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Stabilization of Hypersonic Boundary Layers by Porous Coatings
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A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a

porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode ampli�-

cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was

demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the

Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental con�rmation

of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be

exploited for passive laminar �ow control on hypersonic vehicle surfaces.

Nomenclature

A = admittance
B = thermal admittance
F = frequency parameter
h = porous layer thickness
n = porosity
p = pressure perturbation
Pr = Prandtl number
Re = displacement thickness Reynolds number
Retr = transition Reynolds number
r = pore radius
s = pore spacing
T = mean �ow temperature
t = time
U = mean �ow velocity
u; v; w = perturbationvelocity components
x; y; z = Cartesian coordinates
®; ¯ = wavenumber components

° = speci�c heat ratio
±¤ = displacement thickness

µ = temperature perturbation
· = thermal conductivity

¹ = viscosity
½ = mean �ow density

¾ = spatial growth rate
’ = wave front angle

! = angular frequency

Subscripts

ad = adiabatic
e = upper boundary-layeredge
m = maximum value

w = wall surface

Superscript

¤ = dimensional
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Introduction

T HE abilityto stabilizea hypersonicboundarylayerand increase

its laminar run is of critical importance in the hypersonic ve-
hicle design.1 Early transition causes signi�cant increases in heat

transfer and skin friction. Higher heating requires an increased per-
formance thermal protection system (TPS), active cooling, or tra-

jectory modi�cation. This translates to higher cost and weight of
hypersonic vehicles due to increased TPS weight. Moreover, with

the low payload mass fraction, even small savings in TPS weight
can provide a signi�cant payload increase. Vehicle maintainabil-

ity and operability are also affected by transition. Robust metallic
TPS have temperature limits lower than ceramic TPS. Laminar �ow

control (LFC) can help meet these more severe constraints. For a
streamlined vehicle with large wetted area, viscous drag becomes

important. It can be from 10% (fully laminar) to 30% (fully tur-
bulent) of the overall drag.2 For optimized hypersonicwave/riders,

viscous drag may represent up to 50% of the total drag.3 Vehicle
aerodynamics is another area impacted by laminar– turbulent tran-

sition. Asymmetry of the transition locus can produce signi�cant
yawing moments. Aerodynamic control surfaces and reaction con-

trol systems are also affected due to sensitivity of boundary-layer
separation to the �ow state (laminar or turbulent).

If freestream disturbances and TPS-induced perturbations are
small, transition to turbulence is due to ampli�cation of unstable

boundary-layermodes.1;4 In this case, LFC methods and transition
prediction tools are predominantly based on stability theory and

experiment.5¡8 LFC systems are aimed at slowing down or elimi-
nating ampli�cation of unstable disturbances using passive and/or

active control techniques. A third form of �ow control is known
as reactive control, in which boundary-layer disturbances are can-

celed by arti�cially introducing out-of-phasedisturbances.Typical
passive LFC techniques are pressure gradient and shaping. Active

techniquesincludewall suction and heat transfer. In reactive control
methods, periodic suction/blowing, heating/cooling or wall vibra-

tions are used for arti�cial excitationof counter-phasedisturbances.
In hypersonic boundary layers, ampli�cation of the following

instability mechanisms may drive the transition process:

1) The �rst instability mechanism is the �rst mode associated
with Tollmien–Schlichting waves. This instability may be domi-

nant at relatively small local Mach numbers (normally less than 5).
This mode is strongly stabilized on cool surfaces. At low wall-

temperature ratios, the stabilizationeffect may be so strong that the
�rst-mode mechanism becomes unimportant.

2) The secondmodeassociatedwith an inviscidinstabilitypresent
due to a region of supersonic mean �ow relative to the distur-

bance phase velocity5 belongs to the family of trapped acoustic
modesand becomesthedominantinstabilityin two-dimensionaland
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Fig. 1 Acoustic mode in a supersonic boundary layer on semitrans-
parent wall.

quasi-two-dimensional boundary layers at Mach numbers M > 4.
The existence of the second mode was established by the exper-

iments of Kendall,9 Demetriades,10 Stetson et al.,11 Stetson and
Kimmel,12 and Kimmel et al.13 The most ampli�ed second-mode

wavelength is approximately twice the boundary-layer thickness,
and its phase velocity tends to the boundary-layeredge velocity of

mean �ow. As a result, the second-mode disturbances are in the
ultrasonic frequency band. For example, the most ampli�ed waves

observed in the experiment of Stetson et al.11 at Mach 8 correspond
to a frequency about 100 kHz. In contrast to the �rst mode, the

second mode is destabilized by cooling.
3)Cross�ow vorticesareobservedin three-dimensionalboundary

layers on the leading edge of a swept wing, axisymmetric bodies at
high angles of attack,etc. This instability is weakly sensitive to wall

cooling. It can be effectively stabilized by shaping. For example,
two-dimensional shaping of air breathers helps to avoid cross�ow

instabilities on large acreage regions of the vehicle surface.
4) Görtler vortices play a major role in transition on concave

surfaces. Similar to the cross�ow instability, their growth rate can
be reduced by shaping.

Because severe environmental conditions make it dif�cult to use
active and reactive LFC concepts for hypersonic vehicles, passive

LFC techniques are of great interest. Thus, Malmuth et al.14 pro-
posed a new passive method of second- and higher-mode stabiliza-

tion. They exploited the hypersonicboundary layer’s behavioras an

acoustic waveguide, schematically shown in Fig. 1. Therein, acous-
tic rays are re�ected by the wall and turn around near the sonic line:
y D ya ; U .ya/ D Re.c/ ¡ a.ya/, where c is the disturbance phase
speed and a is local sound speed. The second, third, and higher

boundary-layermodes correspond to the waveguide normal modes.
Malmuth et al.14 assumed that the absorption of acoustic energy by

an ultrasonicallyabsorptivecoatingcan stabilizethesedisturbances.
This assumption was examined using stability theory for inviscid

disturbances. It was found that an ultrasonically semitransparent
wall provides substantial reductionof the second-modegrowth rate.

In this paper, we study this stabilization mechanism, including
viscous effects and an absorptive skin microstructure. We formu-

late the eigenvalue problem for viscous disturbances in a hyper-
sonic boundary layer on a wall covered by an ultrasonicallyabsorp-

tive coating of special type, namely, a porous layer with equally
spaced cylindrical blind microholes. We obtain the analytical form

of boundary conditionson the porous surface and solve the viscous
eigenvalue problem numerically. We discuss results of calculations

showing the second-mode stabilization on porous surfaces of vari-
ous pore radii, spacing, and thickness.Then we brie�y describe the

experimental data of Rasheed et al.15 that con�rm the theoretically
based hypersonic boundary-layer stabilization by porous coatings

given in this paper. These results were obtained in the T-5 Graduate
Aeronautical Laboratories of the California Institute of Technol-

ogy high-enthalpy wind tunnel on a sharp cone that they detail in
Ref. 15. Finally, we conclude the paper with a summary discussion

and indicate possible future directions.

Eigenvalue Problem

We consider supersonic boundary-layer�ow over a �at plate or

sharp cone as schematically shown in Fig. 2. The �uid is a perfect

gas with Prandtl number Pr, speci�c heat ratio ° , and viscosity ¹.
The coordinates x , y, and z are made nondimensionless using the

boundary-layer displacement thickness ±¤. In the locally parallel
approximation, the mean �ow is characterized by the pro�les of
x-component velocity U .y/ and temperature T .y/, referenced to
the quantities U ¤

e and T ¤
e at the upper boundary-layeredge. Three-

Fig. 2 Schematic of a wall covered by porous layer.

dimensional disturbances are represented in the traveling wave
form

Qq D Refq.y/ exp[ i.®x C ¯z ¡ !t/]g; Qq D [ Qu; Qv; Qw; Qp; Qµ ] (1)

where Qu, Qv, and Qw are velocity components; Qp is the pressure ref-

erenced to the double dynamic pressure ½¤
e
U ¤2

e ; Qµ is the temper-

ature; ® D ®¤±¤ and ¯ D ¯¤±¤ are wave number components; and
! D !¤±¤=U ¤

e is the angularfrequency.The systemof stabilityequa-

tions that is derived from the full Navier–Stokes equations for a
locally parallel compressible boundary layer can be represented in

the form16

dz

dy
D S ¢ z; z D

³

u;
du

dy
; v; p; µ;

dµ

dy
; w;

dw

dy

´T

(2)

where S is an 8 £ 8 matrix. Its elements are functions of the mean

�ow pro�les, the displacement thickness Reynolds number Re D
±¤U ¤

e ½¤
e =¹¤

e , and disturbance characteristics!; ®, and ¯.

We consider a wall covered by a porous layer of the thicknessh¤.
The pores are equallyspaced cylindricalblindholesof radiusr ¤ per-

pendicular to the wall surface, as schematicallyshown in Fig. 2. The
hole spacing s¤ and diameter are assumed to be much less than the

boundary-layerdisplacement thickness ±¤. Because the pore radius
is small and interactions between neighboring pores are weak, per-

turbations of longitudinal and transverse velocity produced by the
porous layer are neglected. However, the porous structure is semi-

transparentrelativeto the verticalvelocityand temperatureperturba-
tions. In this case, the wall boundaryconditionscan be expressedas

u.0/ D 0; w.0/ D 0; v.0/ D Ap.0/; µ.0/ D Bp.0/

(3)

where the admittance A and thermal admittance B are complex
quantities that depend on properties of the wall material, poros-

ity parameters, mean �ow characteristics on the wall surface, and

�ow perturbation parameters such as a wave frequency and wave-
length. These dependenciesare derived in the next section.Because

boundary-layermodes decay outside the boundary layer, we have

u.1/ D v.1/ D w.1/ D µ.1/ D 0 (4)

The eigenvalue problem (2–4) provides the dispersion relation
F.®; ¯; !/ D 0. For temporal stability, the wave number compo-
nents ® and ¯ are real quantities, and ! is a complex eigenvalue. If

Im.!/ > 0, then the disturbanceis unstable.For spatial instabilityin
two-dimensional boundary layers, the frequency ! and transverse

wave number component ¯ are real, whereas ® is a complex eigen-
value. If Im.®/ < 0, then the disturbanceampli�es downstreamwith

the spatial growth rate ¾ D ¡Im.®/.

Admittance of Porous Layer

The porous layer is characterizedby the porosity n, which is the
fraction of the overall volume taken up by the pores. For the pore

spacing shown in Fig. 2, the porosity, n D ¼.r¤=s¤/2, can be varied
in the range 0 < r¤=s¤ < ¼=4, where the upper limit corresponds to
s¤ D 2r ¤. The pore radius and spacing are considered to be much
less than the disturbance wavelength, which is of the order of the
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boundary-layer displacement thickness. In this case, the porosity
is �ne enough to avoid disturbing the laminar boundary layer by

other mechanisms associatedwith effective surface roughness.The
porous layer thicknessh¤ is assumed to be much larger than the pore

radius r¤ , that is, each pore is treated as a long tube.
To obtain the relationship between the admittance A and porous

layer parameters, we use the theoretical model developed by
Gaponovfor subsonic17;18 and moderatesupersonicspeeds.19 These

studies addressed the porosity effect on Tollmien–Schlichting (TS)

waves. As contrasted to second-mode waves of acoustic type dis-

cussed in this paper, the TS waves over porous walls analyzed by
Gaponov are vortical disturbances that become unstable due to vis-

cous mechanisms.For this reason, the second-modeinteractionwith

a porous surface is fundamentally different from that of TS waves.
Yet, the results18 for the disturbance propagation within a porous

wall are independent of the nature of the boundary-layer distur-
bances, for example, second-mode acoustic or TS waves. In par-

ticular, they can be used in formulating the porous wall boundary
conditions for the vertical velocity of second-mode disturbances

considered herein. The thermal admittance B is derived using an
explicit coupling between the pressure, temperature, and velocity

perturbationswithin a uniform pore.20

Following theanalysis,18 we apply the theoryof soundwave prop-

agation in thin and long tubes (see, for example, Ref. 21). Because
h¤ À r¤, the pressure is approximately constant across the pore. In

this case, the acoustic �eld within each pore is characterizedby the
propagationconstant3 and the characteristic impedance Z0 . These

parameters can be expressed as a function of the series impedance
Z and the shunt admittance Y for the tube element of unit length

using the transmission line formalism.22;23 The series impedance
properties of the tube element are associated with the storage of

kinetic energy and its dissipation due to viscous losses at the tube
wall. The shunt admittanceis associatedwith the potentialenergyof

compressionand the thermal energy losses due to the wall heat con-
ductivity. We assume that the mean gas temperature along the tube

is constant and equal to the wall surface temperature Tw . Daniels22

and Benade23 showed that the dimensional series impedance Z¤

and shunt admittance Y ¤ per unit length of a tube with radius r¤ are
expressed as

Z ¤ D ¡
i!¤½¤

w

¼r ¤2

µ

1 ¡ 2

kv

¢
J1.kv/

J0.kv/

¶¡1

(5)

Y ¤ D ¡
i!¤¼r¤2

½¤
w

a¤2
w

µ

1 C .° ¡ 1/
2

kt

¢
J1.kt /

J0.kt /

¶

(6)

where, ½¤
w and a¤

w are mean density and sound speed in a tube. J0

and J1 are Bessel functions of the arguments kº D r¤p
.i!¤½¤

w=¹¤
w /

and kt D kº

p
.Pr/, which measure the ratio of the tube radius to the

viscousboundary-layerthicknessand to the thermalboundary-layer
thickness on the tube surface, respectively.Using the relation

J0.x/ C J2.x/ D 2J1.x/=x (7)

we express Z¤ and Y ¤ in the form

Z¤ D
i!¤½¤

w

¼r¤2
¢

J0.kº/

J2.kº/
(8)

Y ¤ D ¡
i!¤¼r¤2

½¤
w

a¤2
w

µ

° C .° ¡ 1/
J2.kt /

J0.kt /

¶

(9)

For the average velocity through the pore, the transmission line

is characterizedby the impedance Z ¤
1

D S¤ Z¤ and shunt admittance
Y ¤

1
D Y ¤=S¤, where S¤ D ¼r¤2 is porecross-sectionalarea.Choosing

the boundary-layerdisplacement thickness and mean �ow parame-
ters at the upper boundary-layeredge as reference scales, we have

Z1 ´ ¼r¤2±¤

½¤
e
U ¤

e

Z ¤ D
i!

Tw

J0.kº /

J2.kº /
; kº D r

r

i!½w

¹w

R (10)

Y1 ´
½¤

e
U ¤

e ±¤

¼r¤2
Y ¤ D ¡i!M 2

µ

° C .° ¡ 1/
J2.kt /

J0.kt /

¶

(11)

where r D r¤=±¤ is nondimensionalpore radius. The characteristic
impedance Z0 and the propagation constant 3 are expressed in the

form

Z0 D
p

Z1=Y1; 3 D
p

Z1Y1; Re.3/ < 0 (12)

The coupling between the pressure amplitude p and the average
velocity disturbance amplitude

__

v at the pore end, y D ¡h, can be

expressed as p.¡h/ D X ¢ __

v.¡h/, where the impedance X depends
on characteristics of the backup structure. If the lower pore end is

closedby a solidwall (blindpores), then
__

v.¡h/ D 0. In this case, the
impedance is X D 1, and the velocity–pressure ratio at the upper

end of the pore is

[

__

v.0/=p.0/] D .1=Z0/ tanh.3h/ (13)

Averagingtheverticalvelocityamplitudeat the wall over the surface

area, we have v.0/ D n ¢ __

v.0/. Then the admittance in the boundary
conditions (3) is expressed as

A D .n=Z0/ tanh.3h/ (14)

If the porous layer is relatively thick (3h ! 1), then Eq. (14) is
reduced to the form

A D ¡.n=Z0/ (15)

Note that the limit 3h ! 1 leads to Eq. (15) at any �nite value of
X (i.e., the disturbance at the upper end of each hole does not feel

the lower end due to the decay of sound propagating along a tube).
According to the analysis of Stinson and Champoux,20 the pres-

sure disturbance, average temperature disturbance,and average ve-
locity disturbance within a cylindrical pore are coupled as

__

v¤.!¤/ D 1

i!¤½¤
w

dp¤

dy¤ .!¤/

µ

1 ¡ 2

kv

J1.kv/

J0.kv/

¶

(16)

__

µ¤.!¤/ D
i!¤¹¤

·¤
w

µ

p¤.!¤/

¿

dp¤

dy¤ .Pr!¤/

¶

__

v ¤.Pr!¤/ (17)

SubstitutingEq. (16) intoEq. (17), accountingforEq. (7), andnondi-
mensionalizng the result, we obtain

__

µ D ¡.° ¡ 1/M 2Tw pJ2.kt /
¯

J0.kt / (18)

Thus, the thermal admittance in the boundary condition (3) for the

temperature disturbance is expressed as

B D ¡n.° ¡ 1/M 2Tw J2.kt /
¯

J0.kt / (19)

Computational and Parametric Studies

To evaluate the porous layer effect on the second-mode stability,
we solve the eigenvalue problem (2–4) numerically using the ad-

mittance (14) or its limiting form (15) and the thermal admittance
(19). We consider the boundary layer of a perfect gas with Prandtl

number Pr D 0:71 and speci�c heat ratio ° D 1:4. The temperature–

viscosity law is speci�ed as ¹ D ¹0.T=T0/m with the exponent
m D 0:75; the second viscosity is zero. Figure 3 shows the spa-
tial growth rate ¾ as a function of the Reynolds number Re for

two-dimensional unstable waves (¯ D 0) of nondimensional fre-
quency F ´ !¤º¤

e =U ¤2
e

D 2:8 £ 10¡4 in the boundary layer at the

Machnumber M D 6. The wall temperatureTw D 1:4 approximately
corresponds to the wall temperature ratio Tw=Tad D 0:2. Calcula-

tions were conducted for a thick porous layer (3h ! 1) with the
porosityn D 0:5 at variousvaluesof the nondimensionalpore radius
r D r¤=±¤. Note that the porous layer causes massive reduction of
the second-mode growth rate. In Figs. 3–6, symbols correspond to

the case of zero thermal admittance, B D 0. For all cases considered,
temperature perturbations on the porous surface weakly affect the

disturbance growth rate and can be neglected.
Figure 4 shows that deep pores of �xed radius (r D 0:03 at

Re D 2 £ 103) and spacing (porosity n D 0:5) strongly stabilize the
second-mode waves in a wide frequency band at various Reynolds

numbers Re (dashed lines). This example illustrates that it is possi-
ble to cause signi�cant reduction of the disturbance growth rate on

largesurfaceareaswithout�ne tuning thepore size. As contrastedto
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Fig. 3 Growth rate ¾ as a function of Reynolds number Re at vari-
ous pore radii r: M = 6, Tw = 1:4, F = 2:8 ££ 10¡ 4, n = 0:5, and Kh ! 1

(solid lines); symbols indicate zero thermal admittance. (R = Reynolds

number in �gure.)

Fig. 4 Growth rate ¾ as a function of disturbance frequency F at
various Reynolds numbers Re: M = 6, Tw = 1:4, n = 0:5, and Kh ! 1 ;
solid lines r = 0, dashed lines r = 0:03 at Re = 2:0 ££ 103, symbols indicate

zero thermal admittance. (R = Reynolds number in �gure.)

reactive �ow control techniques, a porous coating provides passive

stabilization of the boundary-layer �ow regardless the disturbance
phase and amplitude distributions in space and time and with no

external energy input. Note that the waveguide behavior described
earlier in this paper in connection with the instability of the acous-

tic second mode that is quenched by the ultrasonic absorbing wall
concept describedherein resembles ampli�cation processes studied

by the second author in connection with the stability of hypersonic
strong interaction �ows.24

Figure 5 shows distributions of the maximum growth rate,
¾m .Re/ D max! [ ¾ .!; Re/], at the wall temperaturesTw D 1.4, 3.5,

and 7.0, that approximatelycorrespondsto the wall temperature ra-
tio Tw=Tad D 0.2, 0.5, and 1. The stabilizationeffect decreasesas the

wall temperature increases.A strong reduction of the growth rate is

observed in the boundary layer on a cool wall (see Fig. 5), a more
practical case for hypersonic applications. This trend is consistent

with the admittance asymptotic behavior associated with Eqs. (10–

12) and (15). For deep pores (3h À 1) of relatively small radius
(jkv j ¿ 1), the admittance A is proportional to kv M

p
.Tw/ and de-

creases with the wall temperature as T
¡m=2

w .

Figure 6 shows the maximum growth rate ¾m as a function of the
porosity n for Re D 4 £ 103 and r D 0:03 for the boundary layer at
M D 6 and Tw D 1:4. The porous layer of spacing s D 4r.n ¼ 0:2/

reduces the growth rate by a factor of 2 compared to the solid

wall case n D 0. Our calculations using the eN method indicates
that this stabilization translates to extending the transition onset

point more than three times its value without porosity. In Fig. 7,

the second-mode growth rate is shown as a function of the nondi-
mensional porous layer thickness h D h¤=±¤ at n D 0:4, r D 0:03,
Re D 4 £ 103, and F D 3 £ 10¡4 . The limit 3h ! 1 is achieved
at a relatively small value of h ¼ 0:3 (pore depth is about �ve

diameters) that is due to strong damping of sound waves in thin
pores. There is an optimal thickness, h ¼ 0:12, at which the porous

Fig. 5 Distributions of maximum growth rate ¾m(Re) at various pore
radii r: M = 6, n = 0:5, and Kh ! 1 (——); symbols indicate zero ther-

mal admittance. (R = Reynolds number in �gure.)

Fig. 6 Maximum growth rate ¾m as a function of porosity n at

Re = 4 ££ 103: M = 6, Tw = 1:4, r = 0:03, and Kh ! 1 (——); symbols
indicate zero thermal admittance.

wall effect is able to stabilize the disturbance completely. In this
case, the disturbance re�ected from the pore bottom is in counter

phase with the boundary-layer disturbance. However, the optimal

thickness strongly depends on the disturbance frequency and the
thick porous layer is more robust. Figure 8 illustrates the stabiliza-

tion effect for three-dimensionalwaves of the second-mode family.
The growth rate is shown as a function of the wave front angle

’ D arctan.¯r =®r / at various pore radii. The porous coating causes
massive reduction of the disturbance growth rate and substantially
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Fig. 7 Growth rate ¾ as a function of porous layer thickness h at
n = 0:4, r = 0:03,Re = 4 ££ 103 , F = 3 ££ 10¡ 4, M = 6,and Tw = 1:4 forzero
thermal admittance.

Fig.8 Growth rate ¾ as a function ofwave frontangle’ atvariouspore

radii r: M = 6, Tw = 1:4, Re = 4287, F = 3 ££ 10¡ 4 , n = 0:3, and Kh ! 1 .

decreases the unstable range of wave front angles. These examples

show that a relatively thin porous coating can dramatically reduce
the second-modeampli�cation and increase the laminar run if tran-

sition is driven by second-modedisturbances.

Experimental Validation of Theory

Rasheed et al.15 have recently veri�ed the theoretical concept

by testing a 5-deg half-angle sharp cone with an ultrasonically ab-
sorptive coating in the California Institute of Technology T5 high-

enthalpy shock tunnel. The cone was 1 m in length, with half of its
surface solid and the other a porous sheet perforated with equally

spaced blind cylindrical holes. Porosity parameters were chosen
from the preliminary theoretical analysis of Fedorov and Malmuth

as well as manufacturing constraints. The average pore radius r¤

was 30 ¹m, the depth h¤ was 500 ¹m, and the average spacing s¤

was 100 ¹m. Figure 9 shows a microphotograph of a portion of
the porous surface. For typical runs, the boundary-layer thickness

was about 1 mm, and the estimated number of holes per boundary-
layer disturbancewavelength was about 20. Static measurementsof

ultrasound re�ectivity of perforated sheet coupons (without �ow)

showed that the porous coating attenuated the incident ultrasonic

signal of 400-kHz frequency by 3.0 dB relative to a solid wall.
The model was instrumented by thermocouples, and the tran-

sition onset point was determined from the Stanton number dis-
tributions St .x/ measured simultaneously on both sides of the

model for each run. Nitrogen was selected as the test gas to
minimize the chemistry effects, which were not included in the

theoretical analysis. Runs were performed for the ranges of the

freestream total enthalpy4:18 · H0 · 13:34 MJ/kg and Mach num-
ber 4:59 · M1 · 6:4. Figure 10 shows a summary plot of the tran-

sition onset Reynolds number Retr D x¤
tr
U ¤

e ½¤
e =¹¤

e vs H0 . The solid
squares correspond to transition on the solid wall, and the open cir-

cles correspondto transition on the porous surface.The circles with
arrows indicate that the boundary layer on the porous surface was

Fig. 9 Microphotograph of porous surface.

Fig. 10 Transition onset Reynolds number Retr vs total enthalpy H0:
¥, solid wall; , porous wall; and , boundary layer on porous wall is
laminar up to the model base.

laminar up to the model base, that is, the value plotted is not a real

data point because the cone was not long enough to measure the

transition locus. In all cases, the circles are well above the squares.
This indicates that the porous coating always delays transition by a

signi�cant amount.

Summary

A second-mode stability analysis has been performed for hyper-

sonic boundary layers over walls covered by porous coatings with
equally spaced blind microholes. Absorption of the disturbanceen-

ergy by porous layers was modeled using the theory of disturbance
wave propagation in thin and long tubes. The admittance and ther-

mal admittance coupling the pressure disturbance with the vertical
velocity and temperature disturbances on the porous surface are

expressed as explicit functions of porosity characteristics. Stabil-
ity calculations showed that the absorption of disturbance energy

by the porous coating provides massive reduction of the second-
mode growth rate in a wide range of disturbance frequencies and

Reynolds numbers. The �ow stabilization is due to vertical velocity
perturbationson the porous surface associatedwith nonzero admit-

tance of porous medium. Temperature perturbations weakly affect
the boundary-layerdisturbanceand can be neglected.This indicates

that temperaturedisturbancesplay a passiverole in the second-mode
instability mechanism.

Our conclusions are consistent with the results of Malmuth
et al.,14 obtainedfrom their inviscidstability analysis.The most pro-

found effect is observed on a cool wall that is typical for hypersonic
vehicle TPS surfaces. A relatively thin porous coating (of thickness

about 30% of the laminar boundary-layer displacement thickness)

provides a strong stabilization effect. Such porous coatings can be
designed for passive LFC in hypersonic vehicle surfaces. Note that

the disturbance absorption should be introduced at the initial phase
of transition process, where the unstable disturbance amplitude is

about 0.01–0.1% of its level in transitional and turbulent bound-
ary layers. In this phase, additional heating of the porous coating
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associated with partial absorption of the disturbance energy is neg-
ligibly small compared to the turbulent heating.

The �rst series of experiments conducted by Rasheed et al.15 on
a sharp cone in the T5 shock tunnel at the Graduate Aeronauti-

cal Laboratories at the California Institute of Technology qualita-
tively con�rms the theoretical prediction. Quantitative comparison

of the theory with these data is planned for the future. Because the
boundary-layerstabilizationis due to the disturbanceenergyextrac-

tion mechanism, we believe that similar effects may occur for other
types of high-frequencyinstabilities.Absorptive coatings may also

affect the bypassmechanism,which is responsiblefor transitionpast
TPS roughnesselements. These assumptionscould be examinedby

further theoreticalmodeling and veri�ed by experiments.

Many TPS materials, which can provide ef�cient absorption of
acoustic disturbances, have a random porosity. The interaction of

the boundary layer and unstabledisturbanceswith a random porous
coating may be different from the case of the regular pore structure

discussedearlier.Becauseof communicationbetweenrandomlydis-
tributed pores, a mean �ow may occur inside the coating that leads

to a slip effect on the coating surface. Boundary conditions for un-
stable disturbancesmay be also affected. These effects will also be

addressed in our future studies.
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