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Abstract— An iterative approach is proposed to model
networked control systems (NCSs) with arbitrary but finite
data packet dropout as switched linear systems. This enables
us to apply the rich theory of switched systems to analyzing
such NCSs. Sufficient conditions are presented on the stability
and stabilization of NCSs with packet dropout and network
delays. Stabilizing state/output feedback controllers can be
constructed by using the feasible solutions of some linear
matrix inequalities. The merit of the iterative approach is that
the controllers can make full use of the previous information to
stabilize NCSs when the current state measurements can not
be transmitted by the network channel instantly. A simulation
example is worked out to illustrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Networked control systems (NCSs) are feedback control

systems with network channels used for the communi-

cations between spatially distributed system components

like sensors, actuators and controllers. NCSs have received

increasing attentions in recent years [4], [11], [12], [16].

Advantages of NCSs include low cost, high reliability, less

wiring and easy maintenance, etc. Typical examples are

computer integrated manufacturing systems, large-scale dis-

tributed industrial processes, tele-operation and tele-control,

fieldbus systems, intelligent traffic systems, multiple mobile

autonomous robots, multi-agent systems, satellite clusters

and group maneuvers, multiple (unmanned undersea/aerial)

vehicle formation, and advanced aircraft and spacecraft,

etc. However, the insertion of communication network in

the feedback control loop complicates the application of

standard results in analysis and design of an NCS because

many ideal assumptions made in the traditional control

theory can not be applied to NCSs directly (see, e.g., [17]-

[20] and the references therein).

In an NCS, communication capacity depends not only

on the protocol, but also on the topology of the network.

We assume that the actuator and sensor used to measure

the process’ output are connected through a communication

channel with finite bandwidth, which is shared by other

NCSs [6]-[7]. One of the issues raised in NCSs is the

unreliable transmission paths because of limited bandwidth

and large amount of data packet transmitted over one line,

which may result in data packet dropout. In the study
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of NCSs, we must pay more attention to the impact of

data packet dropout, which may be a potential source

of instability and poor performance of NCSs due to the

critical real-time requirements in control systems. Therefore

construction of a feedback controller using the most fresh

information to stabilize an NCS with packet dropout is very

essential to the real industrial applications. The issue of data

packet dropout is modelled as a Markov process in [13], but

no rigorous analysis is carried out. [20] models NCSs with

data packet dropout as asynchronous dynamic systems, but

the stability condition derived in [20] is in bilinear matrix

inequalities, which are difficult to solve.

Another challenge in NCSs is the network-induced delay

effect on the control loop. So far, various methodologies

have been proposed to deal with the problem of network

delays. An augmented state vector method has been pre-

sented in [14] to control a linear system over a periodic

delay network. Queuing mechanisms have been developed

in [5], [10], which utilize some deterministic or probabilistic

information of NCSs for the control. Random delays have

been treated in [13] via an optimal stochastic control

methodology. See also [2], [9], [19] and the references

therein for related works.

Since data packet dropout and network-induced delays

might be potential sources to instability and poor perfor-

mance of NCSs, the main objective of this paper is to design

stabilizing feedback controllers for unstable systems with

packet dropout and network-induced delays.

The paper is organized as follows. Section II proposes

an iterative method to model NCSs with arbitrary but finite

data packet dropout as switched linear systems. The main

results are given in Section III: for NCSs with arbitrary

but finite data packet dropout, sufficient conditions on

the stability and stabilization are presented. Moreover, the

explicit expression of the desired state feedback controller

is given. The problem of network delays is treated in a

similar manner in Section IV. Section V develops analogous

results for NCSs with static output feedback. Numerical

simulation is presented in Section VI to illustrate the

efficiency and feasibility of our proposed approach. The

last section concludes this paper.

II. MODELLING NCSS WITH DATA PACKET DROPOUT

VIA ITERATIVE APPROACH

Data packet dropout in an NCS is unavoidable because of

limited bandwidth. When packet collision occurs, it might

be more advantageous to drop the old packet and transmit

a new one than repeated retransmission attempt. An NCS
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� x(k +1) = Ax(k)+Bu(k)
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�
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Fig. 1. An NCS via state feedback

shown in Fig. 1 consists of a discrete plant and a discrete

controller:

x(k +1) = Ax(k)+Bu(k),
u(k) = Fx̄(k), k = 1,2, · · · ,

(1)

where x(k) ∈ Rn, u(k) ∈ Rm are the plant state and the

plant input, respectively. F ∈ Rm×n is the state feedback

gain matrix to be designed. A,B are known real constant

matrices with appropriate dimensions. x̄(k)∈ Rn is the state

measurement that is successfully transmitted over the net-

work. When a sensor data (containing the state information

of NCS (1)) is successfully sent to the controller through the

communication link, it will be put into a single register and

substitute the old data. The controller reads out the content

of the register x̄(k) and utilizes the data to compute the new

control input, which will be applied to the plant.

We consider the setup with a clock-driven sensor, and

both the controller and the actuator are combined into one

event-driven node, that is, network communication only

occurs between the sensor and the controller through a

communication channel with finite bandwidth. We first

consider the case that there are no transmission delays

between the sensor and the combined node.

The iterative approach is described as follows. Without

loss of generality, we assume that the packet containing x(0)
is transmitted to the controller successfully, that is x̄(0) =
x(0), then

x(1) = (A+BF)x(0).

In the next step, if the data packet containing x(1) is

transmitted to the controller successfully, then

x(2) = (A+BF)x(1),

otherwise,

x(2) = Ax(1)+BFx(0) = (A(A+BF)+BF)x(0).

Suppose that the successive update instants of x̄(k) are
0, k1, · · · , ki, · · · and we refer to the time interval between
ki and ki+1 as one transmission period. In this pattern of
transmission, the states of the NCS at the update steps can
be described as follows:

x(k j) = (Ak j−k j−1 +Ak j−k j−1−1BF + · · ·+BF)x(k j−1),
j = 1,2, · · · .

Now we define another sequence

z(0) = x(0), z(1) = x(k1), · · · ,z( j) = x(k j), · · · , (2)

it follows that

z( j) = (Ak j−k j−1 +Ak j−k j−1−1BF
+ · · ·+BF) z( j−1)

�
= A( j)z( j−1), j = 1,2, · · · ,

(3)

where

A( j) = Ak j−k j−1 +Ak j−k j−1−1BF + · · ·+BF.

We assume that the maximum transmission period is d,

therefore the upper bound of dropped data packets is d−1.

And it must be true that

A( j) ∈ Ω, Ω = {Ā1, Ā2, · · · , Ād}, (4)

where

Āi = Ai +Ai−1BF + · · ·+BF. (5)

It is easily seen that the evolution of NCS (1) at the

transmission instants can be described by the following

switched system

z(k +1) = Āiz(k), k = 1,2, · · · (6)

for arbitrary switching, where Ā j ∈ Ω.
The main idea of the above iterative method is that the

controller makes use of the old information to control the

system when the current state measurement can not be

obtained by the controller instantly. This simple approach

leads to useful results, as will be seen in the sequel.

III. STABILIZATION OF NCSS WITH DATA PACKET

DROPOUT VIA STATE FEEDBACK

Definition 1: [15] A function φ : R+ → R+ is of class K
if it is continuous, strictly increasing, and φ(0) = 0.

Without loss of generality, we assume that 0 is an

equilibrium of NCS (1), and NCS (1) starts at t0 = 0 with

the initial condition x(0). The following result will ensure

the asymptotic stability of NCS (1). It is a consequence

of the state boundedness between transmission steps and

Theorem 2.3 in [3].

Lemma 1: If there exist a continuous differentiable, lo-

cally positive definite function V : Rn �→ R+ and functions

α,β ,γ of class K such that for all x ∈ Br
∆
= {x : ‖x‖ ≤ r},

α(‖x‖) ≤V (x) ≤ β (‖x‖), (7)

and

∆Vj
∆
= V (x(k j+1))−V (x(k j)) ≤−γ(‖x(k j)‖), (8)

then NCS (1) is uniformly asymptotically stable.

Proof: See the Appendix.

From Lemma 1 and the discussion in Section II, the

asymptotic stability of NCS (1) with arbitrary but finite

data packet dropout can be guaranteed by the asymptotic
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stability of the switched system in (6). This leads to the

following result.

Theorem 1: If there exist a symmetric positive definite

matrix Q ∈ Rn×n and a matrix Y ∈ Rm×n satisfying the

following linear matrix inequalities (LMIs)

[
−Q ΓT

i
Γi −Q

]
< 0, (9)

for i = 1,2, · · · ,d, where

Γi = AiQ+Ai−1BY + · · ·+BY,

then NCS (1) can be asymptotically stabilized via the state

feedback

u(k) = Y Q−1x̄(k)

for data packet dropout within the bound d −1.

Proof: To solve the stabilization problem of the NCS

in (1), we only need to find a Lyapunov function such that

the conditions in Lemma 1 are satisfied for the NCS with

designed feedback control. Let us consider the following

Lyapunov function

V (x(k)) = x(k)T Px(k) (10)

where P is a symmetric positive definite matrix. The differ-

ence of function V along the trajectory of system (1) at the

update steps is given by

∆Vj
∆
= V (x(k j+1))−V (x(k j))

= z( j)T (A( j)T PA( j)−P)z( j),

where we used (2) and (3) to get the last equality. Thus,

∆Vj < 0 if

A( j)T PA( j)−P < 0. (11)

Using Schur complement together with (4)–(5), (11) is

equivalent to

[
−P ĀT

i P
PĀi −P

]
< 0, ∀i = 1,2, · · · ,d. (12)

Set P−1 = Q. Pre- and post-multiplying (12) by block-diag

[Q Q], and letting Y = FQ, we obtain that (12) is equivalent

to (9). This completes the proof.

This theorem provides a method of designing a controller

to stabilize the NCS in (1) for arbitrary but finite data packet

dropout.

Remark 1: For NCS (1), we can find the maximum

allowable bound of data packet dropout by search the largest

d that does not violate the condition in Theorem 1. That is,

max d

subject to ∃ Q > 0 and Y satisfying (9).

IV. STABILIZATION OF NCSS WITH PACKET DROPOUT

AND DELAYS

Depending on the medium access protocol of the control

network, network induced delays can be constant or time

varying. Here, we consider the constant case, which often

appears in the scheduling networks. First, we consider NCS

(1) with one step delay.

We assume that the packet containing x(0) with one step

delay is transmitted to the controller successfully, then

x(1) = Ax(0),

x(2) = Ax(1)+BFx(0).

Suppose that the successive transmitted state measure-

ments are x(0), x(k1), · · · ,x(ki), · · · , the evolution of these

states can be described as follows:

x(k1) = (Ak1 +Ak1−2BF + · · ·+BF)x(0),
x(k2) = (Ak2−k1 +Ak2−k1−2BF

+ · · ·+BF)x(k1)+Ak2−k1−1BFx(0),
...

x(k j) = (Ak j−k j−1 +Ak j−k j−1−2BF + · · ·
+BF)x(k j−1)+Ak j−k j−1−1BFx(k j−2),

...

Now we define another sequence

z(0) = x(0), z(1) = x(k1), · · · ,z( j) = x(k j), · · · . (13)

It follows that

z( j) = (Ak j−k j−1 +Aki−k j−1−2BF + · · ·
+BF) z( j−1)+Aki−k j−1−1BFz( j−2)

�
= A( j)z( j−1)+B( j)z( j−2), j = 1,2, · · · ,

where

A( j) = Ak j−k j−1 +Ak j−k j−1−2BF + · · ·+BF,

B( j) = Aki−k j−1−1BF.

Let w( j) = [zT ( j) zT ( j − 1)]T be the augmented state

vector; the evolution of NCS (1) at the transmission instants

with the effect of network packet dropout and one step delay

is represented by

w( j +1) =

[
A( j) B( j)

I 0

]
w( j) ∆

= Λ( j)w( j), j = 1,2, · · · .

Denote the maximum transmission period of the sensor as

d, it follows that

Λ( j) ∈ Ω, Ω = {Λ1, Λ2, · · · ,Λd},

where

Λi =

[
Ai +Ai−2BF + · · ·+BF Ai−1BF

I 0

]
. (14)

Similar to the discussion in Section III, it can be easily

verified that the asymptotic stability of NCS (1) with one

step delay and arbitrary but finite data packet dropout can
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be guaranteed by the asymptotic stability of the following

switched linear system

w(k +1) = Λiw(k), k = 1,2, · · · . (15)

for arbitrary switching, where Λi ∈ Ω. Therefore, we next

proceed to analyze switched system (15) for arbitrary

switching. The following result gives a sufficient condition

on the stability of switched system (15), which is a special

case of [8].

Lemma 2: [8] If there exists a symmetric positive definite

matrix P ∈ Rn×n satisfying the following LMIs[
−P ΛT

i P
PΛi −P

]
< 0, ∀ i = 1,2, · · · ,d, (16)

then switched system (15) is asymptotically stable.

We now present a solution to the problem of stabilization

of system (1) with the effect of one step delay and arbitrary

but finite data packet dropout.

Theorem 2: If there exist a symmetric positive definite

matrix Q ∈ Rn×n and a matrix W ∈ Rm×n satisfying the

following LMIs⎡
⎢⎢⎣

[
−Q 0

0 −Q

]
ΨT

i

Ψi

[
−Q 0

0 −Q

]
⎤
⎥⎥⎦ < 0, (17)

for i = 1,2, · · · ,d, where

Ψi =

[
AiQ+Ai−2BW + · · ·+BW Ai−1BW

Q 0

]
,

then NCS (1) with one step delay and data packet dropout

within the bound d−1 can be asymptotically stabilized via

the state feedback

u(k) = WQ−1x̄(k).
Proof: Noting that the asymptotic stability of NCS (1)

can be ensured by that of switched system (15), by Lemma

2, we only need to prove that (16) holds. Set

P−1 =

[
Q 0

0 Q

]
∆
= Q̄, (18)

where Q is a symmetric positive definite matrix. Pre- and

post-multiplying inequality (16) by block-diag [Q̄ Q̄], it is

easy to see that (16) is equivalent to[
−Q̄ Q̄ΛT

i
ΛiQ̄ −Q̄

]
< 0, i = 1,2, · · · ,d. (19)

Let W = FQ, by the definition of Λi in (14), we know that

(19) is equivalent to (17). This completes the proof.

The result above can further be generalized to the case

of l step delays.

Corollary 1: If there exist a symmetric positive definite

matrix Q ∈ Rn×n and a matrix W ∈ Rm×n satisfying the

following LMIs⎡
⎢⎢⎣

[
−Q 0

0 −Q

]
ΘT

i

Θi

[
−Q 0

0 −Q

]
⎤
⎥⎥⎦ < 0,

� x(k +1) = Ax(k)+Bu(k)
y = Cx

y(k)

�
network

���

�ȳ(k)
Register�F

Fig. 2. An NCS via static output feedback

for i = 1,2, · · · ,d, where

Θi =

[
Γ3 Ai−1BW + · · ·+Ai−lBW
Q 0

]

with

Γ3 = AiQ+Ai−l−1BW + · · ·+BW,

then NCS (1) with l step delays and data packet dropout

within the bound d−1 can be asymptotically stabilized via

the state feedback

u(k) = WQ−1x̄(k).

V. STABILIZATION VIA OUTPUT FEEDBACK

In this section, we consider the problem of stabilization of

an NCS with data packet dropout via static output feedback.

As shown in Fig. 2, the NCS consists of a discrete-time

plant and a discrete-time static output feedback controller

x(k +1) = Ax(k)+Bu(k),

y(k) = Cx(k),

u(k) = Fȳ(k), k = 1,2, · · · , (20)

where y(k) ∈ Rm is the output of the plant, F ∈ Rm×n is

the output feedback gain matrix to be designed, C is a

known real constant matrix with appropriate dimensions

and ȳ(k) is the successfully transmitted data that will be

used to construct the controller. Analogously, we propose

the following iterative method for the case without delays.
Suppose that the successive update steps of ȳ(k) are

0, k1, · · · ,ki, · · · . In this pattern of transmission, the states
of the NCS at the update steps can be described as follows:

x(k j) = (Ak j−k j−1 +Ak j−k j−1−1BFC + · · ·+BFC)x(k j−1), j = 1,2, · · · .

Now we define another sequence

z(0) = x(0), z(1) = x(k1), · · · ,z( j) = x(k j), · · · . (21)

It follows that

z( j) = (Ak j−k j−1 +Ak j−k j−1−1BFC + · · ·+BFC) z( j−1)
�
= A( j)z( j−1),

(22)

where A( j) = Ak j−k j−1 + Ak j−k j−1−1BFC + · · ·+ BFC. We

assume that the maximum transmission period is d, then it

must be true that

A( j) ∈ Ω, Ω = {Ā1, Ā2, · · · , Ād}, (23)
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where

Āi = Ai +Ai−1BFC + · · ·+BFC. (24)

Similar to the discussion in the previous sections, the

asymptotic stability of NCS (20) with arbitrary but finite

data packet dropout will be guaranteed by the asymptotic

stability of the following switched system

z(k +1) = Āiz(k) (25)

for arbitrary switching, where Āi ∈ Ω.
The corresponding stabilization result is briefly summa-

rized as follows.

Theorem 3: Suppose C is of full row rank. If there exist

a symmetric positive definite matrix Q∈Rn×n, and matrices

W ∈ Rm×m,M ∈ Rm×m satisfying

CQ = MC, (26)

and the following LMIs[
−Q Q(Ai)T +CTW T BT (Ai−1)T + · · ·+CTW T BT

∗ −Q

]
< 0, (27)

for i = 1,2, · · · ,d, then NCS (20) can be asymptotically

stabilized for data packet dropout within the bound d − 1

via the static output feedback

u(k) = WM−1ȳ(k). (28)

VI. AN ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed method, we

present a numerical example.

Example 1: Consider the state-space plant model

x(k +1) =

[
2.4 1

0.8 1.5

]
x(k)+

[
0.1
1

]
u(k). (29)

The feedback controller takes the form u = Fx̄(k) with F
to be designed.

First, we can obtain d = 4 by Remark 1. Then by solving

the LMIs in Theorem 1 with LMI toolbox [1], we have

Y =

[
0.2378

−0.4502

]
,Q =

[
4.3449 −6.4450

−6.4450 9.6161

]
.

Moreover, by using Theorem 1, we obtain that the state

feedback is given by F = Y Q−1 = [−2.5340 − 1.7452].
Hence NCS (29) with up to 75% data packet dropout can

be asymptotically stabilized.

For the case of three packets dropped in every four

packets, the feedback gain can be obtained by Corollary

1: F = [−2.5339 −1.7426]. With initial condition x(0) =
[−2 2]T , the response of NCS (29) with three out of four

packets dropped is shown in Fig. 3. It can be seen from

Fig. 3 that NCS (29) with 75% data packets dropout can

be asymptotically stabilized in 8 steps, that is, after two

iterations, with the controller constructed by Corollary 1, the

NCS with only 25% packets transmitted can be stabilized

effectively.
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Fig. 3. Step responses of NCS (29) with three packets dropped in every
four packets
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Fig. 4. Step responses of NCS (29) without packet dropout

With the same initial condition, the trajectory of this

NCS without data packets dropout actuated by the controller

u(k) = [−4.9164 −3.0150] x(k) designed by Theorem 1 is

shown in Fig. 4. The system tends to be asymptotically

stabilized in 9 steps. This shows that the step response of

the NCS with 25% packets transmitted has not too much

difference from that without data packet loss.

As can be seen in this example, A has an eigenvalue

λ = 2.9512, which is much larger than 1. However, the NCS

can still be stabilized effectively by the feedback controller

designed by the proposed method even in the case of 75%

data packets dropout. This is a very remarkable result, and

shows the usefulness of our method.

VII. CONCLUSIONS

We have proposed a method to deal with the problem of

data packet loss and network delays arising in NCSs. For a

class of NCSs with packet dropout, sufficient conditions on

the stability and stabilization have been derived in terms of

LMIs. Stabilizing feedback controllers (state feedback and

output feedback) can be constructed via the feasible solution

of a set of LMIs. Moreover, for NCSs with data packet

dropout and delays, sufficient conditions on stabilization of

the NCSs have been established in a similar manner. The

results obtained in this paper suggest that one may drop data
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packet at a certain rate to save network bandwidth while

preserving the stability of the NCS. This is of practical im-

portance in industrial applications. All the results obtained

in this paper can be extended readily to the continuous-time

case.
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APPENDIX

Proof of Lemma 1: Proof: From (5), the state of

the NCS, x(k), between successive transmission steps k j and

k j+1 is bounded by

‖x(k)‖ = ‖(Ai +Ai−1BF + · · ·+BF)x(k j)‖

≤ c‖x(k j)‖, (30)

where

c = max
i=1,2,··· ,d

{‖(Ai +Ai−1BF + · · ·+BF)‖}.

First we prove that NCS (1) is uniformly stable. Given

any ε > 0, let ε̄ = min{ε,r}, since V (x) is continuous and

V (0) = 0, we can find a δ (ε) > 0 such that

β̄ (δ ) = sup
‖x(0)‖≤δ

V (x) < α(ε̄/c) ≤ α(ε/c). (31)

Now we claim that for all ‖x(0)‖≤ δ , ‖x(k)‖< ε ∀ k ∈ Z+.

This can be proved by contradiction. Suppose k1 > 0 is the

first step at which ‖x(k1)‖ ≥ ε . Assume k1 ∈ [k j,k j+1), then

by the boundedness of x(k) in the interval [k j,k j+1) as given

by (30), we have

‖x(k j)‖ ≥ ε/c.

By (7) and the fact that α is a function of class K, we have

V (x(k j)) ≥ α(‖x(k j)‖) ≥ α(ε/c).

On the other hand, since V decreases at the update time k j,

by (31),

V (x(k j)) ≤V (x(0)) ≤ β̄ (δ ) < α(ε/c).

A contradiction occurs, hence NCS (1) is uniformly stable.

To show asymptotic stability, observe that the sequence

V (x(k j)) ( j = 1,2, · · ·) is decreasing and positive, and

therefore has a limit L ≥ 0. Hence, we have

0 = L−L
= lim j→∞ V (x(k j+1))− lim j→∞ V (x(k j))
= lim j→∞[V (x(k j+1))−V (x(k j))].

Since γ(.) is a function of class K, it follows from (8) that

V (x(k j+1))−V (x(k j)) ≤−γ(‖x(k j)‖) ≤ 0,

which implies that

lim
k→∞

γ(‖x(k j)‖) = 0.

Thus, we have

lim
k→∞

‖x(k j)‖ = 0.

From (30) we finally obtain that

lim
k→∞

‖x(k)‖ = 0.

This completes the proof.
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