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Abstract

In order to stabilize MHD interchange modes in the central cell of a

tandem mirror we propose the introduction of a magnetic limiter. The

magnetic limiter creates a ring null in the magnetic field and electrons

which enter the null can stream azimuthally and thereby "short-circuit" m =

1 fluctuations. This disallows a rigid m - 1 response and introduces finite

Larmor radius stabilization effects in much the same fashion that they

appear for higher azimuthal modes. Some pressure gradient can be maintained

on the separatrix flux surface by locating the null on a local magnetic

maxima. This scheme introduces the possibility of a fully axisymmetric

tandem mirror.
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Axisymmetry is desirable in tandem mirror and other confinement devices

from the point of view of improved equilibrium and reduced radial transport

as well as less stringent engineering constraints. To this end, several

partially axisymmetric schemes are being explored in tandem mirrors. The

TARA 11experiment at MIT locates a quadrupole cell at the ends of the

device, beyond the axisymmetric confinement region. The Gamma-10[2]

experiment in Tsukuba, Japan. locates quadrupole cells before the

axisymmetric plugs. The former device may be more susceptible to trapped

particle modes, the latter to radial transport.

The fluctuations that are observed in presently operating tandem

mirrors appear to primarily exhibit an azimuthal mode number, m. of m =

1[ It is believed that higher mode numbers are stabilized by finite

Larmor radius (termed FLR) effects. Thus the problem of obtaining stability

of MHD and trapped particle instabilities can be reduced to the

stabilization of m a 1 modes, which characteristically exhibit rigid radial

perturbations.

In this paper we describe a new approach to obtaining stability without

disturbing the axisymmetry of a tandem mirror. This would involve creation

of an axisymmetric field null located axially within the central cell and on

the flux tube, which corresponds to the edge of the hot core. (The null
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falls on a magnetic field separatrix. and field lines beyond the null are

diverted). We show schematically in Fig (1) the central cell of the Tara

experiment modified to include the magnetic divertor. The null is located

on a local field maxima adjacent to the main gas box so that some fraction

of the hot particles on the field lines that intersect the null can be

magnetically confined and partially isolated from the null and gas box

region. Ions which suffer non-adiabatic changes in magnetic moment as they

pass near the null are confined by potential barriers in the plugs at either

end of the center cell.

The effect of the null is to allow electrons within a layer an electron

Larmor radii thick centered about the null flux tube to stream azimuthally

in an incoherent fashion during a wave period. The electrons in this layer

exhibit a Boltzmann response to a potential perturbation similar to passing

electrons on an irrational surface in a tokamak configuration. Ions whose

orbits pass through the electron layer also suffer non-adiabatic jumps in

pitch angle if they pass through the null, but in general their azimuthal

drifts are not appreciable during a wave period. The bulk of the ions

respond to a flute-like electrostatic mode by ExB drifting in perturbed

fields. Thus, in the electron non-adiabatic layer, quasi-neutrality

requires an electron drift wave. Within the core of the plasma, both

electrons an4 ions exhibit the usual response of a magnetized plasma. Both

species ExB drift (to lowest order)in the perturbed electrostatic potential

and quasi-neutrality is determined by balancing the residual non-

cancellations in the perturbed drifts. These non-cancellations arise from
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the ion polarization drift, the averaging of the potential over an ion

Larmor orbit and the Doppler shifts due to the curvature drifts. Because

the first two arise from the finite ion orbits, they determine the radial

structure of the mode. In general. the spectrum of eigenfrequencies, an.

obtained by imposing physical boundary conditions on the perturbed potential

in the core does not match the eigenfrequency necessary to obtain quasi-

neutrality in the electron non-adiabatic layer. Thus, the plasma exhibits

two localized modes: a drift wave localized in the electron layer and a

curvature driven interchange mode which extends through the core and

vanishes on the null flux tube. The stability of the latter is determined

by the competition of the 'curvature drive with the finite Larmor radius

(FLR) terms. The FLR stabilizing terms are minimized by *igenfunctions

which are rigid. Since the mode must vanish at the null flux surface, the

eigenfunction cannot be rigid over the entire column. The global stability

of the mode is determined quantitatively by plasma parameters and profiles.

When the a - 1 mode is stabilized by FLR effects, higher azimuthal mode

number perturbations, which are more strongly affected by FLR, are also

stable.

The divertor null can be viewed as analogous to a line-tying region

with the following important difference: for line-tying to a non-emitting

end wall, arsheath forms at the wall so as to maintain field line

neutrality. The sheath adds a resistive response which reduces the

efficiency of the line-tying. With the divertor, all of the electrons that
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stream into the divertor null also leave so that no space charge sheath

appears and the response is not resistive. Thus the magnetic divertor can

be thought of as an electron-emitting line-tying element.
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II. Iglmetic Diveritr Design and Particle Orgit

a. Field Structure

For simplicity we consider adding the magnetic divertor to the midplane

of the central cell of a tandem mirror. (In principle, more than one such

divertor can be utilized, for example at each end of the central cell).

Fig. I displays schematically the axial magnetic field for a tandem mirror.

The central cell, including the midplane magnetic divertor and the

axisymmetric end plugs are shown. Fig. 2 shows an expanded view of the

midplane magnetic field structure obtained from the EFFI Code 5 . Notice that

3 coils have been added to the coil set to create the divertor field

structure. The three coil arrangement is relatively simple and allows the

null position to be moved, but has the disadvantage that some plasma

scrapes-off on the central coil leads and supports from the plasma beyond

the separatrix. The power drain associated with this loss can be made small

compared with the power input to the plasma core for a properly designed

system.

b. nrbits in the Null

Electrons which enter into the vicinity of the null will become trapped

in the null, stream azimuthally and re-emerge at a random azimuthal as well

as pitch angle. This process can be understood as follows: When the

electron gyro-radius equals the magnetic field gradient the electrons become

non-magnetized. For a 100 eV electron, loss of adiabaticity occurs about 1
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cm from the null in our design, at a magnetic field of approximately 200 G.

While an electron is in this region it will then stream both axially and

azimuthally across the null. As the electron re-enters the region of B >

200 G it becomes adiabatic with a random pitch angle. However, since the

magnetic field rises up to 5 KG, the electron finds itself in a magnetic

well with a mirror ratio of 25 and has only a 1/2R - 2% chance of escaping.

Thus it will "rattle" around the null about 50 times before escaping. If a

group of electrons of different initial pitch angles and gyrophases is

started at one point on a field line passing through the null, during a wave

period the group will spread incoherently over the null flux surface.

Exact electron orbits have been studied numerically. From these orbits

we observe that the azimuthal drift on each passage through the null is

unidirectional. Electrons below the separatrix stream in the bad curvature

drift direction and above in the good curvature direction. This result is

shown analytically in Appendix A. The implication of this fact is that the

azimuthal streaming is proportional to the number of passages through the

null before escaping.

III. SI~ah414*y Analymim

a. EquIlJbriua

We consider an equilibrium as shown in Fig 3 where the plasma pressure

vanishes just beyond the null flux tube and the plasma density extends
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beyond this flux tube. We assume the pressure to nearly vanish on the null

flux tube because ions that cross the null have the possibility of passing

along the field lines that circle the conductor. Some of those particles

will be lost on the support leads while other ions will be exposed to charge

exchange on gas since the plasma is thin at this point. We expect, however.

that due to ionization of ambient gas a cooler plasma (10 - 100 eV) will be

maintained on field lines outside the null flux tube. The density of this

cooler plasma will depend on the axial and radial confinement, the edge

neutral density and the power available at the edge to maintain the electron

and ion temperatures. We turn now to the perturbation analysis.

b. Perturbation Analysis - Effect of Electron Layer

We divide the plasma into four radial layers as shown in Fig. 4: the

electron non-adiabatic layer, the ion non-adiabatic layer, a transition

layer and the core. In the remainder of the text the first two will be

referred to as the electron and ion layer. In the electron layer the

electron dynamics is dominated by the null which allows electrons to stream

across the field. The electron response in both the ion layer and the core,

however, involves cross-field drifts under the influence of the perturbing

electric fields. The ion response throughout the plasma is non-local due to

the integraton of the radial potential structure along an ion's Larmor

orbit. We address the implications of this below. In addition, the loss of

adiabaticity for null passing ions influences the ion parallel dynamics. In

the core, both electrons and ions are magnetized and the mode structure is
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governed by the familiar Rosenbluth and Simon finite Larmor radius

differential equationC6.7 1 modified to allow for transiting electrons.

These equations exhibit a mode driven by the plasma pressure gradient and

the unfavorable curvature of the confining field. We wish to consider the

stability of this curvature driven mode driven by the core pressure gradient

in the presence of a magnetic limiter. We assume throughout that the plasma

beta. p a 8rP/B 2 . is small enough that electromagnetic effects can be

neglected. Thus, all perturbations are assumed to arise from the perturbed

electrostatic potential 5.

Several possible behaviors of I in the vicinity of the electron layer

must be considered. The first is that the flute mode from the core extends

continuously through the electron layer as if the layer did not exist. We

will argue that such a radial mode structure violates quasi-neutrality in

the electron layer. The second is that the mode varies rapidly within a few

Larmor radii of the electron layer and evades the finite Larmor radius

stabilization that one would expect to accompany such a rapid variation in

the eigenfunction. We will argue that such a solution cannot match smoothly

to a core solution due to the non-local nature of the ion response and

further violates quasi-neutrality in the electron layer. We conclude,

therefore, that the only self-consistant solution is for the eigenfunction

for the core perturbation to vanish smoothly within approximately two cold

ion Larmor radii of the null flux tube.
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In order to illustrate the basic physics behind this reasoning, we

simplify the calculation in the vicinity of the null flux tube by assuming a

slab plasma with a constant magnetic field B = B z. and equilibrium

gradients in pressure and density only along x. We model the effect of

curvature by a species dependent gravity gx (g a (v /2 + v 1 )/RC c

radius of curvature). We assume no variation in equilibrium or perturbed

quantities along z and no equilibrium electric field and consider

electrostatic perturbations ' = O(x)exp(ik y - iwt). Under these

assumptions we can solve the Vlasov equation by integration along

characteristics under the assumption w << and Ikypil < Ipi a/Bxi with w.ky

the wave frequency and wave number, a the ion cyclotron frequency, and p

the ion gyroradius.

This yields

aF ( B cB
q - (q + '<>

where

<0> dr 0(x(), (y). T)
'.i 2

V1 v
x =x + sin x + y
gc -
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x x - _ sin (-1r) + sin k

V1 V1

y ()=y + _ Cos (#p-jr) - _Cos 0 - ! T

F0  .gc) . (2)

c 1/2 my 2+ 1/2 m2

The quantity xgc is the guiding center location of the particle and 0 is the

phase angle. Integrating over velocity gives the perturbed ion response:

. i ae i - M wP M

k 2c2  2 2

2 2 . ((mv /2 + mv ) )M (3)w qB gc

where M means an integration over a Maxwellian in energy and x is the

mean curvature ( ~/R )

Assuming that pi OFo/axgc < 0 and that we can write 0 = 0 (1 + x/Ll+

x2/L2), Eq. (3) yields the ion response calculated by Rosenbluth and

Simon, (6.7]

k2 kc k/
ni = - + 2 - n I - --dPd k 2 1 - 4 -

nwB dx 2 qB2 dx qwBn x dx y qwBn dx
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2

+ g (4)

where g = 2T/(mRc). Thus in the core where scale lengths are larger than an

ion Larmor radius, the integral and differential formulations of the ion

response agree.

We wish now to examine the possible behavior of 0 within a few Larmor

radii of the electron layer. We note that the ion response at a point x

depends on the perturbed potential between x-2p and x+2p due to the finite

ion orbit. We consider an a I 1 eigenfunction with the fewest radial

nodes. In the core we combine the ion response. Eq. (4) with the electron

response outside the electron layer,

f, . _ B 0 (5)

to obtain the Rosenbluth and Simon equations for a slab: [67]

4-n wW- !4 Q) d I
dx qBn dx dx

_ k -2 n + kV a 0 (6)

We consider modes with k y r and define w = (ky c/qBn) dP/dx and y

g d(ln n)/dx. If w ~ w, ~ "M ~ t/L (L axial magnetic field scale

length) and there are no sharp gradients in density or pressure the

eigenfunction with fewest nodes must vary on the scale length of density.
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Ln, or pressure. L,, which we assume is comparable to r the plasma

radius.

In the transition layer between the core and ion layers, contributions

to the ion response come from the perturbed potential in the core and in the

ion layer. In this case the quasi-neutrality condition is

0 q ( - <> 8x - <>::agc)

+(v2 2 N }0> 1 (7)
2qB2 '% 8x P M

If 4 varies rapidly in the ion layer or the matching layer then - ~ #

and the first two terms are larger than the third term by the ratio

2 22r 2p1 (w/2MHD) . By balancing the first two terms we obtain w =

(k ycT/eBn) (an/ax) ~ w,. To satisfy a similar equation in the core 4 must

also vary rapicly there which implies that we do not have the lowest radial

eigenmode wit no nodes. We thus conclude that 0 varies on equilibrium

scale lengths even in the ion layer.

We now consider the ion response in the ion and electron layers. We

must allow for the possibility that the perturbed potential jumps abruptly

to a new value, 0., in the electron layer. Since the width of this layer is

approximately 2 p, the additional contribution to the ion orbit integral is
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of order ( 0 - 46)(P,/Pi) - ( - 0) me/mi) 1/2, where 4 outside the layer

has been expanded as 0 a 4 (1 + x/L1 + (x/L2) 2) which is appropriate since

we have concluded that 4 varies on an equilibrium scale length. Thus in the

ion layer, quasi-neutrality becomes

02 1 ( - 40)m L A(x)

( L 2\ 

( 2i
wB 8 2t x 2 t 2

+ (#,- #)' m /A(x) .L+ -(8)

khere A(x) v 1 and v2t is the thermal speed, v 2t = 2T .

In the ion layer the terms (vjt\L2fl)2 are of order (Pi/Ln)2 . For cool

ions, 10-100eV, L2  Ln a 15 cm andB 2 kG, we find (v1 /D 2 +-10 4

to 1 x 10-3. Thus the term (4, - 4 )(m /m )1/2 is the dominant term in the

equation and forces #, e or otherwise L2 must vary more rapidly than Ln

which we have seen as inconsistent with a smooth core solution.

In the electron layer the azimuthal streaming of the electrons leads to

a purely Boltzmann response
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f, e NO. 
9

Combined with the lowest order ion response this gives for quasi-neutrality

in the electron layer

yc B
0 T wB agcM

Te n - i+9
/2

+ ' Ae - #0 )( A(x) . (10)

If 0 ~ the electron layer quasi-neutrality becomes

0~=- A I+k'e n. 0 (11) a

This requires w to take on a particular value. If we now return to the core

equations and examine the spectrum of eigenvalues for the mods vanishing at

some wall position, we will find in general that the particular value of w

required for quasi-neutrality in the electron layer is not included. We

conclude, therefore, that the only solution in the electron layer is that

both , and <4> vanish there. This is possible only if 4 vanishes at x =

2pi. because of the integral non-local ion response.
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A more detailed treatment would have considered the finite geometry

effects due to the cylindrical confinement volume, the special nature of the

ion orbits which pass through the null and the possible variation of 0 along

a field line. We expect that the finite geometry effects will be small

since the ion layer is small compared to the null radius. Although the

correct orbits are complex and not the simple circular gyro-motion

considered in our model, the essential point is that ion response is non-

local and depends on the potential structure within approximately two Larmor

radius of the location under consideration. We further note that the

disparity in the electron response from inside to outside the electron layer

along the entire length of the field line is correct in the exact divertor

geometry since passing electrons communicate the effect of the null to the

entire length of the null flux tube during a wave period. Thus, a mode

which is isolated in the well region would still need to vanish within a few

cold ion Larmor radii of the null flux tube. We note that in our model, all

electrons were taken to be affected by the null. This is correct for the

situation V > w. For the collisionless case, a more correct treatment
.4'

would have taken into account that electrons trapped in the well have the

usual magnetized perturbed ExB drifts and that only the passing particles

are affected by the null. Since passing particles make up 30% of density

for a mirror ratio of 2. the dominant mode in the electron layer is still a

drift wave.
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c. Perturbation AnalysiS - Core Response

We turn now to the stability of the core plasma. Because of their high

bounce frequency, core electrons respond to the average ExB drift in the

perturbed fields Doppler shifted by the equilibrium drifts, and obtain the

response

f, = - F + LFew - MCe Be w-wd Be a?)/

d =k b x (my 2 + mV 2 /2) R (12)

The over bar indicates a bounce average,

dl

/ dlvi

The transit frequency for ions through the well is comparable to the mode

frequency, while the transit frequency for ions between the mirror peaks on

either side of the null is large compared to the mode frequency. We do not

treat the ion bounce resonance effects here but instead take all ions to be

cold. Thus, the ions respond by drifting in the local perturbed field.
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Quasi-neutrality is then determined by the Rosenbluth and Simon equations

modified to allow for the bounce averaged electron response.[8]

0 -
1/2

a- (.22L ( -2)) (m2 _
a a 1/2 2Sw 9a8

+ W 2 ah_aa

airR a*

+ a fd 3v

where

Sw2 = W2 - en

aF Bf

P i)

( a ac,

aP

act -w$

and a is the flux variable da a B rdr. The effects due to radial electric

fields have been neglected. Examining the ratio of the last term which

represer-, the elec*-on response, to the first four terms which represent,

respect Ly, the i polarization drift terms, the finite ion orbit

connect s to the B drift and the MHD drive, we conclude that when 0 =

the last term is large by the ratio of CLn/L ) (npass/no) (rn2 2) 20

- 30. Thus to lowest order w ~ w," = - (m cT/en) (an/aa), a drift wave.

unless the mode is flute like (0 ~ 4). We will only examine the later modes

in detail.

(13)
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We calculate the dispersion relation for the flute by setting 0) *

+ 0(a.z) and integrating over the plasma flux tube. This gives

f dl 2- - -B - 2 w2 _ en

B 2 1/2 aa n
- a . .w 2 n1 + 1 W 2 al

aa a 1/2 2a 0 aa

+ 2 j (14)
m rRc a o

We study the nature of the solutions to this equation by assuming that

n and P are constants along a field line. It is convenient to normalize the

equation as follows:

2- )(m2_ 1)n + 2
ac n a aa- aa

+ 2? a 0 (5
a

where

OE a/anull

n(a) a n(0)

P(a) M P(0)

T(a) a T(0)

n(O) a P(0)

n (a)

P (a)

T (a)

- T (0) - 1

0.
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;2 ~ ~ r 2M f\l- a ) 2 cc<yl= 2 _2T2ZlQ) B2& r ( IL) 0 <JAUL>
i enull

B 2 2

^ _^1 ^^ P(O)
W, n (P/ag) n aa (n(O)anull)

a1/2

The eigenfrequencies which result from imposing the boundary condition

that C vanish at a - anull depend on the parameter ' and the profiles n. P.

T and w* M n (OP/8a).

In Fig.(5) we show the complex w plans and the path of the two roots of

w for the n=0 mode with no nodes as r is increased. The cross-hatched

region on the real axis shows the range of w, (notice w, is negative). We

find that two roots exist for r'<<1. The first is slightly less than zero

and the second is slightly greater than max w,. As ' is increased, the

roots coalesce and instability appears.

We have performed a Nyquist analysis numerically to verify that no

other unstable roots exist for values of ' less than the marginally stable

value of r for the n - 0 mode. In particular within the context of the

basic Rosenbluth and Simon equation for flute modes given above, there are
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no instabilities associated with the singularity that appears inside the

plasma if w - wD.

The two roots for w for modes with one or more nodes follow

qualitatively the same path emerging from the the origin and the maximum of

*, coalescing and moving off the real axis. These modes become unstable at

a larger value of ' than the n=0 marginal value. Thus the first mode to be

destabilized is the mode with no nodes. We have, in addition, examined modes

with mode number m greater than one. We find that they are more stable than

the a - 1. n - 0 mode. Thus. the most stringent stability condition is that

demanded by the m a 1. n = 0 mode.

Although the exact value of r at which the n=0 mode is marginally

stable depends on the pressure profile we find that this value is

particularly dependent on the value of W at the null flux tube. In Fig.

(3) we show a particular pressure profile we have investigated. By varying

the model parameters slightly we can vary w* at the edge while not

significantly affecting the pressure profile or the w* profile in the bulk

of the core. In Fig.(6-a) and Fig. (6-b) we show two such profiles of

and in Fig.(7) we show the marginal value of ' as a function of w (a =
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1)/w* (a 0). Points corresponding to the two profiles shown in Figs. (8-a

and 8-b) are indicated. We note that the marginal stability curve has a

knee when w, at the null flux tube equals w* at the center. We find that

the eigenfunction for the more negative (stable) root turns over sharply

near the minimum value of jw.I. In the case that w, at the edge is less

negative than w* at the center, the eigenfunction extends through the core

and turns over sharply near the null flux tube. In the case that w* at the

edge is more negative than the axis value the eigenfunction turns over

rapidly near the axis and has a small value through the bulk of the core.

In both cases the eigenfunction for the root nearer to the origin varies

smoothly over the plasma core. The m - 2 mode picks up additional FLR

stability and is stable when the a = 1 mode is stable.

In order to relate the numerical work above to experiments we note that

r depends on the confinement geometry and scales as the inverse square root

of T . For the Tara configuration r is approximately unity assuming an ion

temperature of 100 eV and neglecting the effect of the hot ion population in

the axisymmetric plugs. Thus stability to the m=1 mode will depend on the

value of the pressure gradient near the plasma edge. A discussion of the

details of the plasma equilibrium near the plasma edge will be considered in

a subsequent paper. We note here that in the configuration proposed for the
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Tara experiment the divertor is located on a local magnetic hill adjacent to

the gas box which is the main gas source for the plasma. Ions are therefore

partially magnetically confined in the well regions and are axially isolated

from the region where the neutral gas pressure is highest. This

configuration permits energetic ions to extend to the null flux tube.

III. Diseuamianmi Concluin

We propose a new stabilization scheme for electrostatic low frequency

modes in an axisymmetric configuration using a magnetic ring divertor.

The proposed magnetic geometry bears a superficial resemblance to

internal ring mirror devices such as Surmac . The proposed

stabilization however, does not come from the good average curvature beyond

the separatrix but from the tendency of the null to randomize the azimuth of

passing electrons. (This randomization is much like the effect of the

rotational transform on passing particles in tokamak trapped particle

theory).

We have ,shown that the electron response in a thin layer about the null

flux tube is the residual Boltzmann response. Quasi-neutrality can only be

satisfied in this layer by an electron drift wave whose frequency is
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incompatible with the frequency of the core curvature driven interchange

mode. Thus the core mode must vanish at the null flux tube. The stability

of the core then depends on the competition between finite Larmor radius

effects and curvature drive. Numerically we find that the key parameter is

the value of the pressure gradient at the null flux tube. We propose to

maintain a finite pressure gradient experimentally by isolating the gas

source axially from the hot ions by mounting the gas box on a local magnetic

hill.

We note that in some respects the stabilization mechanism proposed here

is similar to line tying at the plasma edge or stabilization by the presence

of a metal wall at the plasma edge. In contrast to line tying it is not

necessary to employ either emitting walls or high edge neutral pressures

usually associated with line tied plasmas. In contrast to a metal limiter we

note that the presence of electrostatic sheaths at metal surfaces both

parallel and perpendicular to field lines may allow electrostatic

perturbations to extend with finite amplitude up to a few Debye lengths from

the metal surface effectively isolating the core from the effects of the

limiter.

Finally the magnetic divertor geometry permits greater control of the

plasma edge region since the diverted plasma can be fueled and heated

separately from the bulk plasma. Such control would lead to additional

benefits in the form of additional core shielding from neutral gas and

impurities.
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Appnirn A - Orit. in lull Regina.

To obtain the orbit equations for particles entering the null we start

with the Lagrangian:

1~ 2 +1 m2 +1 2 qL 2 m (ro) , 2 -2 A (r.z) rG. (Al)

Due to axisymmetry the system does depend on the azimuthal variable, 9.

Applying the Euler-Lagrange equation

)- 0 - (A2)
dt a aqj

and defining the flux function to be

W = rA 9 1e Bed (A3)

We can obtain the equations of motion

0 f + a 0 (A4a)

0 - 2 + aL 0 (A4b)82

and

ra (iPO) (A4c)

where we have defined a pseudo-potential

22
_- - . (A4d)

2M2c2 r I
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9 is the mean flux value of the particle orbit defined by zero

instantaneous azimuthal velocity, 0.

The particle motion in r and z is thus reduced to the analogous motion

of a ball in the potential 0. In a region of uniform magnetic fields. this

potential resembles a trough in which the particle executes a bouncing

motion perpendicular to the field and a streaming motion parallel to the

field. Note that 9 is a constant along a field line and that 10 is a

constant of the motion. Thus as the magnetic field decreases in strength,.

the radial position of the minimum of the potential moves outward and the

pseudo-potential becomes shallower corresponding to the decreasing cyclotron

frequency.

At the field null, the pseudo-potential has a saddle point. Thus a

particle whose "gyro-center" W0 lies close to null can pass over the saddle

out of the null along field line that encircles- the

.ng the null. The stre ming motion in 9 results from the

-. .a....--es which "linger" near thj top of the saddle. Recalling

that re - e/(mcr) (W - WO). one can see that an electron whose "gyro-center"

Wo is less than 1 null will always stream in the same direction due to the

particle "lingering" at the null saddle point. This streaming, in fact.
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goes over to the usual curvature drift for particles whose "gyro-centers,"

90. are more than several electron Larmor radii from the null flux tube.

We also note that since t 0 is a constant of the motion, a particle

which enters the null region, although it will in general suffer a change in

pitch angle, will retain its gyro-center on the same flux tube once it exits

the null. Thus the null introduces no radial particle diffusion even for

particles that undergo rapid changes in gyrophase and pitch angle. It is

true, however, that an ion which passes over the null saddle point and onto

a field line encircling the conductor may suffer a charge exchange event and

due to the low resulting ion energy, become trapped on the closed conductor

encircling field line.
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App.nMX B - Equilibrium Pressure Model.

The equilibrium models for n, T and P in the numerical calculations have the

functional form

(1 + exp (-%/&2))
Q(a)

(1 + exp ((a - ab

where Q(a) - n(a) or T (a) and P (a) - n (a) T (a). The family of pressure

profiles for which. the marginally stable value of r is plotted in Fig. (7)

all have the values abn .4 and Aa - .3 for n. and Aa - .04 for T. The

parameter a in the function for T is varied from .7 to .9. The values of

ab for the two profiles of w, shown in Fig. (6-a) and Fig. (6-b) are .8 and

.9 respectively
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1. Schematic of divertor stabilized tandem mirror showing separatrix flux

tube and Modulus - B along a field line passing the null.

2. Detail of experimental divertor coil set showing cross-sections of

conductors, field lines and mod B contours. Distances are in

centimeters, R-0 is the magnetic axis and Za0 is the machine midplane.

3. Model equilibrium pressure, density and temperature profiles.

4. Schematic detail of null flux surface showing electron layer, ion layer

transition layer and core regions.

5. Schematic diagram of the complex w plane. The cross hatched region on

the negative real axis represents those values of w which are equal to

W at some point in the plasma interior. The bold lines with arrows

show the path of the two roots for the nwO mode as I' increased..

6. (a) and (b) w* vs. a for two closely related pressure profiles. The

pressure and density profiles corresponding to Fig. (6-b) are shown in

Fig. (4).
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7. Marginally stable values of ' vs. w,(a - 1)/w,(a a 0) for a family of

closely related presures profiles. Points labelled (a) and (b)

correspond to the pressure profiles for which omega star hat is shown in

Fig. (6-a) and Fig. (6-b).
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