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Abstract. This paper investigates the problem of stabilization of networked control systems
via dynamic output-feedback controllers. The physical plant and the dynamic controller are in con-
tinuous time, and a communication channel exists between the output of the physical plant and the
input of the dynamic controller. Three important communication features are considered: measure-
ment quantization, signal transmission delay, and data packet dropout, which appear typically in a
networked environment. Attention is focused on the design of dynamic output-feedback controllers
which ensure asymptotic stability of the closed-loop systems. Linear matrix inequality (LMI)-based
conditions are formulated for the existence of admissible controllers. If these conditions are sat-
isfied, a desired controller can be readily constructed. A satellite system is used to illustrate the
applicability and effectiveness of the proposed controller design method.
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1. Introduction. One common assumption in traditional control systems is that
the interconnection between plants and controllers is transparent, based on which
transmitted signals are equal to received signals. This assumption has been used
implicitly for a few decades and has underlain many successful control designs for
either linear or nonlinear dynamic systems. In some situations, however, transpar-
ent communication is not always guaranteed, and a communication link sometimes
constitutes a bottleneck in control system operations. Therefore, networked control
systems (NCSs) appeared recently and have been drawing more and more attention
from researchers working in the areas of systems and control, highlighted by the recent
special issue [1] and survey papers [23, 29].

When a communication link is involved in control system design, usually three
important aspects need to be taken into account. The first one is signal transmission
delay, which is usually caused by the limited bit rate of the communication channel,
by a node waiting to send out a packet via a busy channel, or by signal processing
and propagation. The second interesting problem in a communication channel is the
data packet dropout (or data missing [25, 26]) phenomenon, which is usually caused
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by the unavoidable errors or losses in the transmission. Though many networked sys-
tems employ automatic repeat request mechanisms, packet dropout phenomenon is
still unavoidable. Moreover, packets may deliberately be dropped if a packet sampled
at the sensor node reaches the destination later than its successors, since it is natural
to use the most updated packet by dropping out the old ones. Another important
issue in a communication channel is the quantization effect. In a networked envi-
ronment, signals are usually quantized before being communicated, and the number
of quantization levels is closely related to the information flow between the compo-
nents of the system and thus to the capacity required to transmit the information. In
summary, signal transmission delay, data packet dropout, and signal quantization are
three important issues to be addressed for communication based systems.

For NCSs, a number of important pieces of work have been reported [3, 12, 15, 16,
17, 18, 19, 21, 22, 24, 28, 30, 31, 32, 33, 34]. Earlier work mainly focused on stability
analysis and performance [9], while more recently, attention has been devoted to con-
troller synthesis. These pieces of work have significant importance on both theoretical
advancement and practical applications of NCSs. It is worth noting, however, that the
results obtained for NCSs are still very limited: (i) most of the aforementioned results
consider only one or two aspects of the communication issues, while few papers address
the control problems with the simultaneous consideration of the three important com-
munication features mentioned above; (ii) most of the obtained results are concerned
with the problem of state-feedback control [8], which is only applicable for systems
whose state variables can be measured online, while few papers tackle the problem of
output-feedback control, which is more useful and challenging than the state-feedback
case. Motivated by the above observations, it is our intention to solve the problem
of dynamic output-feedback stabilization for NCSs with the simultaneous presence of
signal transmission delay, data packet dropout, and measurement quantization. We
characterize physical systems in a deterministic manner, but another important and
well-developed field of networked controls is stochastic networked control systems.
Key references describing the stochastic networked systems include [4, 20, 22].

In this paper, we investigate the problem of stabilization of networked control
systems via dynamic output-feedback centralized controllers. In this configuration,
there is no local controller for each plant, and the centralized controller makes decisions
based on sensor information which is sent over the network. The physical plant and
the dynamic controller are in continuous time, and a communication channel is present
in the loop between the output of the physical plant and the input of the dynamic
controller. All three important communication features mentioned above are taken
into consideration and tackled in a unified framework. Attention is focused on the
design of dynamic output-feedback controllers which ensure asymptotic stability of the
closed-loop systems; linear matrix inequality (LMI)-based conditions are formulated
for the existence of admissible controllers. If these conditions are feasible, a desired
controller can be readily constructed. Finally, a satellite system is used to illustrate
the applicability and effectiveness of the proposed controller design.

Note. The notation used throughout the paper is standard. The superscripts “T ”
and “−1” stand for matrix transposition and matrix inverse, respectively, Rn denotes
the n-dimensional Euclidean space, and the notation P > 0 (≥ 0) means that P is real
symmetric and positive definite (semidefinite). The symmetric term in a symmetric
matrix is denoted by ∗, e.g.,

[
X Y
∗ Z

]
=

[
X Y
Y T Z

]
,
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Fig. 1. Problem of networked output-feedback stabilization.

and diag{. . .} stands for a block-diagonal matrix. In addition, I denotes an identity
matrix. Matrices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem formulation. The problem of network-based output-feedback sta-
bilization is shown in Figure 1. In this figure, u and y denote the control input
and measured output of the physical plant, respectively; ŷ denotes the input of the
dynamic controller. The measured output y is sampled periodically and then trans-
mitted through a network medium to the ZOH (zero-order hold), whose output ŷ is
used as the input of the dynamic controller. We consider a communication channel
with the occurrence of packet dropouts and delays where they may vary within the
bounds on the number of consecutive packet dropouts and on the size of each delay. In
our problem, we use a quantizer to characterize the coding effect, which is induced by
the encoder and decoder used in the whole process. We consider logarithmic quantizer
and zero-order hold, and we assume the behavior of sample and ZOH to be determin-
istic. This configuration with single-side network connection has possible applications
in wireless networked control systems.

Suppose the physical plant is given by

S : ẋ(t) = Ax(t) +Bu(t),
(1)

y(t) = Cx(t).

Here x(t) ∈ R
n is the state vector; y(t) ∈ R

m is the measured output; u(t) ∈ R
p is

the control input; A, B, C are system matrices with appropriate dimensions.
From Figure 1, we see that there is a communication channel between y(t) and

ŷ(t). As discussed above, generally, three effects need to be taken into considera-
tion: signal quantization, signal transmission delay, and data packet dropout. It is
assumed that the sampler is clock-driven, while the ZOH is event-driven. The sam-
pling period for y(t) is assumed to be h, with h being a positive constant. Denote
the updating instants of the ZOH as tk, k = 1, . . . ,∞, and suppose that the updating
signal (successfully transmitted signal from the sampler to the ZOH) at the instant
tk has experienced signal transmission delay βk. A natural assumption on the signal
transmission delay βk can be made as follows:

0 ≤ βk ≤ β̄,(2)

where β̄ denotes the upper delay bound.
In what follows, we model signal quantization, signal transmission delay, and data

packet dropout mathematically.
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2.1. Signal quantization. It is assumed that the sampled measurements of
y (t) are firstly encoded using a quantizer (the quantizer constructed on each channel),

which is denoted as f(·) = [
f1(·) f2(·) . . . fm(·) ]T

and then transmitted with
a single packet. The quantization effect of the encoding and decoding process is
assumed to be time-invariant, logarithmic, and symmetric; i.e., f(−v) = −f (v). For

each fj(·), given constants u
(j)
0 and ρj such that u

(j)
0 > 0 and 0 < ρj < 1, the set of

quantized levels is characterized by [5, 6]

Uj =
{
±u

(j)
i , u

(j)
i = ρiju

(j)
0 , i = ±1,±2, . . .

}
∪
{
±u

(j)
0

}
∪ {0} .(3)

It is noted that u
(j)
−i = ρ−i

j u
(j)
0 �= −u

(j)
i . Given the set of quantized levels, we define

the associated logarithmic quantizer fj(·) : R → Uj as follows:

fj(v) =

⎧⎨
⎩
u
(j)
i if 1

1+σj
u
(j)
i < v ≤ 1

1−σj
u
(j)
i , v > 0, i ∈ Z,

0 if v = 0,
−fj(−v) if v < 0,

(4)

where

σj =
1− ρj
1 + ρj

.(5)

Each of the quantization level u
(j)
i corresponds to a interval (

1+ρj

2 u
(j)
i ,

1+ρj

2
1
ρj
u
(j)
i ]

such that the quantizer maps the whole interval to this quantization level. In addition,
these intervals(
∪i∈Z

[
−1 + ρj

2
ρi−1
j u

(j)
0 ,−1 + ρj

2
ρiju

(j)
0

))
∪ 0 ∪

(
∪i∈Z

(
1 + ρj

2
ρiju

(j)
0 ,

1 + ρj
2

ρi−1
j u

(j)
0

])

form a partition of R; that is, they are disjoint, and their union for i equals to R.
Figure 2 gives a visual sketch clarifying this statement.

2.2. Signal transmission delay. At the updating instant tk, we have the fol-
lowing relationship:

ŷ(tk) = f (y (tk − βk)) .(6)

Thus, considering the behavior of the ZOH, we have

ŷ(t) = f (y (tk − βk)) , tk ≤ t < tk+1,(7)

with tk+1 being the next updating instant of the ZOH after tk.

2.3. Data packet dropout. At the updating instant tk, the number of accu-
mulated data packet dropouts since the last updating instant tk−1 is denoted as δk.
We assume that the maximum number of consecutive data packet dropouts is δ̄, that
is,

0 ≤ δk ≤ δ̄.(8)

Then, it can be seen from (2) and (8) that

h ≤ tk+1 − tk ≤ β̄ +
(
δ̄ + 1

)
h,(9)
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Fig. 2. Logarithmic quantizer.

which implies that the interval between any two successive updating instants is upper
bounded by β̄ +

(
δ̄ + 1

)
h and lower bounded by h.

In this paper, it is assumed that not all the state variables of the physical plant can
be measured online, and we consider the following dynamic output-feedback controller:

C : ẋc(t) = Acxc(t) +Adxc(tk − βk) +Bcŷ(t),
(10)

u(t) = Ccxc(t), tk ≤ t < tk+1,

where xc(t) ∈ R
n is the state vector of the dynamic controller; Ac, Ad, Bc, and

Cc are appropriately dimensioned controller matrices to be determined. It is worth
mentioning that in our approach, the introduction of the termAdxc(tk−βk) is essential
to make the controller synthesis tractable. By adding a time stamp to the data at the
sampler, we can trace the time instant tk−βk, which means that the controller in (10)
is online implementable. We assume that the time stamp associated with the values
is not quantized. This assumption simplifies the problem and allows us to convert
the quantized feedback design problem to a robust control problem with sector bound
uncertainties. The more realistic case, where the time is quantized as well, is still a
challenging problem to be investigated.

Then, the problem to be addressed in this paper can be expressed as follows.
Problem networked output-feedback stabilization. Consider the problem

of network-based output-feedback stabilization in Figure 1 and system S in (1). The
sampler, encoder, decoder, and ZOH are configured in the networked control system,

and all the parameters (h, β̄, u
(j)
0 , ρj , and δ̄) are given. The objective is to determine

the matrices Ac, Ad, Bc, Cc of the controller C in (10) such that the closed-loop system
is asymptotically stable for all admissible signal quantizations, signal transmission
delays, and data packet dropouts.

Before proceeding further, we give the following lemma which will be used later
[10, 27].
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Lemma 2.1. Given appropriately dimensioned matrices Σ1, Σ2, Σ3, with ΣT
1 =

Σ1, then,

Σ1 +Σ3F (t) Σ2 +ΣT
2 F

T (t)ΣT
3 < 0(11)

holds for all F (t) satisfying FT (t)F (t) ≤ I if and only if for some ε > 0,

Σ1 + ε−1Σ3Σ
T
3 + εΣT

2 Σ2 < 0.

3. Main results. We are first concerned with the analysis problem. More specif-
ically, assuming that the controller matrices (Ac, Ad, Bc, Cc) are known, we shall study
the conditions under which the closed-loop system is asymptotically stable for all
admissible measurement quantizations, signal transmission delays, and data packet
dropouts. The following lemma shows that the asymptotic stability of the closed-loop
system can be guaranteed if there exist some matrix variables satisfying certain LMIs.
This lemma will play an instrumental role in the controller synthesis.

Lemma 3.1. Consider the problem of network-based output-feedback stabilization

in Figure 1. Given the parameters h, β̄, u
(j)
0 , ρj, δ̄ and controller matrices Ac, Ad,

Bc, Cc, the closed-loop system is asymptotically stable if there exist matrices P >0,
Z >0, U , W , and a scalar ε > 0 satisfying⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sym
(
PĀ+ U

)
PB̄ − U +WT

√
β̃U

√
β̃ĀTZ PBΛ

∗ −sym(W ) + εCT
ΛΛ

2CΛ

√
β̃W

√
β̃B̄TZ 0

∗ ∗ −Z 0 0

∗ ∗ ∗ −Z

√
β̃ZBΛ

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0,(12)

where

Ā =

[
A BCc

0 Ac

]
, B̄ =

[
0 0

BcC Ad

]
, BΛ =

[
0
Bc

]
, CΛ =

[
C 0

]
,

(13)

Λ = diag{σ1, . . . , σm}, β̃ = 2β̄ +
(
δ̄ + 1

)
h, and sym(X) = X +XT .

Proof. First, by substituting (7) into (10), we obtain

ẋc(t) = Acxc(t) +Adxc(tk − βk) +Bcf (y (tk − βk)) ,
(14)

u(t) = Ccxc(t), tk ≤ t < tk+1.

Considering the quantization behavior shown in (3)–(5) and according to [5, 6], (14)
can be expressed as

ẋc(t) = Acxc(t) +Adxc(tk − βk) +Bc (I + Λ (t)) y (tk − βk) ,
(15)

u(t) = Ccxc(t), tk ≤ t < tk+1,

where

Λ (t) = diag {Λ1 (t) , Λ2 (t) , . . . , Λm (t)} ,
(16)

Λj (t) ∈ [−σj , σj] , j = 1, . . . ,m.
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Let us represent tk − βk in (15) as

tk − βk = t− β (t) ,(17)

where

β(t) = t− tk + βk.

Then, from (2), (8), (9), and (13) we have

0 ≤ β(t) ≤ β̃.

By substituting (17) into (15), we obtain

ẋc(t) = Acxc(t) +Adxc(t− β (t)) +Bc (I + Λ (t)) y (t− β (t)) ,
(18)

u(t) = Ccxc(t).

By connecting (18) and (1), the closed-loop system can be written as

ξ̇ (t) = Āξ (t) +
(
B̄ +BΛΛ (t)CΛ

)
ξ (t− β (t)) ,(19)

where ξ (t) =
[
xT (t) xT

c (t)
]T

and Ā, B̄, BΛ, CΛ are given in (13).
Now, choose the following Lyapunov–Krasovskii functional [13, 14]:

V (t) = ξT (t)Pξ (t) +

∫ 0

−β̃

∫ t

t+ω

ξ̇
T
(λ)Zξ̇(λ)dλdω,(20)

where P > 0, Z > 0 are matrices to be determined. Then, along the solution of the
closed-loop system in (19), the time derivative of V (t) is given by

V̇ (t) = 2ξT (t)P ξ̇ (t) + β̃ξ̇
T
(t)Zξ̇(t)−

∫ t

t−β̃

ξ̇
T
(λ)Zξ̇(λ)dλ

(21)

≤ 2ξT (t)P ξ̇ (t) + β̃ξ̇
T
(t)Zξ̇(t)−

∫ t

t−β(t)

ξ̇
T
(λ)Zξ̇(λ)dλ.

By the Newton–Leibniz formula, we have∫ t

t−β(t)

ξ̇(λ)dλ = ξ (t)− ξ (t− β (t)) .

Then, for any appropriately dimensioned matrices M =
[
U
W

]
, we have

2φT (t)M

[
ξ (t)− ξ (t− β (t))−

∫ t

t−β(t)

ξ̇(λ)dλ

]
= 0,(22)

where φ (t) =
[
ξT (t) ξT (t− β (t))

]T
. Then, from (19), (21), and (22) we obtain

V̇ (t) ≤ 2ξT (t)P ξ̇ (t) + β̃ξ̇
T
(t)Zξ̇(t)−

∫ t

t−β(t)

ξ̇
T
(λ)Zξ̇(λ)dλ

+2φT (t)M

[
ξ (t)− ξ (t− β (t))−

∫ t

t−β(t)

ξ̇(λ)dλ

]
(23)

≤ φT (t)
(
Γ + β̃MZ−1MT

)
φ (t)

−
∫ t

t−β(t)

[
φT (t)M + ξ̇

T
(λ)Z

]
Z−1

[
MTφ (t) + Zξ̇ (λ)

]
dλ,
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where

Γ = Γ1 + Γ2 + ΓT
2 + β̃ΓT

3 ZΓ3, Γ1 =

[
PĀ+ ĀTP P

(
B̄ +BΛΛ (t)CΛ

)
∗ 0

]
,

Γ2 =
[
M −M

]
, Γ3 =

[
Ā B̄ +BΛΛ (t)CΛ

]
.

By noticing that Z > 0, we have [φT (t)M + ξ̇
T
(λ)Z]Z−1[MTφ(t) + Zξ̇(λ)] ≥ 0.

Therefore, from (23) we know that V̇ (t) < 0 if

Γ + β̃MZ−1MT < 0,

which, by the Schur complement, is equivalent to⎡
⎢⎣ Γ1 + Γ2 + ΓT

2

√
β̃M

√
β̃ΓT

3 Z

∗ −Z 0
∗ ∗ −Z

⎤
⎥⎦ < 0.(24)

Now, rewrite (24) in the form of (11) with

Σ1 =

⎡
⎢⎢⎢⎢⎣

PĀ+ ĀTP + U + UT PB̄ − U +WT

√
β̃U

√
β̃ĀTZ

∗ −W −WT

√
β̃W

√
β̃B̄TZ

∗ ∗ −Z 0
∗ ∗ ∗ −Z

⎤
⎥⎥⎥⎥⎦ ,

Σ3 =

⎡
⎢⎢⎢⎣

PBΛ

0
0√

β̃ZBΛ

⎤
⎥⎥⎥⎦ , Σ2 =

[
0 ΛCΛ 0 0

]
, F (t) = Λ (t) Λ−1.

By Lemma 2.1 together with a Schur complement operation, (24) holds if for some
ε > 0, (12) holds, and the proof is completed.

It is noted that if the controller matrices (Ac, Ad, Bc, Cc) are given, the conditions
in Lemma 3.1 are LMIs over the decision variables P > 0, Z ≥ 0, U , W , and scalar
ε > 0. However, since our eventual purpose is to determine the controller matrices
(Ac, Ad, Bc, Cc), the above conditions are actually nonlinear matrix inequalities. Our
main objective hereafter is to transform them into tractable conditions to solve the
control synthesis problem.

Theorem 3.2. Consider the problem of network-based output-feedback stabiliza-

tion in Figure 1. Given the parameters h, β̄, u
(j)
0 , ρj, and δ̄, a dynamic controller

in the form of (10) exists such that the closed-loop system is asymptotically stable if

there exist matrices X > 0, Y > 0, Z̄ =
[Z1 Z2

∗ Z3

]
> 0, Ū =

[U1 U2

U4 U3

]
, W̄ =

[W1 W2

W4 W3

]
,

Āc, Ād, B̄c, C̄c, and a scalar ε > 0 satisfying⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 Ψ12

√
β̃Ū Ψ14 Ψ15 0

∗ Ψ22

√
β̃W̄ Ψ24 0 Ψ26

∗ ∗ −Z̄ 0 0 0
∗ ∗ ∗ Ψ44 Ψ45 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −ε−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,(25)

[
X I
I Y

]
> 0,(26)
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where

Ψ11 =

[
AX +BC̄c +XAT + C̄T

c B
T + U1 + UT

1 A+ ĀT
c + U2 + UT

4

∗ Y A+ATY + U3 + UT
3

]
,

Ψ12 =

[ −U1 +WT
1 −U2 +WT

4

Ād − U4 +WT
2 B̄cC − U3 +WT

3

]
, Ψ15 =

[
0
B̄c

]
,

Ψ22 =

[ −W1 −WT
1 −W2 −WT

4

∗ −W3 −WT
3

]
, Ψ26 =

[
XCTΛ
CTΛ

]
,(27)

Ψ14 =

⎡
⎣

√
β̃XAT +

√
β̃C̄T

c B
T

√
β̃ĀT

c√
β̃AT

√
β̃ATY

⎤
⎦ , Ψ24 =

⎡
⎣ 0

√
β̃ĀT

d

0

√
β̃CT B̄T

c

⎤
⎦ ,

Ψ44 =

[
Z1 − 2X Z2 − 2I

∗ Z3 − 2Y

]
, Ψ45 =

[
0√
β̃B̄c

]
,

and Λ and β̃ are given in (13). Moreover, if the above conditions are satisfied, a
desired output-feedback controller is given in the form of (10), with parameters as
follows:

Ac = S−1
(
Āc − Y AX − Y BC̄c

)
U−T , Bc = S−1B̄c,

(28)
Ad = S−1

(
Ād − B̄cCX

)
U−T , Cc = C̄cU

−T ,

where S and U are any nonsingular matrices satisfying

SUT = I − Y X.(29)

Proof. Suppose that conditions (25) and (26) are satisfied; we will prove that the
controller in the form of (10) with parameters given in (28) guarantees the closed-loop
system to be asymptotically stable. By the Schur complement, (26) implies Y −X−1 >
0, and thus I−Y X is nonsingular. Therefore, there always exist nonsingular matrices
S and U satisfying (29). Now introduce the following nonsingular matrices:

Π1 =

[
X I
UT 0

]
, Π2 =

[
I Y
0 ST

]
.

Let

P = Π2Π
−1
1 .(30)

Then, it can be verified that

P =

[
Y S
ST Υ

]
,

where Υ = U−1X
(
Y −X−1

)
XU−T > 0. In addition, we have

Υ− STY −1S = ST (I −XY )
−1 (

X − Y −1
)
(I − Y X)

−1
S > 0,

which implies by the Schur complement that P > 0. From (28), we have

Āc = Y AX + Y BCcU
T + SAcU

T ,

Ād = SBcCX + SAdU
T , B̄c = SBc, C̄c = CcU

T .
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Define

Z = Π−T
1 Z̄Π−1

1 , U = Π−T
1 ŪΠ−1

1 , W = Π−T
1 W̄Π−1

1 .

Substituting the above matrices Āc, Ād, B̄c, C̄c into (25), and by calculation, we have
that (25) is equivalent to⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 Σ12

√
β̃ΠT

1 UΠ1

√
β̃ΠT

1 Ā
TΠ2 ΠT

2 BΛ 0

∗ Σ22

√
β̃ΠT

1 WΠ1

√
β̃ΠT

1 B̄
TΠ2 0 ΠT

1 C
T
ΛΛ

∗ ∗ −ΠT
1 ZΠ1 0 0 0

∗ ∗ ∗ ΠT
1 ZΠ1 − 2ΠT

1 Π2

√
β̃ΠT

2 BΛ 0

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −ε−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,(31)

where

Σ11 = ΠT
2 ĀΠ1 +ΠT

1 Ā
TΠ2 +ΠT

1 UΠ1 +ΠT
1 U

TΠ1,

Σ12 = ΠT
2 B̄Π1 −ΠT

1 UΠ1 +ΠT
1 W

TΠ1,

Σ22 = −ΠT
1 WΠ1 −ΠT

1 W
TΠ1.

Performing a congruence transformation to (31) by diag
{
Π−1

1 ,Π−1
1 ,Π−1

1 ,Π−1
1 , I, I

}
with the consideration of (30) and by a Schur complement operation, we obtain⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sym(PĀ+ U) PB̄ − U +WT

√
β̃U

√
β̃ĀTP PBΛ

∗ −sym(W ) + εCT
ΛΛ

2CΛ

√
β̃W

√
β̃B̄TP 0

∗ ∗ −Z 0 0

∗ ∗ ∗ Z − 2P

√
β̃PBΛ

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(32)
From (Z − P )Z−1 (Z − P ) ≥ 0 we know that −PZ−1P ≤ Z − 2P . This together
with (32) leads to⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sym(PĀ+ U) PB̄ − U +WT

√
β̃U

√
β̃ĀTP PBΛ

∗ −sym(W ) + εCT
ΛΛ

2CΛ

√
β̃W

√
β̃B̄TP 0

∗ ∗ −Z 0 0

∗ ∗ ∗ −PZ−1P

√
β̃PBΛ

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(33)
Performing a congruence transformation to (33) by diag

{
I, I, I, P−1Z, I

}
, we readily

obtain (12). Therefore, from Lemma 3.1, we know that the closed-loop system is
asymptotically stable, and the proof is completed.

Theorem 3.2 transforms the nonlinear matrix inequalities in Lemma 3.1 into a set
of solvable conditions. It is worth noting that when the positive scalar ε is given, the
conditions in Theorem 3.2 are LMIs over the decision variables X > 0, Y > 0, Z̄ > 0,
Ū , W̄ , and Āc, Ād, B̄c, C̄c, which can be solved via standard numerical software.
When these conditions are solvable, a desired output-feedback controller can readily
be constructed based on (28). It is worth noting that the synthesis procedure is
different from [11] and is much easier to solve than [11].
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Fig. 3. A satellite system.

4. Illustrative example. In this section, we provide an example to illustrate
the output-feedback controller design method proposed in the above section.

Suppose the physical plant in Figure 1 is a satellite system shown in Figure 3
(borrowed from [2, 7]). The satellite system consists of two rigid bodies joined by
a flexible link. This link is modeled as a spring with torque constant k and viscous
damping f . Denoting the yaw angles for the two bodies (the main body and the
instrumentation module) by θ1 and θ2, the control torque by u(t), and the moments
of inertia of the two bodies by J1 and J2, the dynamic equations are given by

J1θ̈1(t) + f(θ̇1(t)− θ̇2(t)) + k((θ1(t)− θ2(t))) = u(t),

J2θ̈2(t) + f(θ̇1(t)− θ̇2(t)) + k((θ1(t)− θ2(t))) = 0.

A state-space representation of the above equation is given by

J1θ̈1(t) + f(θ̇1(t)− θ̇2(t)) + k((θ1(t)− θ2(t))) = u(t),

J2θ̈2(t) + f(θ̇1(t)− θ̇2(t)) + k((θ1(t)− θ2(t))) = 0.

A state-space representation of the above equation is given by

diag {1, 1, J1, J2}

⎡
⎢⎢⎣

θ̇1(t)

θ̇2(t)

θ̈1(t)

θ̈2(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−k k −f f
k −k f −f

⎤
⎥⎥⎦
⎡
⎢⎢⎣

θ1(t)
θ2(t)

θ̇1(t)

θ̇2(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

u(t)
0

⎤
⎥⎥⎦ .(34)

Here we choose J1 = J2 = 1, k = 0.09, and f = 0.04 (the values of k and f are chosen
within their respective ranges). It is assumed that only θ2(t) can be measured online.
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Then, the corresponding matrices are given by

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−0.09 0.09 −0.04 0.04
0.09 −0.09 0.04 −0.04

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , C =

[
0 1 0 0

]
.

The eigenvalues of A are −0.04 + 0.4224j, −0.0400− 0.4224j, 0, 0; thus, the above
system is not stable. Our purpose is to design an output-feedback controller in the
form of (10) such that the closed-loop system is asymptotically stable. The following
network-related parameters are assumed: the sampling period h = 10 millisecond
(ms); the network-induced delay bound in (2) is given by β̄ = 15 ms; the maximum
number of data packet dropouts δ̄ = 2; the parameter for the quantizer f(·) is assumed
to be ρ = 0.9; and u0 = 2.

By solving the feasibility problem in Theorem 3.2 for ε = 1, we obtain the follow-
ing matrices (for space consideration we do not list all the obtained matrices here):

X =

⎡
⎢⎢⎣

36.8636 −6.0262 −8.4119 −4.9553
−6.0262 38.8203 4.4085 −4.4118
−8.4119 30.2706 4.4085 −3.1743
−4.9553 −4.4118 −3.1743 5.1433

⎤
⎥⎥⎦ ,

Y =

⎡
⎢⎢⎣

6.0718 −4.0657 −1.2830 −4.4878
−4.0657 6.2637 −2.5465 −2.4444
−1.2830 −2.5465 49.6595 −6.5841
−4.5878 −2.4444 −6.5841 45.3082

⎤
⎥⎥⎦ ,

Āc =

⎡
⎢⎢⎣

−0.2677 −0.0654 0.3329 −0.0297
0.0112 −0.0800 −0.0064 0.2436
−0.9668 −0.2173 −0.3326 0.0463
−0.0376 −0.5688 0.3339 −0.2509

⎤
⎥⎥⎦ ,

Ād =

⎡
⎢⎢⎣

0.2548 0.0618 −0.2398 −0.0577
0.0059 −0.0483 −0.1022 −0.1349
−0.0163 0.2324 0.3340 −0.0847
0.0574 −0.3850 −0.3528 0.2695

⎤
⎥⎥⎦ ,

B̄c =

⎡
⎢⎢⎣

−0.0063
−0.9172
−0.0475
−0.0113

⎤
⎥⎥⎦ , C̄c =

⎡
⎢⎢⎣

−23.0578
−0.8367
−24.2581
−0.3397

⎤
⎥⎥⎦
T

.

Thus, according to (28), the matrices for the output-feedback controller in (10) are
given by

Ac =

⎡
⎢⎢⎣

−0.6155 −0.0445 0.8316 −0.0967
−0.1861 −0.2324 0.1923 0.1093
−1.1054 0.0156 −0.5318 −0.0530
−0.7230 −0.9523 0.6846 −0.1081

⎤
⎥⎥⎦ ,

Ad =

⎡
⎢⎢⎣

0.1252 −0.8541 −0.0869 0.1006
0.1093 −0.7373 −0.0763 0.0868
0.0598 −0.4079 −0.0417 0.0480
0.3203 −2.1761 −0.2219 0.2555

⎤
⎥⎥⎦ ,
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Fig. 4. State responses of closed-loop system.
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Fig. 5. Network-induced delays.

Bc =

⎡
⎢⎢⎣

0.0220
0.0190
0.0105
0.0562

⎤
⎥⎥⎦ , Cc =

⎡
⎢⎢⎣

−23.0578
−0.8367
−24.2581
−0.3397

⎤
⎥⎥⎦
T

.

Simulations are carried out by connecting the above-obtained output-feedback
controller to the physical plant. The initial condition is assumed to be [0.2 0.3
− 0.3 − 0.2]T . The state responses are depicted in Figure 4, from which we can see
that all the four state components of the closed-loop system converge to zero. In the
simulation, the network-induced delays and the data packet dropouts are generated
randomly (uniformly distributed within their ranges) according to the above assump-
tions and shown in Figures 5 and 6. The measurement y(t) and the successfully
transmitted signal arriving at the ZOH (denoted as yZOH(t)) are shown in Figure 7
where we can see the discontinuous behavior of the transmitted measurements.
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5. Conclusions. This paper considers the problem of designing a dynamic linear
controller to stabilize an linear time-invariant (LTI) plant. The physical plant and
the dynamic controller are in continuous time, and a communication channel exists
between the output of the physical plant and the input of the dynamic controller.
Attention is focused on the design of dynamic output-feedback controllers, which
guarantee the closed-loop networked control systems to be asymptotically stable for
all admissible measurement quantizations except time stamps, signal transmission
delays, and data packet dropouts, which appear typically in a networked environment.
LMI-based conditions have been formulated for the existence of stabilizing output-
feedback controllers. If these conditions are satisfied, a desired controller can be
readily constructed. A satellite system is exploited to illustrate the applicability and
effectiveness of the controller design methodologies proposed in this paper.
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