W

fy€H2o(Q), A2y€L2(Q),
y'eH2o(Q), y'\ri e L2^),
Ay + (1 - p)Biy = vi e L2(T 1),
dvAy + (1 - n)B2y = v2 € L2(Ti).

(4.2)
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Remark 4.1. By the same arguments as in Sec. 3, we can get the well posedness and
smoothness of the solution to the system (4.1), but we omit it.

Now let y € W fl H4(Q) be a solution of (4.1). Then we define the associated energy
by

E(i) = \ {^(l^'l2 +a(.y>y))dx + P ly'|2dr|- (4-3)

Therefore,

jE{t) = - ^ (\y'\2 + \duy'\2)dT < 0, (4.4)

that is, E(t) is nonincreasing and

E(T) = E(0)- [ [ {\y'\2 + \dvy'\2)dTdt VT > 0. (4.5)
Jo Jr\

For T > 0, set

Q = (0,T)xfi; S = (0,T)xr;
E0 = (0,T)xr0; Si = (0,T) x IY (4.6)

Lemma 4.1. Let H satisfy (3.16). Let ybea smooth solution to the problem (4.1) whose
initial data uq £ W. We then have the following identity:

[ b(y'2 + a(y,y)) dQ + p [ by'2
JQ J Ei

= p [ by12 dT,+ \ [ [y'2 - a{y, y)] {H, v) dT,
JT, i JE

+ I (a2/+ C1 - n)Biy]dv{H(y))dY> (4.7)
J E

- Jjd„(Ay) + (l-p)B2y\H(y)dZ

' dx +lot(y),
0

f H{y)y'<
\JQ

where lot(y) is the lower-order term with respect to the energy E(t), defined by

lot(y) = [ T{D2y,L(y))dQ. (4.8)
JQ

Proof. By multiplying Eq. (4.1) by H(y) and integrating over x [0, T], we obtain
on one hand

[ y"H(y) dQ — f [ y'H(y)dx] + [ b\y'\2 dQ
■JQ \Jn / o JQ

-\f (H, v)\y'\2 dS.
•/Ei

(4.9)
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On the other hand, by using Lemmas 3.1 and 3.2, we have

[ (A2y-(l-f,)S(kdy))H(y)dQ
Jq

(4.10)
= \ / a{y,y){H,v)d£ + / ba(y,y)dQ + lot(y)

Jz JQ

- J [by+ {l-ti)B1y]dv(H(y))dL

+ J [dv(Ay) + (l-^)B2y]H(y) dE.

The combination of formulae (4.9), (4.10) with Eq. (4.1) yields identity (4.7). □
We now have the following.

Theorem 4.1. Let Assumption A hold. For any solution y to the system (4.1), there
exist two positive constants K and ui such that

E(t) < KE(Q)e-Ut, Vt > 0. (4.11)

Proof. To get the uniform stabilization, it will suffice to prove that there are a time
T > 0 and a constant Ct, which is independent of the solution y, such that

E(T)<Ct[ {\y'\2 + \duy'\2) dYi. (4.12)
J Ei

Indeed, if inequality (4.12) were true, then inequalities (4.4) and (4.12) together would
imply

E(T) £ tt!v£,0);

so we have the uniform stabilization.
In the following, we prove inequality (4.12).
For x € r0, y = dvy = 0 imply Dy = 0. Then

H(y) = 0 \/x £ T0. (4.13)

We therefore have

D2y(r,T) = D2y(T,v) = 0 Vx G IV (4-14)

It follows from (4.14) that

dv(H(y)) = D2y{v, H) = (H, v)D2y{v, v) = (H, u)Ay Vx £ r0, (4.15)
B\y = B2y = 0 Vx e r0, (4-16)
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and

a{y, V) = (1 - u){D2y{v, v))2 + n{D2y(iy, u))2

= {D2y{v, i/))2 = (Ay)2 Vz e r0.

By (4.13)-(4.17), we obtain

icE
0

[ d„y'dv{H{y))
JZi

<e f \D2y\2dT + Ce f \d„y'\2dT + f \Dy\2 dT
t/Ei Ei */Ei

T
<e [ \D2y\2 dT + C£ f \d„y'\2 dT + C [ \\y\\2H3/,(n)dt

»Ei -/Ei JO

= e [ \D2y\2 dT + CE f \dvy'\2 dT + lot(y).
J Ei J Ei

In addition, it is easy to check that

= ~P

<

\dT

T

(4.17)

\ [ \y2 - a(y,y)\dT + j [Ay + (1 - n)Bxy\dv{H(yj) <
J En J So

f [d.(Ay) + (1 - n)B2y]H(y) dT (4.18)
■/So

i/ (Ay)2 dT + f (Ay)2(H, v) dT <0
J Eq J So

since (H, v) < 0 for x £ To-
Since \du{H(y))\ < C(\Dy\ + \D2y\) for x £ Ti, we have for any e > 0

idS

(4.19)

[ (py" + y')H(y) <■/Ei

[ y'H(y)dc) +p[ y'H(y')dZ- [ y'H(y)dT (4.20)
J r i / J "Ei

CE{0) + C f (\y'\2 + \d„y'\2) dT + lot(y).
JT.I

Since Ti is closed, there is r) > 0 such that

(.H,v)>rj VxelY (4-21)
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Inserting inequalities (4.18)-(4.20) into identity (4.7), we obtain via the boundary
conditions in (4.1) and inequality (4.21)

[ b(y'2 + a(y, y)) dQ + p f by12
Jq Je i

dT

<C [ \y'\2 dT- (1 /)?? [ \D2y\2 dT
/S! 2

- f d„y'du(H(y))dT- f (py" + y')H(y) dT,
■/Ej J-Ei

~ (X y'H<"ys> dx)+iot^'

\D2y\2dT

CE{0) +C£ [ (\y'\2 + \dvy'\2) dT + lot(y).
Jt. i

(4.22)

-H

By setting 0 < e < (1 — fi)r]/2, it follows from (4.22), (4.4), and (3.17) that

that is,

b0TE(T) <b0 f E(t) dt < CE(T) + Ce [ (\y'\2 + \duy'\2) dT + lot(y),
Jo JSx

E{T) ~ bJ^C J* (l2//|2 + dYl + l0t(2/)' (4'23)

where T > 0 is appropriately large. By (4.4) again,

£(0) <CT [ (\y'\2 + lay I2) dT + lot(y). (4.24)
J Ej

Finally, we eliminate the lower-order term in (4.24) by the classical method, compact-
ness-uniqueness.

Let T > 0 be large but fixed. If this were not the case, there would exist a sequence
of solutions {yn} such that

£„(0) = 1 and [ (\y>nf + \d„y'n\2)dT->0. (4.25)
J Ei

Since lot(yn) are lower order, we may assume that

yn->y0 in i/^O, T; tf2(Q)); (4.26)
lim lot(y„) = 2/o■ (4.27)

n—* oo

It follows from (4.24), (4.25), and (4.27) that

E{0){yn - ym) <CT f (|y'n - y'm\2 + \dv(y'n - y'm)|2) dT
JEj (4.28)

4- \ot(yn -ym)-> 0 (as n, m -> oo).

This means that

Vn 2/o in i?1(0,T; H2(fl)). (4.29)
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We then get a solution y'0 to (4.1) that satisfies

y'o = dvVo = 0 Vx 6 rI. (4.30)

It is not hard to check from the boundary conditions in (4.1) that y'0 is a solution to the
problem

u" + A2u — (1 — /.i)S(k du) = 0 in (0, T) x f2,
u = d„u = 0 on (0, T) x Tg, (4-31)
u = Du = D2u = D3u = 0 on (0, T) x Ej.

By the exact controllability in Yao [7], yo = 0. However, relations (4.24), (4.25), and
(4.27) imply that lot(yo) = 1- This conflict shows that there is Ct > 0, independent of
the solution y, such that

E(0)<Ct[ (\y'\2 + \duy'\2) eE.
J Ei

Therefore, inequality (4.12) is true. □
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