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Abstract
In this paper, we are concerned with the stabilization of hybrid stochastic systems
with variable delay by discrete-time state feedback control. By using Lyapunov
functionals, we obtain an upper bound τ ∗ on the duration τ between two
consecutive state observations. Meantime, we show that hybrid stochastic systems
with variable delay can be stabilized by discrete-time state feedback control as long as
τ < τ ∗. Finally, two examples are given to demonstrate the applicability of our work.
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1 Introduction
In the real world, many systems are may experience abrupt changes in their structure
and parameters caused by phenomena such as component failures or repairs and chang-
ing subsystem interconnections, and sudden environmental disturbances. Hybrid systems
have been used to model these systems (see, e.g., [1, 2]). Since the underlying hybrid sys-
tems are in operation for a relatively long time, it is very important to study their asymp-
totic behavior. One of the important issues in the study of long run behavior is the anal-
ysis of stability. Some results on the asymptotic stability and exponential stability may be
found in [3–6]. However, since some hybrid systems are not always stable, it is necessary
to design a feedback control to make the controlled systems stable. It is well known that
random noise can be utilized to stabilize an unstable system. The theory on stabilization
by random noise has been studied by many authors (see, e.g., [7–10]).

On the other hand, one could design a deterministic feedback control in the drift co-
efficients so that the controlled stochastic systems become stable. For example, given an
unstable hybrid stochastic system

dx(t) = f
(
x(t), r(t), t

)
dt + g

(
x(t), r(t), t

)
dw(t), (1.1)

Yuan [11] designed the linear feedback control A(r(t))x(t) to stabilize the hybrid stochastic
system (1.1), while Mao [12] and Hu [13] used the delay feedback control u(x(t – δ), r(t), t)
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to make the hybrid stochastic system (1.1) become stable. Such a regular feedback control
requires continuous observation of the state x(t) or x(t – δ) for all times t ≥ 0. Obviously,
this continuous control strategy is not easy to implement in practice. In 2013, Mao [14]
designed a feedback control u(x([t/τ ]τ ), r(t), t) based on the discrete-time observations
of the state x(t) at times 0, τ , 2τ , . . . , and investigated the stabilization problem for hybrid
stochastic systems. The latter is clearly more realistic and costs less in practice. Therefore,
some recent results on stabilization with discrete time feedback control may be found in
[15–18].

In the study of the above stabilization, the time delay τ is added in the feedback con-
troller. However, the real phenomenon indicates that the uncontrolled system itself may
be disturbed by the time delay. As we know, the time delay is inevitable in practice, which
often leads to instability and poor performance of stochastic delay systems. Therefore,
many scholars began to pay attention to the problem of stabilizing hybrid stochastic delay
systems by using feedback control. In 2020, Li and Mao [19] considered a class of hybrid
stochastic systems with constant delay

dx(t) = f
(
x(t), x(t – τ ), r(t), t

)
dt + g

(
x(t), x(t – τ ), r(t), t

)
dw(t). (1.2)

By applying the delay feedback control u(x(t – τ ), r(t), t), they showed that the controlled
system

dx(t) =
[
f
(
x(t), x(t – τ ), r(t), t

)
+ u

(
x(t – τ ), r(t), t

)]
dt

+ g
(
x(t), x(t – τ ), r(t), t

)
dw(t)

(1.3)

is asymptotically stable and pth-moment exponentially stable. Since then, some scholars
extended the stabilization results [19] to the discrete-time feedback control problem for
Eq. (1.2) and achieved many results. For example, Mei et al. [20, 21] made use of the feed-
back controllers based on the discrete-time state observations to stabilize the unstable
stochastic systems as in (1.2), and extended their stabilization results to the case of hy-
brid neutral stochastic delay systems. Lu et al. [22] discussed the stabilization of hybrid
stochastic delay systems by feedback control based on the discrete-time observations of
both state and mode, while Song et al. [23, 24] generalized the stabilization results of [22]
to the case of highly nonlinear hybrid stochastic delay systems.

It is noted that the time delay in the above literature [19–24] is assumed to be a constant.
However, many real stochastic delay models indicate that the time delay is a delay function.
Therefore, a natural question is whether the discrete-time state feedback control can be
used to stabilize such a stochastic system with variable delay. Recently, Dong and Mao [25]
studied a class of hybrid stochastic systems with time-varying delay

dx(t) = f
(
x(t), x

(
t – τ (t)

)
, r(t), t

)
dt + g

(
x(t), x

(
t – τ (t)

)
, r(t), t

)
dw(t). (1.4)

They used the delay feedback control u(x(t – τ (t)) to stabilize the hybrid stochastic de-
lay systems as in (1.4). To the best of our knowledge, when the time-varying delay τ (t)
is nondifferentiable, few authors have considered the problem of stabilization for hy-
brid stochastic delay systems by discrete-time state feedback control. Motivated by the
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above discussion, the main aim of this paper is to design a discrete-time feedback control
u(x([t/τ ]τ ), r(t), t) to stabilize the given unstable system, namely

dx(t) = f
(
x(t), x

(
t – h(t)

)
, r(t), t

)
dt + g

(
x(t), x

(
t – h(t)

)
, r(t), t

)
dw(t). (1.5)

Compared with the previous work, the main contributions of this paper include:
(1) When the delay function h(t) is nondifferentiable, we are the first to study the feed-

back control for hybrid stochastic delay systems based on the discrete-time state obser-
vation, and an upper bound of the duration between two continuous state observations is
obtained.

(2) By constructing the Lyapunov functional, we obtain sufficient conditions to ensure
the stabilization of hybrid stochastic delay systems in the sense of H∞ stability, mean
square asymptotic stability, and exponential stability.

The rest of the paper is organized as follows. In Sect. 2, we introduce some notations and
hypotheses concerning systems (2.1). In Sect. 3, we investigate the stabilization of hybrid
stochastic delay systems by feedback control based on discrete-time state observations.
Then in Sect. 4 we give two examples to illustrate our theory.

2 Preliminaries and the global solution
Throughout this paper, unless other specified, we use the following notation. Let | · | denote
the Euclidean norm in R

n. If A is a vector or matrix, its transpose is denoted by A�. If A is a
matrix, its trace norm is denoted by |A| =

√
trace(A�A) while its operator norm is defined

by ‖A‖ = sup{|Ax| : |x| = 1}. If A is a symmetric matrix, we denote by λmin(A) and λmax(A)
its smallest and largest eigenvalues, respectively.

Let (�,F , P) be a complete probability space with a filtration {Ft}t≥t0 satisfying the
usual conditions. Let w(t) be an m-dimensional Brownian motion defined on the prob-
ability space (�,F , P). Let τ > 0 and C([–τ , 0];Rn) denote the family of continuous func-
tions ξ from [–τ , 0] to R

n with the norm ‖ξ‖ = sup–τ≤u≤0 |ξ (u)|. Let r(t), t ≥ 0 be a right-
continuous Markov chain on the probability space (�,F , P) taking values in a finite state
space S = {1, 2, . . . , N} with generator � = (γij)N×N given by

P
(
r(t + 	) = j|r(t) = i

)
=

⎧
⎨

⎩
γij	 + o(	), if i �= j,

1 + γii	 + o(	), if i = j,

where 	 > 0. Here γij ≥ 0 is the transition rate from i to j, i �= j, while γii = –
∑

j �=i γij. We
assume that the Markov chain r(·) is independent of the Brownian motion w(·).

In this paper, we consider hybrid stochastic systems with time-varying delay of the form

dx(t) =
[
f
(
x(t), x

(
t – h(t)

)
, r(t), t

)
+ u

(
x(δt), r(t), t

)]
dt

+ g
(
x(t), x

(
t – h(t)

)
, r(t), t

)
dw(t), t ≥ 0,

(2.1)

with initial data x(0) = x0 ∈R
n, r(0) = r0 ∈ S, and

f : Rn ×R
n × S ×R+ →R

n,

g : Rn ×R
n × S ×R+ →R

n×m,
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u : Rn × S ×R+ →R
n.

Here h(t) is defined by Assumption 2.3, while δt = [t/τ ]τ , in which [t/τ ] is the integer part
of t/τ , τ > 0.

In this paper, the following hypotheses are imposed on the coefficients f , g , and u.

Assumption 2.1 For each integer d ≥ 1, there exists a positive constant Ld such that

∣∣f (x1, y1, i, t) – f (x2, y2, i, t)
∣∣ ∨ ∣∣g(x1, y1, i, t) – g(x2, y2, i, t)

∣∣ ≤ Ld
(|x1 – x2| + |y1 – y2|

)
,

for all x1, y1, x2, y2 ∈ R
n with |x1| ∨ |y1| ∨ |x2| ∨ |y2| ≤ d and any (i, t) ∈ R+ × S. Moreover,

we assume that there exists a constant L0 > 0 such that

∣∣f (x, y, i, t)
∣∣ ∨ ∣∣g(x, y, i, t)

∣∣ ≤ L0
(|x| + |y|).

for all (x, y, i, t) ∈R
n ×R

n × S ×R+.

Assumption 2.2 There exists a positive constant k such that

∣∣u(x, i, t) – u(y, i, t)
∣∣ ≤ k|x – y|

for all x, y ∈ R
n and (i, t) ∈ R+ × S. Moreover, we assume that u(0, i, t) = 0 for all (i, t) ∈

R+ × S.

Assumption 2.3 Assume that the time-varying delay h(t) is a Borel measurable function
from R+ to [h, h̄], with the following property:

h0 := lim sup
h→0

(
sup
s≥–h̄

m(Es,h)
h

)
< ∞, (2.2)

where h, h̄ are two positive constants with h < h̄, Es,h = {t ∈ R+ : t – h(t) ∈ [s, s + h)} and
m(·) denotes the Lebesgue measure on R+.

Remark 2.4 In the existing literature involving variable delay [19, 26, 27], the delay func-
tion h(t) : R+ → R+ is either constant or differentiable, with its derivative being bounded
by ĥ ∈ (0, 1). That is,

dh(t)
dt

≤ ĥ < 1, ∀t ≥ 0. (2.3)

If h(t) = τ , then it follows that

∫ T

T0


(t – τ ) dt =
∫ T–τ

T0–τ


(t) dt ≤
∫ T

T0–τ


(t) dt. (2.4)

If h(t) is differentiable with its derivative being bounded by ĥ ∈ (0, 1), then by applying a
time change, it follows that

∫ T

T0



(
t – h(t)

)
dt ≤ 1

1 – ĥ

∫ T

T0–h(T0)

(t) dt. (2.5)
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However, these two conditions might not be a natural feature of stochastic delay systems
in the real world. For example, piecewise constant delays occur frequently in sampled-data
controls but such functions are not differentiable.

Remark 2.5 In practice, there are many delay functions that satisfy Assumption 2.3. For
example, consider the delay function h(t) = 0.1| sin 2t| from R+ to [0, 0.1]. Obviously, it
obeys the Lipschitz condition

∣∣h(t) – h(s)
∣∣ ≤ 0.2(t – s)

for any 0 ≤ s < t < ∞. In fact, it satisfies Assumption 2.3 with h0 = 1.25. In particular, if
h(t) is differentiable and its derivative is bounded by ĥ ∈ (0, 1), then h(t) satisfies Assump-
tion 2.3 with h0 = 1/(1 – ĥ).

Lemma 2.6 Let Assumptions 2.3 hold. Let T > T0 ≥ 0 and 
 : [–h̄, T – h] → R+ be a con-
tinuous function. Then

∫ T

T0



(
t – h(t)

)
dt ≤ h0

∫ T–h

T0–h̄

(t) dt. (2.6)

Proof By Assumption 2.3, for any ε > 0, there exists a positive constant h̃ such that

sup
s≥–h̄

m(Es,h)
h

≤ h0 + ε, ∀h ∈ (0, h̃).

Note that –h̄ ≤ t – h(t) ≤ T – h for t ∈ [T0, T]. Let n be any large integer such that h :=
(T – h – T0 + h̄)/n < h̃. Set tq = T0 – h̄ + qh for q = 0, 1, . . . , n – 1. Recalling the definition of
the Riemann–Lebesgue integral, we have

∫ T

T0



(
t – h(t)

)
dt = lim

n→∞

n–1∑

q=0

m(Etq ,h)
(tq).

Noting that m(Etq ,h) ≤ (h0 + ε)h. Hence,

∫ T

T0



(
t – h(t)

)
dt = lim

n→∞

n–1∑

q=0

(h0 + ε)h
(tq)

= (h0 + ε)
∫ T–h

T0–h̄

(t) dt.

Letting ε → 0 yields the required assertion. �

Remark 2.7 In fact, Assumption 2.3 implies that h0 ≥ 1. Letting ψ(t) = 1 for all t ≥ –h̄,
Lemma 2.6 shows that

T – T0 ≤ (T – T0 + h̄ – h)h0
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for any T > 0, which implies

h0 ≥ lim
T→∞

T – T0

T – T0 + h̄ – h
= 1.

In particular, if h(t) degenerates to the constant delay τ , then h0 = 1.

Theorem 2.8 Let Assumptions 2.1–2.3 hold, then Eq. (2.1) has a unique global solution
x(t) on t ≥ –h̄. Moreover, the solution has the property that

E
∣
∣x(t)

∣
∣2 < ∞ (2.7)

for any t ≥ 0.

The proof of Theorem 2.8 is shown in the Appendix.

3 Main results
The main aim is to establish sufficient stability criteria for hybrid stochastic systems with
time-varying delay. Let us denote by C2,1(Rn × S × R+;R+) the family of all continuous
nonnegative functions U(x, i, t) defined on R

n × S ×R+ such that for each i ∈ S, they are
continuously twice differentiable in x and once in t. For U(x, i, t) ∈ C2,1(Rn × S ×R+;R+),
we define the function LU : Rn ×R

n × S ×R+ →R by

LU(x, y, i, t) = Ut(x, i, t) + Ux(x, i, t)
[
f (x, y, i, t) + u(x, i, t)

]

+
1
2
[
g�(x, y, i, t)Uxx(x, i, t)g(x, y, i, t)

]
+

N∑

j=1

γijU(x, j, t),
(3.1)

where

Ut(x, i, t) =
∂U(x, i, t)

∂t
,

Ux(x, i, t) =
(

∂U(x, i, t)
∂x1

, . . . ,
∂U(x, i, t)

∂xn

)
,

Uxx(x, i, t) =
(

∂2U(x, i, t)
∂xi∂xj

)

n×n
.

Assumption 3.1 Assume that there exists a function U ∈ C2,1(Rn ×S ×R+;R+) and three
positive constants λi, i = 1, 2, 3 such that

LU(x, y, i, t) + λ1
∣∣Ux(x, i, t)

∣∣2 ≤ –λ2|x|2 + λ3|y|2 (3.2)

for all (x, y, i, t) ∈R
n ×R

n × S ×R+.

We can now state our first result.

Theorem 3.2 Let Assumptions 2.1, 2.2, 2.3, and 3.1 hold. If τ > 0 is sufficiently small for

λ2 > λ3h0 +
k2

λ1
τ
[
(4τ + 2)L2

0(1 + h0) + 4k2τ
]

and τ ≤ 1
4k

, (3.3)
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then the solution of equation (2.1) with the initial data has the property

∫ ∞

0
E
∣∣x(t)

∣∣2 dt < ∞. (3.4)

That is, Eq. (2.1) is H∞ stable in mean square.

Proof For any t ≥ 2h̄, we define the segment processes x̂t = {x(t + s) : –2h̄ ≤ s ≤ 0} and
r̂t = {x(t + s) : –2h̄ ≤ s ≤ 0}. For x̂t and r̂t to be well defined for 0 ≤ t ≤ 2h̄, we set x(s) = x0

and r(s) = r0 for –2h̄ ≤ s ≤ 0. The Lyapunov functional is defined by

V (x̂t , r̂t , t) = U
(
x(t), r(t), t

)
+

k2

λ1

∫ 0

–τ

∫ t

t+s
φ(v) dv ds (3.5)

for t ≥ 2h̄, where

φ(t) = τ
∣∣f

(
x(t), x

(
t – h(t)

)
, r(t), t

)
+ u

(
x(δt), r(t), t

)∣∣2

+
∣
∣g

(
x(t), x

(
t – h(t)

)
, r(t), t

)∣∣2.

By the Itô formula and the fundamental theorem of calculus, we obtain

EV (x̂t , r̂t , t) = EV (x̂2h̄, r̂2h̄, 2h̄) +
∫ t

2h̄
ELV (x̂s, r̂s, s) ds (3.6)

for t ≥ 2h̄, where

LV (x̂t , r̂t , t) = LU
(
x(t), x

(
t – h(t)

)
, r(t), t

)

– Ux
(
x(t), r(t), t

)[
u
(
x(t), r(t), t

)
– u

(
x(δt), r(t), t

)]

+
k2

λ1
τφ(t) –

k2

λ1

∫ t

t–τ

φ(s) ds.

By Assumptions 2.1, 2.2, and condition (3.3), we have

– Ux
(
x(t), r(t), t

)[
u
(
x(t), r(t), t

)
– u

(
x(δt), r(t), t

)]

≤ λ1
∣∣Ux

(
x(t), r(t), t

)∣∣2 +
k2

4λ1

∣∣x(t) – x(δt)
∣∣2

(3.7)

and

k2

λ1
τφ(t) ≤ k2

λ1
τ (4τ + 2)L2(∣∣x(t)

∣
∣2 +

∣
∣x

(
t – h(t)

)∣∣2) + 2
k2

λ1
k2τ 2∣∣x(δt)

∣
∣2

≤
[

k2

λ1
τ (4τ + 2)L2

0 + 4
k4

λ1
τ 2

]∣∣x(t)
∣∣2 +

k2

λ1
τ (4τ + 2)L2

0
∣∣x

(
t – h(t)

)∣∣2

+
k2

4λ1

∣∣x(t) – x(δt)
∣∣2.

(3.8)
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Inserting (3.7) and (3.8) into (3.6), we get

ELV (x̂t , r̂t , t) = ELU
(
x(t), x

(
t – h(t)

)
, r(t), t

)
+ λ1E

∣∣Ux
(
x(t), r(t), t

)∣∣2

+
k2

2λ1
E
∣∣x(t) – x(δt)

∣∣2 +
k2

λ1
τ
[
(4τ + 2)L2

0 + 4k2τ
]
E
∣∣x(t)

∣∣2

+
k2

λ1
τ (4τ + 2)L2E

∣
∣x

(
t – h(t)

)∣∣2 –
k2

λ1

∫ t

t–τ

Eφ(s) ds.

(3.9)

On the other hand, it follows from (2.1) that

E
∣
∣x(t) – x(δt)

∣
∣2 ≤ 2

∫ t

δt

Eφ(s) ds ≤ 2
∫ t

t–τ

Eφ(s) ds.

By Assumption 3.1, it follows that

EV (x̂t , r̂t , t) = EV (x̂2h̄, r̂2h̄, 2h̄) –
{
λ2 –

k2

λ1
τ
[
(4τ + 2)L2

0 + 4k2τ
]
}∫ t

2h̄
E
∣∣x(s)

∣∣2 ds

+
[
λ3 +

k2

λ1
τ (4τ + 2)L2

0

]∫ t

2h̄
E
∣∣x

(
s – h(s)

)∣∣2 ds.

By Lemma 2.6, we get

∫ t

2h̄
E
∣
∣x

(
s – h(s)

)∣∣2 ds ≤ h0

∫ t

h̄
E
∣
∣x(s)

∣
∣2 ds

≤ h0

∫ 2h̄

h̄
E
∣
∣x(s)

∣
∣2 ds + h0

∫ t

2h̄
E
∣
∣x(s)

∣
∣2 ds.

Hence,

EV (x̂t , r̂t , t)

= Q1 –
{
λ2 – λ3h0 –

k2

λ1
τ
[
(4τ + 2)L2

0(1 + h0) + 4k2τ
]
}∫ t

2h̄
E
∣∣x(s)

∣∣2 ds, (3.10)

where

Q1 = EV (x̂2h̄, r̂2h̄, 2h̄) +
[
λ3 +

k2

λ1
τ (4τ + 2)L2

0

]
h0

∫ 2h̄

h̄
E
∣
∣x(s)

∣
∣2 ds

is a positive constant. It follows from (3.10) that

∫ t

2h̄
E
∣
∣x(s)

∣
∣2 ds ≤ Q1

λ2 – λ3h0 – k2
λ1

τ [(4τ + 2)L2
0(1 + h0) + 4k2τ ]

.

Letting t → ∞, we obtain

∫ ∞

2h̄
E
∣
∣x(s)

∣
∣2 ds ≤ Q1

λ2 – λ3h0 – k2
λ1

τ [(4τ + 2)L2
0(1 + h0) + 4k2τ ]

,

as required. The proof is therefore complete. �
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Theorem 3.3 Under the same assumptions of Theorem 3.2, the solution of equation (2.1)
with the initial data has the property

lim
t→∞ E

∣
∣x(t)

∣
∣2 = 0. (3.11)

That is, Eq. (2.1) is asymptotically stable in mean square.

Proof By the Itô formula, we have

E
∣∣x(t)

∣∣2 =
∣∣x(2h̄)

∣∣2 + E
∫ t

2h̄

(
2x�(s)

[
f
(
x(s), x

(
s – h(s)

)
, r(s), s

)

+ u
(
x(δs), r(s), s

)]
+

∣
∣g

(
x(s), x

(
s – h(s)

)
, r(s), s

)∣∣2)ds.

By Assumptions 2.1, 2.2, and Lemma 2.6, we then get

E
∣∣x(t)

∣∣2 ≤ ‖x̂2h̄‖2 + Q
∫ t

2h̄

(
E
∣∣x(s)

∣∣2 + E
∣∣x

(
s – h(s)

)∣∣2 + E
∣∣x(s) – x(δs)

∣∣2)ds

≤ ‖x̂2h̄‖2 + Q
∫ t

2h̄

(
E
∣∣x(s)

∣∣2 + E
∣∣x(s) – x(δs)

∣∣2)ds + Q
∫ t

h̄
E
∣∣x(s)

∣∣2 ds,
(3.12)

where Q denotes a positive constant. By using Assumptions 2.1 and 2.2 again, we derive

E
∣∣x(s) – x(δs)

∣∣2) ds ≤ 6(τ + 1)L2
0

∫ s

δs

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv

+ 6τ 2k2(E
∣∣x(s)

∣∣2 + E
∣∣x(s) – x(δs)

∣∣2).

Noting that 6τ 2k2 < 1 by condition (3.3), we hence have

E
∣
∣x(s) – x(δs)

∣
∣2) ds ≤ 6(τ + 1)L2

0
1 – 6τ 2k2

∫ s

δs

(
E
∣
∣x(v)

∣
∣2 + E

∣
∣x

(
v – h(v)

)∣∣2)dv

+
6(τ + 1)L2

0
1 – 6τ 2k2 E

∣∣x(s)
∣∣2.

(3.13)

Substituting this into (3.12) yields

E
∣∣x(t)

∣∣2 ≤ ‖x̂2h̄‖2 + Q
∫ 2h̄

h̄
E
∣∣x(s)

∣∣2 ds + 2Q
∫ t

2h̄
E
∣∣x(s)

∣∣2 ds

+ Q
∫ t

2h̄

∫ s

δs

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds.
(3.14)

Using the substitution technique, we get

∫ t

2h̄

∫ s

δs

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds

≤
∫ t

2h̄

∫ s

s–τ

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds

≤
∫ v+τ

v
ds

∫ t

2h̄–τ

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv
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= τ

∫ t

2h̄–τ

(
E
∣∣x(s)

∣∣2 + E
∣∣x

(
s – h(s)

)∣∣2)ds.

By Lemma 2.6, we have

∫ t

2h̄

∫ s

δs

(
E
∣
∣x(v)

∣
∣2 + E

∣
∣x

(
v – h(v)

)∣∣2)dv ds

≤ τ

∫ t

2h̄–τ

E
∣
∣x(s)

∣
∣2 ds + τh0

∫ t

h̄–τ

E
∣
∣x(s)

∣
∣2 ds

≤ τ

(∫ 2h̄

2h̄–τ

E
∣
∣x(s)

∣
∣2 ds + h0

∫ 2h̄

h̄–τ

E
∣
∣x(s)

∣
∣2 ds

)
+ τ (1 + h0)

∫ t

2h̄
E
∣
∣x(s)

∣
∣2 ds.

Inserting this into (3.14) and applying Theorem 3.2, we derive

E
∣
∣x(t)

∣
∣2 ≤ ‖x̂2h̄‖2 +

[
Q + τ (1 + h0)

] ∫ 2h̄

h̄–τ

E
∣
∣x(s)

∣
∣2 ds

+
[
2Q + τ (1 + h0)

]∫ t

2h̄
E
∣
∣x(s)

∣
∣2 ds ≤ Q̄

(3.15)

for any t ≥ 2h̄. By the Itô formula, it follows that

E
∣
∣x(t2)

∣
∣2 – E

∣
∣x(t2)

∣
∣2 = E

∫ t2

t1

(
2x�(s)

[
f
(
x(s), x

(
s – h(s)

)
, r(s), s

)

+ u
(
x(δs), r(s), s

)]
+

∣∣g
(
x(s), x

(
s – h(s)

)
, r(s), s

)∣∣2)ds

for any 2h̄ ≤ t1 < t2 < ∞. By using Assumptions 2.1, 2.2, and (3.15), we can show that

∣
∣E

∣
∣x(t2)

∣
∣2 – E

∣
∣x(t2)

∣
∣2∣∣ ≤ Q̄(t2 – t1).

This implies that E|x(t)|2 is uniformly continuous in t on [2h̄,∞]. It then follows from (3.4)
that limt→∞ E|x(t)|2 = 0, as required. �

In the previous argument, we have discussed the asymptotic stabilization. However, this
stability does not reveal the rate at which the solution tends to zero. So, we will discuss the
exponential stabilization by the discrete-time state feedback control. For this purpose, we
need to impose another condition.

Assumption 3.4 Assume that there exist two positive constants C1 and C2 such that

C1|x|2 ≤ U(x, i, t) ≤ C2|x|2

for all x ∈R
n, i ∈ S, and t ∈R+.

Theorem 3.5 Let Assumptions 2.1, 2.2, 2.3, 3.1, and 3.4 hold. Let τ > 0 be sufficiently small
for (3.3) to hold, and set

λ = λ2 – λ3h0 –
k2

λ1
τ
[
(4τ + 2)L2

0(1 + h0) + 4k2τ
]
, (3.16)
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then the solution of equation (2.1) satisfies

lim sup
t→∞

log(E|x(t)|2)
t

≤ –γ (3.17)

and

lim sup
t→∞

log(|x(t)|)
t

≤ –
γ

2
a.s. (3.18)

for all initial data x̂2h̄ and r̂2h̄, where γ > 0 is the unique root to the following equation:

2γ τ (Q4 + Q6τ )e2τγ + 2γ τ (Q5 + Q6τ )h0e2τγ +h̄γ + γ C2 = λ, (3.19)

here Q4 = k2

λ1
[(4τ + 2)τL2

0 + 4τ 2k2] + 24τ2(τ+1)k4L2
0

λ1(1–6τ2k2) , Q5 = (4τ + 2)L2
0, and Q6 = 24τ2(τ+1)k4L2

0
λ1(1–6τ2k2) .

Proof By the Itô formula, we have

E
(
eγ tV (x̂t , r̂t , t)

)
= e2h̄γ EV (x̂2h̄, r̂2h̄, 2h̄) +

∫ t

2h̄
eγ s[γ EV (x̂s, r̂s, s) + ELV (x̂s, r̂s, s)

]
ds

for t ≥ 2h̄. By Assumption 3.4 and using (3.10), we obtain

C1eγ tE
∣
∣x(t)

∣
∣2 = Q3 +

∫ t

2h̄
eγ s(γ EV (x̂s, r̂s, s) – λE

∣
∣x(s)

∣
∣2 ds, (3.20)

where

Q3 = e2h̄γ EV (x̂2h̄, r̂2h̄, 2h̄) +
[
λ3 +

k2

λ1
τ (4τ + 2)L2

0

]
h0

∫ 2h̄

h̄
eγ sE

∣∣x(s)
∣∣2 ds.

By the definition of Lyapunov functional (3.5) and Assumption 3.4, we then have

EV (x̂t , r̂t , t) = C2E
∣∣x(t)

∣∣2 + E
(

k2

λ1

∫ 0

–τ

∫ t

t+s
φ(v) dv ds

)

≤ C2E
∣∣x(t)

∣∣2 +
k2

λ1
τ

∫ t

t–τ

([
(4τ + 2)L2 + 4τk2]E

∣∣x(s)
∣∣2

+ (4τ + 2)L2
0E

∣
∣x

(
s – h(s)

)∣∣2 + 4τk2E
∣
∣x(s) – x(δs)

∣
∣2)ds.

By (3.13), we get

EV (x̂t , r̂t , t) ≤ C2E
∣∣x(t)

∣∣2 + Q4

∫ t

t–τ

E
∣∣x(s)

∣∣2 ds + Q5

∫ t

t–τ

E
∣∣x

(
s – h(s)

)∣∣2 ds

+ Q6

∫ t

t–τ

∫ s

δs

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds,
(3.21)
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where Q4, Q5, and Q6 have been defined in (3.19). But

∫ t

t–τ

∫ s

δs

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds

≤
∫ t

t–τ

∫ s

s–τ

(
E
∣∣x(v)

∣∣2 + E
∣∣x

(
v – h(v)

)∣∣2)dv ds

≤ τ

∫ t

t–2τ

(
E
∣∣x(s)

∣∣2 + E
∣∣x

(
s – h(s)

)∣∣2)ds.

(3.22)

Inserting (3.21), (3.22) into (3.20), we can obtain that

C1eγ tE
∣
∣x(t)

∣
∣2 ≤ Q3 + γ (Q4 + Q6τ )

∫ t

2h̄
eγ s

(∫ s

s–2τ

E
∣
∣x(v)

∣
∣2 dv

)
ds

+ γ (Q5 + Q6τ )
∫ t

2h̄
eγ s

(∫ s

s–2τ

E
∣∣x

(
v – h(v)

)∣∣2 dv
)

ds

– (λ – γ C2)
∫ t

2h̄
eγ sE

∣∣x(s)
∣∣2 ds.

(3.23)

Using the substitution technique, we have

∫ t

2h̄
eγ s

(∫ s

s–2τ

E
∣
∣x(v)

∣
∣2 dv

)
ds ≤

∫ t

2h̄–2τ

E
∣
∣x(v)

∣
∣2

(∫ v+2τ

v
eγ s ds

)
dv

≤ 2τe2τγ

∫ t

2h̄–2τ

eγ sE
∣∣x(s)

∣∣2 ds

≤ 2τe2τγ

(∫ 2h̄

2h̄–2τ

eγ sE
∣∣x(s)

∣∣2 ds +
∫ t

2h̄
eγ sE

∣∣x(s)
∣∣2 ds

)

and
∫ t

2h̄
eγ s

(∫ s

s–2τ

E
∣
∣x

(
v – h(v)

)∣∣2 dv
)

ds

≤
∫ t

2h̄–2τ

E
∣∣x

(
v – h(v)

)∣∣2
(∫ v+2τ

v
eγ s ds

)
dv

≤ 2τeγ (2τ+h̄)
∫ t

2h̄–2τ

eγ (s–h(s))E
∣
∣x

(
s – h(s)

)∣∣2 ds

≤ 2τh0eγ (2τ+h̄)
∫ t

h̄–2τ

eγ sE
∣
∣x(s)

∣
∣2 ds

≤ 2τh0eγ (2τ+h̄)
(∫ 2h̄

h̄–2τ

eγ sE
∣
∣x(s)

∣
∣2 ds +

∫ t

2h̄
eγ sE

∣
∣x(s)

∣
∣2 ds

)
.

Substituting this into (3.23) yields

C1eγ tE
∣
∣x(t)

∣
∣2

≤ Q7 +
(
γ (Q4 + Q6τ )2τe2τγ + γ (Q5 + Q6τ )2τh0eγ (2τ+h̄) + γ C2 – λ

)

×
∫ t

2h̄
eγ sE

∣∣x(s)
∣∣2 ds,
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where

Q7 = Q3 + γ (Q4 + Q6τ )2τe2τγ

∫ 2h̄

2h̄–2τ

eγ sE
∣∣x(s)

∣∣2 ds

+ γ (Q5 + Q6τ )2τh0eγ (2τ+h̄)
∫ 2h̄

h̄–2τ

eγ sE
∣∣x(s)

∣∣2 ds.

Recalling (3.19), we obtain

C1eγ tE
∣∣x(t)

∣∣2 ≤ Q7, ∀t ≥ 2h̄, (3.24)

which implies that (3.17) holds. Finally, by [1], we can obtain the other assertion (3.18)
from (3.24). The proof is therefore complete. �

Corollary 3.6 Let Assumptions 2.1, 2.2, and 2.3 hold. Assume that there exists a function
U ∈ C2,1(Rn × S × R+;R+) and some positive constants Ci, i = 1, 2 and βi, i = 1, 2, 3 such
that

C1|x|2 ≤ U(x, i, t) ≤ C2|x|2 (3.25)

and

LU(x, y, i, t) ≤ –β1|x|2 + β2|y|2,
∣∣Ux(x, i, t)

∣∣2 ≤ β3|x|, (3.26)

for all x, y ∈R
n, i ∈ S and t ∈R+. Let τ > 0 be sufficiently small for (3.3) to hold, and set

λ = λ2 – λ3h0 –
k2

λ1
τ
[
(4τ + 2)L2

0(1 + h0) + 4k2τ
]
.

Then the assertions of Theorem 3.5 still hold, provided λ1 < β1/β2
3 .

Proof In fact, we only need to verify whether Assumption 3.1 is true. If λ1 < β1/β2
3 , then it

follows from (3.26) that

LU(x, y, i, t) + λ1
∣∣Ux(x, i, t)

∣∣2 ≤ –
(
β1 – λ1β

2
3
)|x|2 + β2|y|2,

Set λ2 = β1 – λ1β
2
3 and λ3 = β2, then Assumption 3.1 holds. �

4 Two examples
Let us now discuss two examples to illustrate our theory.

Example 4.1 Consider an unstable hybrid stochastic system with time-varying delay,

dx(t) = f
(
x(t), x

(
t – h(t)

)
, r(t)

)
dt + g

(
x(t), x

(
t – h(t)

)
, r(t)

)
dw(t), (4.1)

on t ≥ 0, and assume that the coefficients f and g satisfy the linear growth condition, while
the time delay h(t) satisfies Assumption 2.3. Let us design a discrete-time state feedback
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control to stabilize system (4.1). Now, we use a linear controller u(x, i, t) = F(i)x, where
F(i) ∈ R

n×n for all i ∈ S. Therefore, the controlled hybrid stochastic systems with time-
varying delay has the form

dx(t) =
[
f
(
x(t), x

(
t – h(t)

)
, r(t), t

)
+ F

(
r(t)

)
x(δt)

]
dt

+ g
(
x(t), x

(
t – h(t)

)
, r(t), t

)
dw(t).

(4.2)

It is easy to obtain that Assumption 2.2 holds with k = maxi∈S ‖F(i)‖. Choose U(x, i, t) =
qi|x|2, where qi > 0, then we have

LU(x, y, i, t) ≤ x�
(

[
3qiL0 + 2qiL2

0
]
I + qi

[
F(i) + F�(i)

]
+

N∑

j=1

γijqjI

)

x

+ y�[(
qiL0 + 2qiL2

0
)
I
]
y,

∣
∣Ux(x, i, t)

∣
∣2 ≤ 2 max

i∈S
qi|x|.

We assume that the following linear matrix inequalities:

[
3qiL0 + 2qiL2

0
]
I + Y (i) + Y (i)� +

N∑

j=1

γijqjI < 0 (4.3)

have their solutions for qi > 0 and Yi ∈ R
n×n (i ∈ S). Set F(i) = q–1

i Y (i) and

β1 = – max
i∈S

λmax

(
[
3qiL0 + 2qiL2

0
]

+ Y (i) + Y (i)� +
N∑

j=1

γijqj

)

,

β2 = max
i∈S

λmax(qiI), β3 = 2 max
i∈S

λmax
[(

qiL0 + 2qiL2
0
)
I
]
.

Then, we see that (3.26) is satisfied. The corresponding parameters in Corollary 3.6 be-
come C1 = mini∈S qi, C2 = maxi∈S qi. Choose λ1 < β1/β2

3 , and set λ2 = β1 –λ1β
2
3 and λ3 = β2.

Let τ > 0 be sufficiently small for (3.3) to hold, then, by Corollary 3.6, the controlled hybrid
stochastic system with time-varying delay (4.2) is exponentially stable in mean square and
almost surely as well.

Example 4.2 Let r(t) be a right-continuous Markov chain on the state space S = {1, 2} with
its generator

� =

[
–1 1
1 –1

]

.

Consider the following one-dimensional hybrid stochastic system with time-varying de-
lay:

dx(t) = f
(
x(t), x

(
t – h(t)

)
, r(t), t

)
dt + g

(
x(t), x

(
t – h(t)

)
, r(t), t

)
dw(t), (4.4)
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Figure 1 Computer simulation of the path of the hybrid stochastic system with time-varying delay (4.4) using
the Euler–Maruyama method with step size 10–3 and initial values x(0) = 2 and r(0) = 1

on t ≥ 0, where

f (x, y, 1) = –1.2x3 + 0.2y, g(x, y, 1) = 0.3x + 0.05y,

f (x, y, 2) = –0.8x3 + 0.5y, g(x, y, 2) = 0.4x + 0.02y

and

h(t) =
∞∑

k=0

{[
0.25 – 0.2(t – 3k)

]
I[3k,3k+1)(t) + 0.05I[3k+1,3k+2)(t)

+
[
0.05 + 0.2(t – 3k – 2)

]
I[3k+2,3k+3)(t)

}
.

It is easy to obtain that Assumption 2.1 holds with L0 = 0.5 and h(t) satisfies Assump-
tion 2.3 with h = 0.05, h̄ = 0.25, and h0 = 1.25. A computer simulation (Fig. 1) shows that
Eq. (4.4) is not almost surely exponentially stable.

Now consider the linear controller of the form u(x, i, t) = F(i)x (i = 1, 2) and the con-
trolled system given as follows:

dx(t) =
[
f
(
x(t), x

(
t – h(t)

)
, r(t), t

)
+ F

(
r(t)

)
x(δt)

]
dt

+ g
(
x(t), x

(
t – h(t)

)
, r(t), t

)
dw(t).

(4.5)

Obviously, we derive that the linear matrix inequalities (4.5) have their solutions q1 = 1,
q2 = 2, Y (1) = –16, and Y (2) = –8. Then, we have F(1) = –16 and F(2) = –4. Hence, we
can obtain that k = 16, β1 = 15, β2 = 2, and β3 = 4. Choose λ1 = 0.5 and set λ2 = 7, λ3 = 2.
Let τ < 2.42 × 10–3, then, by Corollary 3.6, the controlled hybrid stochastic system with
time-varying delay (4.5) is exponentially stable in mean square and almost surely as well.
A computer simulation (Fig. 2) clearly supports this result.

5 Conclusion
This paper is devoted to the stabilization of hybrid stochastic systems with time-varying
delay by feedback controls based on discrete-time state observations. An upper bound τ ∗
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Figure 2 Computer simulation of the path of the controlled hybrid stochastic system with time-varying delay
(4.5) with τ = 10–3 using the Euler–Maruyama method with step size 10–3 and initial values x(0) = 2 and
r(0) = 1

on the duration τ between two consecutive state observations is obtained by the method
of Lyapunov functionals. In the meantime, some sufficient conditions in the sense of H∞
stability, mean-square asymptotic stability, and exponential stability have been established
for the hybrid stochastic systems with time-varying delay as long as τ < τ ∗.

Appendix

Proof of Theorem 2.8 By Mao [1], we know that Assumptions 2.1 and 2.2 guarantee the ex-
istence of the unique maximal local solution x(t) on t ∈ [0,σ∞), where σ∞ is the explosion
time. Let k0 be the bound for ξ . For each integer k ≥ k0, define the stopping time

τk = inf
{

t ∈ [0,σ∞) :
∣∣x(t)

∣∣ ≥ k
}

.

Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ σ∞ a.s. Note if we
can show that τ∞ = ∞ a.s., then σ∞ = ∞ a.s. So we just need to show that τ∞ = ∞ a.s.
Now, we shall show that τ∞ > τ a.s. For any k ≥ k0 and t ∈ [0, τ ], by the Itô formula, it is
easy to show that

E
∣
∣x(t ∧ τk)

∣
∣2 =

∣
∣x(0)

∣
∣2 + E

∫ τk∧t

0

(
2x�(s)

[
f
(
x(s), x

(
s – h(s)

)
, r(s), s

)

+ u
(
x(δs), r(s), s

)]
+

∣
∣g

(
x(s), x

(
s – h(s)

)
, r(s), s

)∣∣2)ds.
(6.1)

By Assumptions 2.1 and 2.2, we then get

E
∣∣x(t ∧ τk)

∣∣2 ≤ ∣∣ξ (0)
∣∣2 + E

∫ τk∧t

0

(
α1

∣∣x(s)
∣∣2 + 2k

∣∣x(δs)
∣∣2 + α2

∣∣x
(
s – h(s)

)∣∣2)ds,

where α1 = 3L + 2L2, α2 = L + 2L2, H1 = α2
∫ τ

0 E|x(s – h(s))|2 ds. Noting that for t ∈ [0, τ ],
–h̄ ≤ t – h(t) ≤ τ – h ≤ 0, we have

H1 = α2

∫ τ

0
E
∣
∣ξ

(
s – h(s)

)∣∣2 ds = α2τ‖ξ‖2 < ∞.
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Then it follows that

sup
0≤t≤τ

E
∣∣x(t ∧ τk)

∣∣2 ≤ ∣∣ξ (0)
∣∣2 + H1 + (α1 + 2k)

∫ t

0

(
sup

0≤s≤τ

E
∣∣x(s ∧ τk)

∣∣2
)

ds.

Hence, by the Gronwall inequality, we have

E
∣
∣x(τk ∧ t)

∣
∣2 ≤ (∣∣ξ (0)

∣
∣2 + H1

)
e(α1+2k)τ , 0 ≤ t ≤ τ , (6.2)

for any k ≥ k0. In particular, E|x(τk ∧ τ )|2 ≤ (|ξ (0)|2 + H1)e(α1+2k)τ , ∀k ≥ k0. This implies
k2P(τk ≤ τ ) ≤ (|ξ (0)|2 + H1)e(α1+2k)τ . Letting k → ∞, we hence obtain that P(τ∞ ≤ τ ) = 0,
namely P(τ∞ > τ ) = 1. Letting k → ∞ in (6.2) yields

E
∣∣x(t)

∣∣2 ≤ (∣∣ξ (0)
∣∣2 + H1

)
e(α1+2k)τ , 0 ≤ t ≤ τ . (6.3)

Let us now proceed to prove τ∞ > 2τ a.s., given that we have shown (6.3). For any k ≥ k0

and t ∈ [0, 2τ ], it follows from (6.1) that

E
∣∣x(t ∧ τk)

∣∣2 ≤ ∣∣ξ (0)
∣∣2 + H2 + E

∫ τk∧t

0

(
α1

∣∣x(s)
∣∣2 + 2k

∣∣x(δs)
∣∣2)ds, (6.4)

where H2 = α2
∫ 2τ

0 E|x(s – h(s))|2 ds. Note that for t ∈ [0, 2τ ], –h̄ ≤ t – h(t) ≤ τ . By
Lemma 2.6 and (6.3), we have

H2 = H1 + α2

∫ 2τ

τ

E
∣∣x

(
s – h(s)

)∣∣2 ds

≤ H1 + α2h0

∫ 2τ–h

τ–h̄
E
∣
∣x(s)

∣
∣2 ds

≤ H1 + α2h0(h̄ – τ )‖ξ‖2 + α2h0
(∣∣ξ (0)

∣
∣2 + H1

)
e(α1+2k)τ τ

< ∞.

Consequently,

sup
0≤t≤2τ

E
∣
∣x(t ∧ τk)

∣
∣2 ≤ ∣

∣ξ (0)
∣
∣2 + H2 + (α1 + 2k)

∫ t

0

(
sup

0≤s≤2τ

E
∣
∣x(s ∧ τk)

∣
∣2

)
ds.

Gronwall inequality then implies

E
∣∣x(t ∧ τk)

∣∣p ≤ (∣∣ξ (0)
∣∣2 + H2

)
e(α1+2k)2τ , 0 ≤ t ≤ 2τ . (6.5)

In particular, E|x(τk ∧ 2τ |p ≤ (|ξ (0)|2 + H2)e(α1+2k)2τ , ∀k ≥ k0. This implies k2P(τk ≤ 2τ ) ≤
(|ξ (0)|2 + H2)e(α1+2k)2τ . Letting k → ∞, we then obtain that P(τ∞ ≤ 2τ ) = 0, namely P(τ∞ >
2τ ) = 1. Letting k → ∞ in (6.5) yields

E
∣
∣x(t)

∣
∣2 ≤ (∣∣ξ (0)

∣
∣2 + H2

)
e(α1+2k)2τ , 0 ≤ t ≤ 2τ .

Repeating this procedure, we can show that, for any integer i ≥ 1, τ∞ > iτ a.s.,

E
∣∣x(t)

∣∣2 ≤ (∣∣ξ (0)
∣∣2 + Hi

)
e(α1+2k)iτ , 0 ≤ t ≤ iτ ,
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where

Hi = α2

∫ iτ

0
E
∣
∣x

(
s – h(s)

)∣∣2 ds

= Hi–1 + α2

∫ iτ

(i–1)τ
E
∣∣x

(
s – h(s)

)∣∣2 ds

≤ Hi–1 + α2h0

∫ iτ–h

(i–1)τ–h̄
E
∣∣x(s)

∣∣2 ds

≤ Hi–1 + α2h0h̄
(∣∣ξ (0)

∣
∣2 + Hi–1

)
e(α1+2k)(i–1)τ

< ∞.

We must therefore have τ∞ = ∞ a.s., and the required assertion (2.7) holds as well. �
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