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Stabilizing multiagent systems including unstable agents shows the advantage of cooperation. This paper addresses the problem of
stabilization of heterogeneous multiagent systems. Under cycle graphs, a sufficient condition for the stabilization problem via
harmonic control is provided and an algorithm of designing the interconnection gains is presented. Furthermore, a sufficient
and necessary condition for stabilization problem via harmonic control under cycle graphs is first given when the graph
contains less than 5 nodes.

1. Introduction

In recent years, multiagent systems have broad applications
in science and engineering areas such as consensus [1–11],
controllability [12–22], and optimal control [23–25]. Multia-
gent systems are concerned chiefly with structures of
networks and local information feedback including self-
state feedback and neighbor-state feedback. Designing
decentralized controller with local information to realize sta-
bility is a basic problem in large-scale systems andmultiagent
systems [26–38]. Kim et al. [27] proposed a problem of stabi-
lizability for multiagent systems with single-integrator
dynamics by using external control inputs. Guan et al.
extended the study to multiagent systems with general linear
dynamics [28]. It is noted that [27, 28] only consider the
identical agents. But in practice, many multiagent systems
have different subsystems. These systems are called heteroge-
neous multiagent systems. For example, agents of flocks or
satellite clusters might have different dynamic equations
from each other due to their different masses or different
structures [31]. In [32], a sufficient algebraic condition was
provided for stabilization of heterogeneous multiagent sys-
tems in the case of static topology. The basic requirement

of the sufficient condition in [32] is that each agent is stable
or can be stabilized through self-state feedback. In the case
where there exists an unstable agent which cannot be sta-
bilized via self-state feedback, how to use neighbor-state
feedback to stabilize multiagent systems is an important
issue. Designing the gains of neighbor-state feedback has
been applied in the plague control of some power networks
[31, 35]. However, there are rarely interesting results on such
problems until recent years. To this day, the results for stabi-
lization of heterogeneous multiagent systems are limited to
cycle topologies, and only sufficient conditions are obtained.
Reference [30] presented a sufficient condition for the stabi-
lization problem, in which designing interconnection gains is
called harmonic control and the system studied is composed
of two subsystems. In [31], Zhu provided a sufficient condi-
tion for the stabilization of heterogeneous multiagent sys-
tems under directed cycle graphs. It will be challenging to
explore necessary and sufficient conditions for stabilization
of heterogeneous multiagent systems. The main reason is
that heterogeneousness and complicated interconnections
make the problem tricky. Therefore, what conditions can
stabilize heterogeneous multiagent systems via harmonic
control is still an open problem.
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This paper studies the stabilization of heterogeneous
multiagent systems under directed communication topolo-
gies. The graphs include not only cycles but also paths, stars,
and trees. We extended the results of [31]. The contributions
are twofold:

(i) A sufficient condition for the stabilization problem
via harmonic control is provided under cycle graphs.
This condition is more general than the sufficient
condition given in [31]. Besides, an approach is intro-
duced to design the interconnection gains

(ii) When the multiagent system contains less than 5
agents, a necessary and sufficient algebraic condition
is presented for this stabilization problem under cycle
graphs. To the best of our knowledge, it is the first
time to provide necessary and sufficient condition
for stabilization problem of heterogeneous multia-
gent systems via harmonic control under cycle graphs

The structure of this paper is as follows. Section 2 pre-
sents some preliminaries and formulates the stabilization
problem of multiagent systems. Section 3 provides the main
results. Two numerical examples are given in Section 4 to
show the applicability of the obtained results. Finally, conclu-
sion is summarized in Section 5.

2. Preliminaries

Throughout this paper, the set of integers 1, 2,… , k is
denoted by ℕk. With vertices representing agents and edges
indicating the interconnections between them, graph theory
proves to be a natural framework for modeling and treat-
ment of multiagent systems. We consider directed graph
rather than undirected graph. A directed graph is denoted
by G = V ,E,A , where V = 1, 2,⋯, n and E ⊆V ×V

represent the vertex and edge set, respectively. An edge
eij = j, i ∈ G is represented by an arrow tailed at the node

j and headed toward the node i, which means node i can
receive information from j. The set of neighbors of node i
is denoted by N i = j ∈V eij = j, i ∈E, j ≠ i . The inde-

gree of a vertex k is the number of edges with head k.
And the outdegree of a vertex k is the number of edges
with tail k. If every possible edge exists, the graph is
said to be complete. A path of length N from 1 to N
+ 1 is an ordered set of distinct vertices 1, 2,⋯,N + 1
such that i, i + 1 ∈E for all i ∈ℕN . An N-cycle is a path
except for which 1 =N + 1, meaning the path rejoins itself.
A = ωij ∈ℝ

n×n is the adjacency matrix whose i, j entry

is 1 if j, i is one of G ’s edges and 0 otherwise. A tree graph
T i with root i is a graph that for each node other than i,
there exists one and only one path from i to this node. A
node is called a leaf if its outdegree is zero, and two nodes
are said to be in different branches when there is no path
from any one of them to the another. A graph G is said to
contain a spanning tree if there exists a tree whose nodes
are all those in V and edges in the tree are also in E. A
star graph is a kind of special tree graph whose root is a
neighbor of all nodes rest.

Let us consider a group of N linear agents with informa-
tion flow among them described by graph G = V ,E with
N = V , whose linear dynamics is

xi = Aixi + Biui + Fivi, i = 1,… ,N , 1

where xi ∈ℝ
ni is the state vector of the ith agent, and Ai ∈

ℝ
ni×ni , Bi ∈ℝ

ni×pi , and Fi ∈ℝ
ni×qi are real matrices. ui is the

self-state feedback law described by

ui =Hixi, i = 1,… ,N , 2

where Hi ∈ℝ
qi×ni . vi is the neighbor-state feedback law

described by

vi = 〠
j∈N i

K ijx j, i = 1,… ,N , 3

where K ij ∈ℝ
pi×n j . The closed loop system is x = Ax, where

x = xT1 x
T
2 ⋯ xTN

T
,

A =

A1 + B1H1 ω12F1K12 ⋯ ω1NF1K1N

ω21F2K21 A2 + B2H2 ⋯ ω2NF2K2N

⋮ ⋮ ⋱ ⋮

ωN1FNKN1 ωN2FNKN2 ⋯ AN + BNHN

,

4

where ωij is the entry of the adjacent matrix of the graph G .

Definition 1 [30]. The stabilization of a multiagent system is
said to be solvable if there exists feedback law (2) and (3) such
that the closed loop system (4) is stable.

In order to investigate more deeply the influence of
neighbor-state feedback on the stabilization problem, the
heterogeneous multiagent system (1) without self-state feed-
back gains is simplified to

xi = Aixi + Fivi, i = 1,… ,N 5

Lemma 1 (Routh-Hurwitz criterion) [39]. A necessary and
sufficient condition for polynomial

p s = sn + p1s
n−1 +⋯ + pn−1s + pn, 6

to be stable is that the determinants Δ1,⋯, Δn are all positive,
where

Δr =

p1 1 0 ⋯ 0

p3 p2 p1 ⋯ 0

p5 p4 p3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

p2r−1 p2r−2 p2r−3 ⋯ pr

, 7
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it is being understood that in each determinant, all the pi with
subscripts that are either negative or greater than n are to be
replaced by zero. Δr r = 1,⋯, n is named as the Hurwitz
determinant.

3. Main Results

In the section, we mainly investigate how to use neighbor-
state feedback to solve the stabilization problem when the
multiagent systems are still unstable after using their self-
state feedback.

3.1. The Case without Self-State Feedback. Directed paths
and directed cycles are basic ingredients for the investiga-
tion of stabilization of directed graphs. The analysis on
path and cycle graphs is expected to provide insights for
that of more complex structures. According to Appendix,
for path graphs, star graphs, and tree graphs, the stabiliz-
ability is not affected by the neighbor-state feedback. That
is to say, for path graphs, star graphs, or tree graphs, the
stabilization problem is solvable if and only if each indi-
vidual is stable or can be stabilized by its self-state feed-
back. Now, we consider the directed cycle graphs. The
following assumption will be taken into account for the
cycle graphs.

Assumption 1. Ai, Fi is controllable, where Fi ∈ℝ
ni×1.

For the cycle graph CN which is shown in Figure 1, the
system matrix of the closed loop is

A =

A1 0 ⋯ 0 A1N

A21 A2

A32 ⋱

⋱ AN−1

AN N−1 AN

, 8

where A1N = F1K1N , Ai i−1 = FiK i i−1 , i = 1,… ,N − 1.

For convenience, we address the definition of har-
monic polynomial of a diagonal block matrix M = diag
M1,⋯,MN .

Definition 2. For a diagonal block matrix M = diag M1,⋯,
MN , if its characteristic polynomial is α s ≔∑n

j=0ajs
n−j,

where a0 = 1, then the harmonic polynomial of M is

h s ≔ 〠
N−1

j=0

a js
N−1−j, 9

where aj is the corresponding coefficients of the polynomial

α s .

Theorem 1. Consider the heterogeneous multiagent system
(5) depicted by a cycle graph shown in Figure 1 with Assump-
tion 1. The stabilization problem via harmonic control is
solvable if the harmonic polynomial of diag A1,⋯, AN

is stable.

Proof 1. Since Ai, Fi is controllable, it is assumed, with-
out loss of generality, that Ai, Fi is in the controllable
canonical form.

Ai =

0 1

⋱

1

−aini −ai ni−1 ⋯ −ai1

,

Fi =

0

⋮

0

1

10

Design the general decentralized controllers as

v1 = K1NxN = kNnN
kN nN−1

⋯ kN1 xN ,

vi+1 = K i+1 ixi = kini ki ni−1 ⋯ ki1 , i = 1,… ,N − 1

11

Then, we obtain the closed loop system as x = Ax,
where A is of the form as (8), where

A1N =
0 0 ⋯ 0

kNnN
kN nN−1

⋯ kN1
n1×nN

,

A i+1 i =
0 0 ⋯ 0

kini ki ni−1 ⋯ ki1
n i+1 ×ni

, i = 1,… ,N − 1

12

N

1

2

3 i

Figure 1: A cycle graph.
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The characteristic polynomial of A is γ s = det sIn
− A After a series of column-addition transformations,
γ s can be written as

γ s = det

Â1 0 ⋯ 0 Â1N

Â21 Â2

Â32 ⋱

⋱ ÂN−1

ÂN N−1 ÂN

, 13

where

Âi =

0 −1

⋱ ⋱

0 −1

αi s ∗ ⋯ ∗

,

Âri =

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

−〠
ni

j=1

kijs
ni−j ∗ ⋯ ∗

14

αi s is the characteristic polynomial of matrix Ai, and ∗
stands for the number of no interest. r = 1 when i =N , other-

wise r = i + 1. Denote ∑
ni
j=1kijs

ni−j by θi s . Using Laplace

expansion along the rows including −1, then

γ s = det

α1 s 0 ⋯ −θN s

−θ1 s α2 s

⋱ ⋱

−θN−1 s αN s

=
N

i=1

αi s −
N

i=1

θi s

15

Let θ s ≔∑n−N
i=0 bis

n−N −i ≔ N
i=1θi s . Then,

γ s = α s − θ s = sn + a1s
n−1 +⋯ + aN−1s

n−N+1

+ aN − b0 sn−N +⋯ + an − bn−N
16

Since bi i = 0,⋯, n −N is not fixed, if α s is stable,
there exist appropriate values of bis which can make γ s
stable. For example, one can take n −N + 1 small enough
positive real numbers λ j = ε, where j = 1,… , n −N + 1

and ε > 0. Let

p s ≔
n−N+1

j=1

s + λj = s + ε n−N+1 = sn−N+1

+ p1s
n−N +⋯ + pn−Ns + pn−N+1

17

Using polynomial long division, the result of dividing
α s by p s is quotient g s = sN−1 + g1s

N−2 +⋯ + gN−2s +

gN−1 and remainder θ s . Since pi = Ci
n−N+1ε

i, it is obvious
that pi→ 0 as ε→ 0. Consequently, gi→ ai as ε→ 0, where
i = 1,… ,N − 1. That is to say, g s → h s as ε→ 0. It follows
that if h s is stable, then g s is stable. Let the characteristic
polynomial γ s be p s ∗ g s , accordingly γ s is stable.
Using polynomial factorization, K ij can be assigned by the

coefficients of the factors of θ s .

In the following, we propose an algorithm to obtain K ij in

which case Ai, Fi is in the controllable standard form. The
algorithm is described as follows:

Step 1. If Ai, Fi is controllable, then calculate the character-
istic polynomial αi s of Ai.

Step 2. Get the polynomial α s = N
i=1αi s .

Step 3. Take n −N + 1 small enough positive real numbers

εi > 0 to obtain the polynomial p s = n−N+1
i=1 s + εi .

Step 4. Divide α s by p s to obtain the remainder θ s .

Step 5. Factorize the polynomial θ s and K ij can be assigned

by the coefficients of the factors of θ s .

Theorem 1 provides a sufficient condition for the stabili-
zation via harmonic control under cycle graphs. To the best
of our knowledge, sufficient and necessary conditions for sta-
bilization via harmonic control under cycle graphs have not
yet been studied in detail. Due to the difficulty of the prob-
lem, we only provide sufficient and necessary conditions for
the stabilization via harmonic control under cycle graphs
with less than 5 nodes.

Lemma 2. If the polynomial (6) is stable, then the polynomial

q s = sm + p1s
m−1 +⋯ + pm−1s + pm 18

is stable, where m ∈ 1, 2, 3 and n ≥m.

Proof 2.

(i) If m = 1, then q s = s + p1. Equation (6) is stable; it
follows that p1 > 0. Hence, q s is stable.

(ii) If m = 2, then q s = s2 + p1s + p2. Since (6) is stable,
it follows that pi > 0, i = 1, 2. Thus, p1 > 0, p1p2 > 0.
By Routh-Hurwitz criterion, q s is stable.

(iii) Ifm = 3, then q s = s3 + p1s
2 + p2s + p3. Since (6) is

stable, it follows that pi > 0, i = 1, 2, 3, and Δ
p
1 =

p1 > 0, Δ
p
2 > 0. For q s , Δ

q
1 = p1 > 0, Δ

q
2 = Δ

p
2 > 0, and
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Δ
q
3 = det

p1 1 0

p3 p2 p1

0 0 p3

= p3Δ
q
2 > 0 19

Hence, q s is stable.

Theorem 2. Consider the heterogeneous multiagent system
(5), N ∈ 2, 3, 4 , depicted by a cycle graph with Assumption
1. The stabilization problem via harmonic control is solvable
if and only if the harmonic polynomial of diag A1,⋯, AN

is stable.

Proof 3. According to Theorem 1, the sufficiency is obvious.
So, we only need to prove the necessity.

(Necessity) Suppose that N ∈ 2, 3, 4 . According to
Lemma 2, if α s is stable, then sN−1 + a1s

N−2 +⋯ + aN−1

is stable.

Corollary 1. If N = 2, then the stabilization problem via har-
monic control is solvable if and only if tr A1 + tr A2 < 0,
where tr A denotes the trace of matrix A.

Proof 4. (Necessity) According to Theorem 2, if the system
composed of two agents can be stabilized, then a1 = a11 +
a21 > 0. Since a11 = −tr A1 and a21 = −tr A2 , it follows that
tr A1 + tr A2 < 0.

(Sufficiency) If tr A1 + tr A2 < 0, then a1 = a11 + a21 =
−tr A1 − tr A2 > 0. According to Theorem 1, for the
system composed of two agents, if h s = s + a1 is stable,
i.e., a1 > 0, then the system can be stabilized via harmonic
control.

Remark 1. When N = 2, if tr A1 + tr A2 < 0, according to
Corollary 1, we can choose λj < 0 j = 1, 2⋯ , n such that

∑n
j λj = tr A1 + tr A2 . Then, the characteristic polyno-

mial γ s = n
j=1 s − λj . Consequently, θ s = α s − γ s .

Using polynomial factorization, K ij can be assigned by the

coefficients of the factors of θ s .

Remark 2. It is challenging to obtain the sufficient and neces-
sary condition for the stabilization problem via harmonic
control under cycle graph, although we solved the stabiliza-
tion problem where N ∈ 2, 3, 4 . If N > 4, then the sufficient
and necessary conditions will be difficult to obtain. For exam-
ple, suppose that N = 5 and the characteristic polynomial of
A is α s = s5 + s4 + 3s3 + 2 3s2 + 2s + 1 2. α s is stable. How-
ever, the harmonic polynomial h s = s4 + s3 + 3s2 + 2 3s + 2
is not stable. Consequently, when N > 4, it is difficult to
explore the necessary condition for the stabilization problem
via harmonic control under cycle graph.

3.2. The Case with Self-State Feedback. In case the graph
with self-state feedback does not contain cycles, the above
discussion implies that the stabilization problem is
solvable if each pair Ai + BiHi is stabilizable. For the cycle
graph, even if the pair Ai + BiHi is unstable, the stabi-
lization problem is solvable as long as the harmonic

polynomial of the matrix diag A1 + B1H1,⋯, AN + BNHN

is stable.

4. Examples

Example 1. Given a system with two agents whose state
matrices are as follows:

A1 =

0 1 0

0 0 1

−9 1 −3

,

F1 =

0

0

1

,

A2 =
0 1

−9 1
,

F2 =
0

1

20

Clearly, every agent is unstable. Ai, Fi i ∈ℕ2 is control-
lable, and tr A1 + tr A2 = −2 < 0. According to Corollary
1, the system can be stabilized by constructing K12 and
K21. Assume λi < 0 i ∈ℕ5 is the eigenvalue of A, it only

needs to satisfy that ∑5
i=1λi = −2, then the overall system

can be stabilized. So, we can take λ1 = −0 2, λ2 = −0 3, λ3 =
−0 4, λ4 = −0 5, λ5 = −0 6, and then

γ s = s − λ1 s − λ2 s − λ3 s − λ4 s − λ5

= s5 + 2s4 + 1 55s3 + 0 58s2 + 0 1044s + 0 0072
21

Further,

θ s = α s − γ s = 3 45s3 + 36 42s2 − 18 1044s + 80 9928

22

Assume that K21 = k13 k12 k11 and K12 = k22 1 ,
then one can get k22 = 11 2114, and K21 =

7 2242 −2 2592 3 45 .
The decentralized controller can be designed as

v1 = 11 2114 1 x2,

v2 = 7 2242 −2 2592 3 45 x1
23

Figure 2 shows the asymptotical stability of the closed loop
system.
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Example 2. Consider the heterogeneous multiagent system
composed of three agents, and

A1 =

0 1 0 0

0 0 1 0

0 0 0 1

5 −3 −6 −8

,

A2 =

0 1 0

0 0 1

9 2 −5

,

A3 =
0 1

−3 1
,

FT
1 = 0 0 0 1 ,

FT
2 = 0 0 1 ,

FT
3 = 0 1

24

Apparently, every agent is unstable. According to Theorem 2
of [31], f s = s7 + 12s6 + 34s5 + 3s4 − 50s3 + 13s2 − 154s −
193 is unstable. In this case, Theorem 2 of [31] becomes inva-
lid. But the harmonic polynomial, h s = s2 + 12s + 34, is
stable; according to Theorem 1, the system can be stabilized

via harmonic control. Taking ε = 0 3, then the decentralized
controller can be designed as

v1 = 1 3148 1 x3,

v2 = 27 3819 −21 744 −30 6617 −40 428 x1,

v3 = 3 7497 −2 5424 1 x2

25

Figure 3 shows the asymptotical stability of the closed loop
system.

5. Conclusion

In this paper, we have demonstrated the problem of stabiliza-
tion of heterogeneous multiagent systems via harmonic
control. The framework puts emphasis on the ability of sys-
tems to stabilize themselves when each agent only uses its
neighbors’ state information as feedback. For the overall
interconnected system including unstable agents, we have
presented that its stabilizability is affected by the structure of
the interconnection topology and the interaction of its agents.
Under cycle graphs, a sufficient condition and the design of
harmonic control interconnection gains are provided. When
the graph contains less than 5 nodes, the sufficient and neces-
sary condition for stabilization problem via harmonic control
under cycle graph can be given. In future work, the general
graphs and the sufficient and necessary condition for stabili-
zation via harmonic control will be considered.
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Figure 3: Stabilization via harmonic control.
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Figure 2: Stabilization via harmonic control.
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Appendix

Stabilization without Self-State Feedback of
Path, Star and Tree Graphs

Proposition A.1. For a path or star graph, the stabilization
problem only via neighbor-state feedback is solvable if and
only if each agent is stable.

Proof 5. For a path graph, which is showed in Figure 4(a), the
system matrix of the closed loop is

A =

A1

F2K21 A2

⋱ ⋱

FmKm m−1 Am

A 1

Therefore, the characteristic polynomial of A is α s =

det sIn − A = m
i=1αi s .

Obviously, the roots of α s cannot be changed only by
neighbor-state feedback. If the path graph has an unstable
agent i, the roots of Ai are also the roots of α s . Conse-
quently, the stabilization problem only via neighbor-state
feedback is solvable if and only if each agent is stable.

For a star graph, which is showed in Figure 4(b), the
system matrix of the closed loop is

A =

A1

F2K21 A2

⋮ ⋱

FmKm1 Am

A 2

Similar to the proof of the path graph, if the star graph
has an unstable agent, the stabilization problem only via
neighbor-state feedback is solvable if and only if each
agent is stable.

Proposition A.2. If a graph has at least one unstable node
whose indegree or outdegree is equal to zero, then the stabili-
zation problem only via neighbor-state feedback is unsolvable.

Proof 6. Without loss of generality, assume that the indegree
of the first vertex is equal to zero and A1 is not stable. Then, A
is in the form of

A =
A1 0

A21 A2

, A 3

where A1 ∈ℝ
n1×n1 and A2 ∈ℝ

n−n1 × n−n1 . Obviously, the
roots of A1 are also the roots of α s . Consequently, the stabi-
lization problem only via neighbor-state feedback is
unsolvable.

The case of outdegree is equal to zero can be similarly
obtained.

Proposition A.3. For a tree graph, the stabilization problem
only via neighbor-state feedback is solvable if and only if each
agent is stable.

Proof 7. If the root or one leaf is unstable, by Proposition
A.2, the stabilization problem only via neighbor-state feed-
back is unsolvable.

Suppose that the root and all leaves are stable. Every time
we remove a leaf from the tree, what remains is still a tree
whose stabilizability is equivalent to the original one. So long
as an unstable leaf appears after removing the leaves, the
stabilization problem only via neighbor-state feedback is
unsolvable by Proposition A.2. Thus, the proof is achieved.
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