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Abstract

This work considers the problem of stabilization of nonlinear systems subject to state and control constraints, for cases where the state
constraints need to be enforced at all times (hard constraints) and where they can be relaxed for some time (soft constraints). We propose a
Lyapunov-based predictive control design that guarantees stabilization and state and input constraint satisfaction for all times from an explicitly
characterized set of initial conditions. An auxiliary Lyapunov-based analytical bounded control design is used to characterize the stability
region of the predictive controller and also provide a feasible initial guess to the optimization problem in the predictive controller formulation.
For the case when the state constraints are soft, we propose a switched predictive control strategy that reduces the time during which state
constraints are violated, driving the states into the state and input constraints feasibility region of the Lyapunov-based predictive controller. We
demonstrate the application of the Lyapunov-based predictive controller designs through a chemical process example.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Control systems are often subject to constraints on their ma-
nipulated inputs and state variables. Input constraints arise as a
manifestation of the physical limitations inherent in the capac-
ity of control actuators (e.g., bounds on the magnitude of valve
opening), and are enforced at all time (hard constraints). State
constraints, on the other hand, arise either due to the necessity
to keep the state variables within acceptable ranges, to avoid,
for example, runaway reactions (in which case they need to be
enforced at all times, and treated as hard constraints) or due to
the desire to maintain them within desirable bounds dictated
by performance considerations (in which case they may be re-
laxed, and treated as soft constraints). Constraints automatically
impose limitations on our ability to steer the dynamics of the
closed-loop system at will, and can cause severe deterioration
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in the nominal closed-loop performance and may even lead to
closed-loop instability if not explicitly taken into account at the
stage of controller design.

Currently, model predictive control (MPC), also known as
receding horizon control (RHC), is one of the few control
methods for handling state and input constraints within an
optimal control setting and has been the subject of numerous
research studies that have investigated the stability properties
of MPC (e.g., see [1,20] for extensive surveys of various MPC
formulations). In these MPC formulations the stability guaran-
tees are typically based on an assumption of initial feasibility
of the optimization problem, and the set of initial conditions,
starting from where a given MPC formulation is guaranteed to
be feasible, is not explicitly characterized. Attention has also
been focused on the problem of state constraints satisfaction
[12,31,13,26,6,32,3,27,28], and has typically been analyzed
within the soft constraints framework, i.e., with the understand-
ing that state constraints may be relaxed. In the minimum time
approach, the state constraints are relaxed upto some time, and
set as hard constraints thereafter. In other approaches, they are
typically relaxed for all times, and only incorporated in the
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objective function as appropriate penalties on state constraint
violation (‘softening’ of state constraints). In either approach,
the problem of providing explicitly the set of initial conditions
starting from where stabilization can be achieved and state and
input constraints are guaranteed to be feasible has not been
addressed.

The desire to implement control approaches that allow for
an explicit characterization of their stability properties has
motivated significant work on the design of stabilizing control
laws, using Lyapunov techniques, that provide explicitly-
defined regions of attraction for the closed-loop system; the
reader may refer to [17] for a survey of results in this area.
In [7,8], a class of Lyapunov-based bounded robust nonlin-
ear controllers (inspired by the results on bounded control
originally presented in [19]) that enforce robust stability from
an explicitly characterized set of initial conditions, was de-
veloped (see [23,11] for utilization of the above controllers
within the hybrid predictive control framework, and for stabi-
lization of switched, nonlinear systems, respectively; see also
[5] for further details and other applications). Despite their
well-characterized stability and constraint-handling properties,
those Lyapunov-based controllers are not guaranteed to be op-
timal with respect to an arbitrary performance criterion, and do
not allow for incorporation of performance considerations in
the design.

In a recent work, [22], we proposed a Lyapunov-based model
predictive control formulation that provides guaranteed stabil-
ity from an explicitly characterized set of initial conditions in
the presence of input constraints. In this work, we propose a
Lyapunov-based model predictive control design for stabiliza-
tion of nonlinear systems with both state and input constraints.
The design of the Lyapunov-based MPC uses a bounded con-
troller, with its associated region of stability, as an auxiliary
controller that is used to analyze the stability properties of the
Lyapunov-based MPC. The proposed Lyapunov-based MPC is
shown to possess an explicitly characterized set of initial con-
ditions, starting from where it is guaranteed to be feasible, and
hence stabilizing, while enforcing the state and input constraints
at all times. For the case when the state constraints are soft,
we propose a switched predictive control strategy that reduces
the time for which state constraints are violated, driving the
states into the state and input constraints feasibility region of
the Lyapunov-based predictive controller. We demonstrate the
application of the Lyapunov-based predictive controller designs
through a chemical process example.

The rest of the paper is organized as follows: in Section 2,
we describe the class of systems considered, and briefly re-
view the bounded controller design. In Section 3, we present a
Lyapunov-based predictive controller that guarantees stabiliza-
tion from an explicitly characterized set of initial conditions,
while enforcing the state and input constraints at all times.
In Section 4, we present another predictive control formula-
tion, and a switching strategy that reduces the time during
which the state constraints are violated when state constraints
can be treated as soft constraints. Finally, in Section 5, we
present simulation results to demonstrate the application of
our results.

2. Preliminaries

In this work, we consider the problem of stabilization of
continuous-time nonlinear systems with state and input con-
straints, with the following state-space description:

ẋ(t) = f (x(t)) + G(x(t))u(t), (1)

u ∈ U , (2)

x ∈ X, (3)

where x = [x1 · · · xn]′ ∈ Rn denotes the vector of state vari-
ables, u=[u1 · · · um]′ ∈ Rm denotes the vector of manipulated
inputs, U ⊆ Rm, X ⊆ Rn denote the constraints on the ma-
nipulated inputs and the state variables, respectively, f (·) is a
sufficiently smooth n×1 nonlinear vector function, and G(·) is
a sufficiently smooth n×m nonlinear matrix function. Without
loss of generality, it is assumed that the origin is the equilib-
rium point of the unforced system (i.e. f (0) = 0). Throughout
the paper, the notation ‖ · ‖ will be used to denote the stan-
dard Euclidean norm of a vector, while the notation ‖ · ‖Q

refers to the weighted norm, defined by ‖x‖2
Q = x′Qx for all

x ∈ Rn, where Q is a positive-definite symmetric matrix and
x′ denotes the transpose of x. The notation Lf V denotes the
standard Lie derivative of a scalar function V (·) with respect
to the vector function f (·). In order to provide the necessary
background for our results in Sections 3 and 4, we will briefly
review in the remainder of this section the design procedure
for, and the stability properties of, a bounded control design,
which will be used to characterize the feasibility region of the
Lyapunov-based MPC formulation in Section 3. Throughout
the manuscript, we assume that for any u ∈ U the solution of
the system of Eq. (1) exists and is continuous for all t, and we
focus on the state feedback problem where measurements of
x(t) are assumed to be available for all t.

2.1. Bounded Lyapunov-based control

Consider the system of Eq. (1) for which a control Lyapunov
function, V, exists. Using the results in [19] (see also [7]), the
following bounded control law can be constructed:

u(x) =
{−k(x)(LGV )′(x), ‖(LGV )′(x)‖ �= 0

0, ‖(LGV )′(x)‖ = 0

}
:= b(x),

(4)

where

k(x) =
L∗

f V (x) +
√

(L∗
f V (x))2 + (umax‖(LGV )′(x)‖)4

‖(LGV )′(x)‖2

[
1 +

√
1 + (umax‖(LGV )′(x)‖)2

] .

(5)

LGV (x) = [Lg1V · · · LgmV ] is a row vector, where gi is the
ith column of G, L∗

f V = Lf V + �V and � > 0, and umax is a
real positive number such that ‖u‖�umax implies u ∈ U . For
the above controller, one can show, using a standard Lyapunov
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argument, that whenever the closed-loop state, x, evolves within
the region described by the set

�x,u = {x ∈ X : L∗
f V (x)�umax‖(LGV )′(x)‖}, (6)

then the controller satisfies the state and input constraints,
and the time-derivative of the Lyapunov function is negative-
definite. Therefore, starting from any initial state in the set �x,u,
asymptotic stability of the constrained closed-loop system can
be guaranteed, provided that the state trajectory of the closed-
loop system remains within the state-space region described by
the set �x,u. To ensure this, we need to construct an invariant
subset (preferably the largest) of �x,u. One way to construct
such a subset is using the level sets of V, i.e.,

�x,u = {x ∈ Rn : V (x)�cmax
x,u }, (7)

where cmax
x,u > 0 is the largest number for which �x,u ⊆ �x,u.

�x,u then provides an estimate of the stability region, starting
from where the origin of the constrained closed-loop system,
under the control law of Eqs. (4) and (5), is guaranteed to
be asymptotically stable and state and input constraints are
satisfied for all time.

The bounded controller of Eqs. (4) and (5) possesses a
robustness property with respect to measurement errors, that
preserves closed-loop stability when the control action is im-
plemented in a discrete (sample and hold) fashion with a
sufficiently small hold time (�). Specifically, the control law
ensures that, for all initial conditions in �x,u, the closed-loop
state remains in �x,u and eventually converges to some neigh-
borhood of the origin (we will refer to this neighborhood as
�b) whose size depends on �. This robustness property, was
formalized in [22] for the problem of stabilization under input
constraints, and carries over to the case of input and state con-
straints. This property will be exploited in the Lyapunov-based
predictive controller design of Section 3 and is formalized in
Proposition 1 below (the proof of the proposition is similar
to that of Proposition 1 in [22], and is omitted for brevity).
For further results on the analysis and control of sampled-data
nonlinear systems, the reader may refer to [14,24,16,30].

Proposition 1. Consider the constrained system of Eq. (1),
under the bounded control law of Eqs. (4) and (5) with � > 0
and let �x,u be the stability region estimate under continuous
implementation of the bounded controller. Let u(t)=u(j�) for
all j�� t < (j + 1)� and u(j�) = b(x(j�)), j = 0, . . . ,∞.
Then, given any positive real number d, there exist positive real
numbers �∗, �′ and �∗ such that if � ∈ (0, �∗] and x(0) :=
x0 ∈ �x,u, then x(t) ∈ �x,u ⊆ X and lim supt→∞ ‖x(t)‖�d.
Also, if V (x0)��′ then V (x(�))��′ ∀� ∈ [0, �) and if
�′ < V (x0)�cmax

x,u , then V̇ (x(�))� − �∗ ∀ � ∈ [0, �).

Remark 1. Control Lyapunov function (CLF)-based stabiliza-
tion of nonlinear systems has been studied extensively in the
nonlinear control literature (e.g., see [2,19,29]). The construc-
tion of constrained CLFs (i.e., CLFs that take the constraints
into account) remains a difficult problem (especially for nonlin-
ear systems) that is the subject of ongoing research. For several

classes of nonlinear systems that arise commonly in the mod-
eling of engineering systems, systematic and computationally
feasible methods are available for constructing unconstrained
CLFs (CLFs for the unconstrained system) by exploiting the
system structure. Examples include the use of quadratic func-
tions for feedback linearizable systems and the use of back-
stepping techniques to construct CLFs for systems in strict feed-
back form. In this work, the bounded controllers in Eqs. (4)
and (5) are designed using unconstrained CLFs, which are also
used to explicitly characterize the associated regions of sta-
bility via Eqs. (7) and (6). While the resulting estimates do
not necessarily capture the entire domain of attraction (this re-
mains an open problem even for linear systems), we will use
them throughout the paper for a concrete illustration of the ba-
sic ideas of the results. It is possible to obtain substantially
improved estimates by using, for example, a combination of
several CLFs (see, for example, [9,23]).

3. Lyapunov-based model predictive control

Consider model predictive control of the system of Eq.
(1) with hard state and input constraints. We present here
a Lyapunov–based MPC formulation (see Remark 3 for a
discussion on this formulation and its relationship to other
Lyapunov-based formulations) that guarantees feasibility of
the optimization problem subject to hard constraints on the
state and input, and hence constrained stabilization of the
closed-loop system from an explicitly characterized set of ini-
tial conditions. For this MPC design, the control action at state
x and time t is obtained by solving, online, a finite horizon
optimal control problem of the form:

P(x, t) : min {J (x, t, u(·))|u(·) ∈ S, x ∈ X}, (8)

s.t. ẋ = f (x) + G(x)u, (9)

V̇ (x(�))� − �∗ ∀� ∈ [t, t + �) if V (x(t)) > �′, (10)

V (x(�))��′ ∀� ∈ [t, t + �) if V (x(t))��′, (11)

where S = S(t, T ) is the family of piecewise continuous func-
tions (functions continuous from the right), with period �, map-
ping [t, t +T ] into U , and T is the specified horizon. Eq. (9) is
the nonlinear model describing the time evolution of the state
x, V is the Lyapunov function used in the bounded controller
design and �′, �∗ are defined in Proposition 1. A control u(·) in
S is characterized by the sequence {u[j ]} where u[j ] := u(j�)

and satisfies u(t) = u[j ] for all t ∈ [j�, (j + 1)�). The per-
formance index is given by

J (x, t, u(·)) =
∫ t+T

t

[‖xu(s; x, t)‖2
Q + ‖u(s)‖2

R] ds, (12)

where Q and R are positive semi-definite, and strictly positive
definite, symmetric matrices, respectively, and xu(s; x, t) de-
notes the solution of Eq. (1), due to control u, with initial state
x at time t. The minimizing control u0(·) ∈ S is then applied
to the plant over the interval [j�, (j + 1)�) and the proce-
dure is repeated indefinitely. This defines an implicit model
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predictive control law

M(x) := arg min(J (x, t, u(·))) := u1. (13)

Closed-loop stability and state and input constraint feasibility
properties of the closed-loop system under the Lyapunov-
based predictive controller are inherited from the bounded
controller under discrete implementation and are formalized in
Proposition 2 below.

Proposition 2. Consider the constrained system of Eq. (1)
under the MPC law of Eqs. (8)–(13) with ���∗ where �∗
was defined in Proposition 1. Then, given any x0 ∈ �x,u,
where �x,u was defined in Eq. (7), the optimization problem of
Eqs. (8)–(13) is feasible for all times, x(t) ∈ �x,u ⊆ X for all
t �0 and lim supt→∞ ‖x(t)‖�d .

Proof. The proof of this proposition is divided in to three parts.
In the first part, we show that for all x0 ∈ �x,u, the predic-
tive control design of Eqs. (8)–(13) is feasible. We then show
that �x,u is invariant under the predictive control algorithm of
Eqs. (8)–(13), and that the state and input constraints are sat-
isfied for all times. Finally, we prove practical stability for the
closed-loop system.

Part 1: Consider some x0 ∈ �x,u under the predictive con-
troller of Eqs. (8)–(13), with a prediction horizon T = N�,
where � is the hold time and 1�N < ∞ is the number of the
prediction steps. The initial condition can either be such that
V (x0)��′ or �′ < V (x0)�cmax

x,u .
Case 1: If �′ < V (x0)�cmax

x,u , the control input trajectory un-
der the bounded controller of Eqs. (4) and (5) provides a fea-
sible solution to the constraint of Eq. (10) (see Proposition
1). A feasible initial guess for the optimization problem of
Eqs. (8)–(13) therefore exists, and, in particular, is given by
u(j�)=b(j�), j=1, . . . , N . Note that if u=b(·) for t=[0, �],
and � ∈ (0, �∗], then V̇ � − �∗ and b(·) ∈ U (since b(·) is
computed using the bounded controller of Eqs. (4) and (5)).
Also, under discrete implementation of the bounded controller
of Eqs. (4) and (5), for any x0 ∈ �x,u, x(t) ∈ �x,u ∀ t �0,
therefore, the constraint x(t) ∈ X is also satisfied by this con-
trol trajectory (note that �x,u ⊆ �x,u ⊆ X).

Case 2: If V (x0)��′, once again we infer from Proposi-
tion 1 that the control input trajectory provided by the bounded
controller of Eqs. (4) and (5) provides a feasible initial guess,
given by u(j�)= b(x(j�)), j = 1, . . . , N (recall from Propo-
sition 1, that under the bounded controller of Eqs. (4) and (5),
if V (x0)��′ then V (x(t))��′ ∀ t �0). This shows that for all
x0 ∈ �x,u, the Lyapunov-based predictive controller of Eqs.
(8)–(13) is feasible for all times.

Part 2: As shown in Part 1, for any �′ < V (x0)�cmax
x,u , the

constraint of Eq. (10) in the optimization problem is feasible.
Upon implementation, therefore, the value of the Lyapunov
function decreases, and since �x,u is a level set of V, the closed-
loop state trajectory cannot escape �x,u. On the other hand,
if V (x0)��′, feasibility of the constraint of Eq. (11) guar-
antees that the closed-loop state trajectory evolves such that
V (x(t))��′ ∀ t �0. In both cases, �x,u continues to be an in-
variant region under the Lyapunov-based predictive controller

Φu

X,Φx,u

Ωx,u

Ωu

Fig. 1. A schematic representing the input (�u,�u) and state and input
(�x,u,�x,u) constrained stability regions, together with the set (X) describing
the state constraints.

of Eqs. (8)–(13). Also, since �x,u ⊆ �x,u ⊆ X, we have that
x(t) ∈ X for all t �0.

Part 3: Finally, consider an initial condition, x0, such that
�′ < V (x0)�cmax

x,u . Since the optimization problem continues
to be feasible for all t �0, we have that V (x(t +�)) < V (x(t))

for all �′ < V (x(t))�cmax
x,u . All trajectories originating in �x,u,

therefore, converge to the set defined by �t := {x ∈ Rn :
V (x)��′}. For V (x0)��′, the feasibility of the optimiza-
tion problem of Eqs. (8)–(13) implies V (x(t))��′ ∀ t �0.
Therefore, for all x0 ∈ �x,u, lim supt→∞ V (x(t))��′. Note
that since V (·) is a continuous function of the state, one can
find a finite, positive real number, �′, such that V (x)��′
implies ‖x‖�d. For such a choice of �′, we therefore
have that lim supt→∞ ‖x(t)‖�d.This completes the proof
of Proposition 2. �

Remark 2. The set �x,u defined by Eq. (6) can be un-
derstood as the intersection of the sets �u = {x ∈ Rn :
L∗

f V (x)�umax‖(LGV )′(x)‖}, which defines the set where

V̇ < 0 and ‖u‖�umax (the set defined by �u = {x ∈ Rn :
V (x)�cmax

u } where cmax
u > 0 is the largest number for which

�u ⊆ �u, therefore, is the region of guaranteed feasibility
for the Lyapunov-based predictive controller in the absence of
state constraints, see [22]), and the set X describing the state
constraints. It can be argued that the set �x,u is a sufficiently
nonconservative estimate of the set of initial conditions within
which the level set, �x,u, can be constructed (see Fig. 1).
To this end, consider the following cases: if X ⊂ �u (as in
Fig. 1), the closed-loop system cannot be initialized outside of
X, because in that case the state constraints are violated at the
outset (see Section 4 for how this can be handled in the case
that the state constraints can be treated as soft constraints). On
the other hand, if �u ⊂ X, the closed-loop system state cannot
be initialized from outside of �u, since outside of this set, nega-
tive definiteness of V̇ is not guaranteed under input constraints
(this points to the fact that there may be initial conditions that
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satisfy the state constraints, but starting from where it may not
be possible to stabilize the system due to the presence of input
constraints). Also, it is possible to generate a larger estimate
of �u, by using, for example, a family of Lyapunov functions
[9], to cover larger portions of the set X. Note also that, in
general, merely initializing the closed-loop system inside of
X is not sufficient to guarantee subsequent satisfaction of the
state constraints because the closed-loop state trajectory, even
if it eventually stabilizes, may do so in a way that it goes out
of X, and violates the state constraints before stabilizing (this
necessitates the construction of the invariant set �x,u).

Remark 3. Note that the predictive controller formulation of
Eqs. (8)–(13) requires that the value of the Lyapunov func-
tion decrease during the first step only. Practical stability of
the closed-loop system is achieved since, due to the receding
nature of controller implementation, only the first move of the
set of calculated moves is implemented and the problem is re-
solved at the next time step. If the optimization problem is ini-
tially feasible, and continues to be feasible, then every control
move that is implemented, enforces a decay in the value of the
Lyapunov function, leading to stability (see Remark 4 for how
initial and subsequent feasibility is guaranteed for an explicitly
characterized set of initial conditions). Lyapunov-based predic-
tive control approaches (see, for example, [18,25]) typically in-
corporate a similar Lyapunov function decay constraint, albeit
requiring the constraint of Eq. (10) to hold at the end of the
prediction horizon as opposed to only the first time step. An
input trajectory that only requires the value of the Lyapunov
function value to decrease at the end of the horizon may in-
volve the state trajectory going out of the level set (and there-
fore, possibly out of the state constraint satisfaction region, vi-
olating the state constraints), and motivates using a constraint
that requires the Lyapunov function to decrease during the first
time step (this also facilitates the explicit characterization of
the feasibility region).

Remark 4. For 0 < ���∗, the constraint of Eq. (10), is guar-
anteed to be satisfied (the control action computed by the
bounded controller design provides a feasible initial guess to
the optimization problem). Note that this is so because the con-
straint requires the Lyapunov function value to decay, not at
the end of the prediction horizon (as is customarily done in
Lyapunov-based MPC approaches), but only during the first
time step. Furthermore, since the state is initialized in �x,u,
which is a level set of V, the closed-loop system evolves so as
to stay within �x,u, thereby guaranteeing feasibility at future
times. Since the level set �x,u is completely contained in the
set defining the constraints on the states, and the state trajec-
tory under the predictive controller continues to evolve within
this set, the state constraints are satisfied at all times.

Remark 5. For linear systems, the work in [26] uses the
minimum time approach, where the smallest time, Tmin, be-
yond which the state constraints can be satisfied on an infinite
horizon is identified, and the state constraints are relaxed upto
that time. The need to satisfy the constraints after Tmin may,

however, result in large violations of the state constraints for
times prior to Tmin. Note also that even if the state constraints
are relaxed upto a time, initial conditions starting from where
the closed-loop system can be stabilized are not explicitly
characterized. Furthermore, while possible for linear systems,
the computation of Tmin is a more difficult task for nonlin-
ear systems. Even if it is computable, the state constraints
are not enforced at all times, and hence not strictly treated
as hard constraints. In contrast, the Lyapunov-based MPC
of Eqs. (8)–(13) guarantees feasibility and stabilization from
an explicitly characterized set of initial conditions while en-
forcing the state and input constraints at all times.

Remark 6. Note that the constraints of Eqs. (10)–(11) incorpo-
rate stability considerations in the control design, which over-
ride the performance considerations specified by the objective
function of Eq. (12) (which means that the implemented con-
trol action may not be the one dictated by the performance
objective of Eq. (12) alone). In contrast to analytic bounded
control methods, however, the predictive control design allows
for specification of performance objective in the control de-
sign that ultimately determines the choice of control action out
of the allowable (feasible) set of control moves determined by
the constraints on the manipulated input and the states and the
stability requirements.

Remark 7. Together with the computational difficulties of
solving a nonlinear optimization problem at each time step,
one of the key challenges that impact on the practical imple-
mentation of nonlinear MPC (NMPC) is the inherent difficulty
of characterizing, a priori, the set of initial conditions start-
ing from where a given NMPC controller is guaranteed to
stabilize the closed-loop system, or for a given set of initial
conditions, to identify the value of the prediction horizon for
which the optimization problem will be feasible subject to
state and input constraints. The Lyapunov-based predictive
controller formulation guarantees initial and subsequent feasi-
bility of the optimization problem irrespective of the choice of
the prediction horizon and also provides, at the same time, an
explicit characterization of a set of initial conditions starting
from where stability is guaranteed. In addition, the optimiza-
tion problem in the predictive controller is initialized with a
feasible initial guess, which substantially reduces the com-
putational burden. Note also that any other Lyapunov-based
analytic control design can be used as the auxiliary controller,
and the choice is not limited to the bounded controller used in
this paper. The Lyapunov-based analytic control design should,
however, provide an explicit characterization of the state and
input constrained stability region, and be robust with respect
to discrete implementation.

4. Handling soft state constraints via controller switching

Consider now the nonlinear system of Eq. (1) where the
state constraints represent desired bounds on the values of the
state variables. In this case, the state constraints can be treated
as soft constraints, allowing their violation for some period of
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time. It is important, nevertheless, to implement control action
that reduces the time for which constraints are violated. We
propose in this section a control design that uses two predic-
tive formulations and switches between them. First we design
a predictive controller that, while respecting input constraints,
drives the state trajectory into the feasible region of the pre-
dictive controller formulation of Proposition 2, in a way that
reduces the time for which the state constraints are violated,
and then implement the predictive controller of Proposition 2
to achieve stabilization together with state and input constraint
satisfaction for the rest of the time. To this end, we first cast
the system of Eq. (1) as a switched system of the form:

ẋ = f (x) + G(x)ui(t) i ∈ {1, 2}, (14)

where i : [0, ∞) → {1, 2} is the switching signal which is
assumed to be a piecewise continuous (from the right) function
of time, implying that only a finite number of switches between
the two controllers is allowed on any finite-time interval. The
index, i(t), represents a discrete state that indexes the control
input, u, with the understanding that i(t) = 1 if and only if
ui(x(t)) = u1 (i.e., the Lyapunov-based MPC formulation of
Eqs. (8)–(13) is used) and i(t)= 2 if and only if ui(x(t))=u2)

(i.e., an MPC formulation designed to reduce the time of state
constraint violation, is used). Theorem 1 below presents both
the control law, u2, and the switching law.

Theorem 1. Consider the switched nonlinear system of
Eq. (14), for which there exists a control Lyapunov function V,
and for a given pair of positive real numbers (d, �), � is cho-
sen such that ���∗, where �∗ was defined in Proposition 1.
Given any initial condition x0 ∈ �u, where �u was defined
in Remark 2, let Tb be the time it takes for the bounded con-
troller of Eqs. (4) and (5), under discrete implementation with
a discretization step �, to achieve x(Tb) ∈ �x,u. Consider the
following optimization problem:

u = arg min(J ) := u2, (15)

J = qV (x(t + �)) +
∫ t+T

t

[‖u(s)‖2
R] ds, (16)

where q > 0, R > 0, T is the prediction horizon given by
T = Tb − t , subject to the following constraints:

ẋ = f (x) + G(x)u, (17)

u ∈ U , (18)

V (x(t + k�))�V (x(t+(k−1)�)), k = 1, . . . , T /�, (19)

x(t + T ) ∈ �x,u. (20)

Let Tswitch be the earliest time such that x(Tswitch) ∈ �x,u,
where �x,u was defined in Eq. (7), under the controller
of Eqs. (15)–(20). Then, the following switching law:

i(t) =
{

2, 0� t �Tswitch
1, t > Tswitch

}
(21)

ensures, for the closed-loop system, that x(Tb) ∈ �x,u,
Tswitch �Tb, x(t) ∈ �x,u ⊆ X ∀ t > Tswitch and lim supt→∞
‖x(t)‖�d.

Proof. The proof of the theorem proceeds as follows: we first
show that the optimization problem of Eqs. (15)–(20) is feasi-
ble for all 0� t �Tswitch, x(Tswitch) ∈ �x,u and that Tswitch �Tb.
Then, we use the result of Proposition 2 to show that for
t > Tswitch, the controller of Eqs. (8)–(13) ensures that x(t) ∈
�x,u ⊆ X ∀ t > Tswitch and lim supt→∞ ‖x(t)‖�d.

Case 1: Consider x0 ∈ �u\�x,u. Using the result of Propo-
sition 1 in [22], we have that under discrete implementation
of the bounded controller of Eqs. (4) and (5) with ���∗, the
state trajectory, starting from x0, evolves such that x(t) ∈ �u

and V (x(t + �))�V (x(t)) for all t �0. From the definition of
Tb, we have that x(Tb) ∈ �x,u under discrete implementation
of the bounded controller. The optimization problem of Eqs.
(15)–(20) is guaranteed to be initially feasible, since a feasi-
ble initial guess can always be obtained using the control input
trajectory under the bounded controller and is given by

u(k�) = b(x(k�)), k = 1, . . . , T /�.

Subsequently, the tail of the solution at the first time step:

u(k�), k = 2, . . . , T /�,

is a feasible initial guess for the constraints in the optimization
problem at the next time step (at the next time step, the horizon
reduces from T = Tb to T = Tb − �). Note that under the
implementation of the solution of the control trajectory at the
first time step, we get

V (x(t + k�))�V (x(t + (k − 1)�)), k = 1, . . . , T /�.

Under the implementation of the tail, therefore, we have that

V (x(t + k�))�V (x(t + (k − 1)�)), k = 2, . . . , T /�

and also x(Tb) ∈ �x,u, which is the constraint that the optimiza-
tion problem needs to enforce at the next time step. The opti-
mization problem of Eqs. (15)–(20), therefore, is guaranteed to
be initially and successively feasible, and hence x(Tb) ∈ �x,u.

By definition of Tswitch, if the state trajectory enters �x,u

before Tb, then Tswitch is set to that value, hence x(Tswitch) ∈
�x,u where Tswitch �Tb. From Proposition 2, we get that
for all x(Tswitch) ∈ �x,u, x(t) ∈ �x,u ⊆ X ∀ t �Tswitch and
lim supt→∞ ‖x(t)‖�d.

Case 2: For any initial condition x0 ∈ �x,u ⊆ �u we have
that Tb =Tswitch =0 (since x0 ∈ �x,u), and the switching law of
Eq. (21) dictates that the controller of Eqs. (8)–(13) is imple-
mented for all times. Since x0 ∈ �x,u, from Proposition 2, we
get that x(t) ∈ �x,u ⊆ X ∀ t �0 and lim supt→∞ ‖x(t)‖�d.
This completes the proof of Theorem 1. �

Remark 8. The implementation of the predictive controller of
Theorem 1 is described algorithmically below:

(1) Given the system model of Eq. (1), the constraints on the
input and states, and a control Lyapunov function, V, design
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the bounded controller of Eqs. (4) and (5) and compute the
stability region estimate under the input constraints, �u,
and that under the state and input constraints, �x,u.

(2) Given the size of the ball that the state is required to con-
verge to, d, compute �∗ for the predictive controller of
Proposition 2 and choose � ∈ (0, �∗] for the purpose of
MPC implementation.

(3) If x0 ∈ �x,u, proceed to step 6, else continue.
(4) For x0 ∈ �u, compute the time Tb taken by the bounded

controller under discrete implementation, with a discretiza-
tion time �, to drive the state trajectory inside �x,u.

(5) Implement the controller of Eqs. (15)–(20) until the time
(Tswitch) that the state trajectory enters �x,u (this is guaran-
teed to happen, by Tb at the latest), at which time, switch to
the predictive controller of Proposition 2 (Eqs. (8)–(13)).

(6) Implement the predictive controller of Proposition 2
(Eqs. (8)–(13)) to achieve stabilization under input and
state constraints.

Remark 9. For linear systems, the problem of state constraints
satisfaction is typically handled by relaxing the constraints,
while appropriately penalizing the state constraint violation
within the objective function [32], or solving a multi-objective
problem [28] that minimizes both the duration and size of state
constraint violation. While these approaches do away with any
potential infeasibility due to the state constraints, they do not
limit the time for which the state constraints are violated. The
use of the bounded controller, to obtain an estimate of the time
within which the state trajectory can be driven inside �x,u al-
lows the use of this value in the constraint of Eq. (20) and guar-
antees state constraint satisfaction by that time. Furthermore,
since the objective function minimizes the Lyapunov function
value itself at the next time instance, and the target set, �x,u,
is a level set, it is likely that the resulting control action will
drive the trajectory inside the feasible region faster, and result
in a smaller time (compared to implementing the bounded con-
troller itself) for which the state constraints are violated (see
the simulation example for a demonstration).

Remark 10. The problem of implementing MPC with guaran-
teed stability regions was recently addressed for linear systems
under state [10] and output [21] feedback control, and for input
constrained nonlinear systems with [23] and without [9] un-
certainty, by means of a hybrid predictive control structure that
embeds the implementation of MPC within the stability region
of a Lyapunov-based bounded controller and uses the bounded
controller as a fall-back component that can be switched to
in the event of infeasibility or instability of the predictive
controller. In this work, the switching takes place between
two different predictive control formulations (the controller of
Eqs. (15)–(20) and the controller of Eqs. (8)–(13)). Unlike the
hybrid predictive control structure, switching between the two
controllers here is not to provide a fall-back mechanism in the
event of infeasibility (the Lyapunov-based predictive controller
of Eqs. (8)–(13) is guaranteed to be feasible from an explicitly
characterized set of initial conditions), but rather to use the
controller of Eqs. (15)–(20) to guide the system trajectory into

the state and input constrained stability region of the Lyapunov-
based predictive control design of Eqs. (8)–(13). The bounded
controller design is used in this work, not as a fall-back, but
for the purpose of providing an estimate of the feasibility
region (and, therefore, the stability region) for the Lyapunov-
based predictive controller, and feasible initial guesses for
the control moves (the decision variables in the optimization
problem).

Remark 11. Note that while the closed-loop system is formu-
lated as a switched system (see Eq. (14)), the switching law
restricts the number of switches between the two controllers to
at most one (the switch takes place only if x0 ∈ �u\�x,u). The
closed-loop system, therefore, does not need to satisfy the mul-
tiple Lyapunov function stability criteria [4,15], which would
have to be satisfied if there were back and forth switchings be-
tween the controllers over the infinite time interval. The switch-
ing law of Eq. (21) also avoids any chattering by allowing only
a finite number of switches (in this case, one) over any finite
time interval.

5. Application to a chemical process example

Consider a continuous stirred tank reactor where an irre-
versible, first-order exothermic reaction of the form A

k→ B

takes place. The mathematical model for the process takes the
form:

ĊA = F

V
(CA0 − CA) − k0e(−E/RT R)CA,

ṪR = F

V
(TA0 − TR) + (−�H)

�cp

k0e(−E/RT R)CA + Q	

�cpV
,

(22)

where CA denotes the concentration of the species A, TR de-
notes the temperature of the reactor, Q	 is the heat removed
from the reactor, with 	 indexing the control law, V is the
volume of the reactor, k0, E, �H are the pre-exponential
constant, the activation energy, and the enthalpy of the re-
action and cp and �, are the heat capacity and fluid den-
sity in the reactor. The values of all process parameters can
be found in Table 1. The control objective is to stabilize

Table 1
Process parameters and steady-state values

V = 0.1 m3

R = 8.314 KJ/Kmol K
CA0s

= 1.0 Kmol/m3

TA0s
= 310.0 K

Qs = 0.0 KJ/ min
�H = −4.78 × 104 KJ/Kmol
k0 = 72 × 109 min−1

E = 8.314 × 104 KJ/Kmol
cp = 0.239 KJ/Kg K
� = 1000.0 Kg/m3

F = 100 × 10−3 m3/ min
TRs = 395.33 K
CAs = 0.57 Kmol/m3
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the reactor at the unstable equilibrium point (Cs
A, T s

R) =
(0.57 Kmol/m3, 395.3 K), while keeping the state variables
between Cmin

A = 0.41 Kmol/m3 �CA �0.73 Kmol/m3 = Cmax
A
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Fig. 2. Closed-loop state trajectory under the predictive controller of Propo-
sition 2 (solid line), under the bounded controller (dashed line) and under
the predictive controller of Theorem 1 (dotted line).
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Fig. 3. Closed-loop state (top) and input (bottom) profiles under the predictive controller of Proposition 2 (solid lines), under the bounded controller (dashed
lines) and under the predictive controller of Theorem 1 (dotted lines).

and T min
R = 392.3 K�TR �398.3 K = T max

R using the rate of
heat input, Q, and change in inlet concentration of species A,
�CA = CA0 − CA0s as manipulated inputs with constraints:
|Q|�0.0167 KJ/ min and |�CA0|�1 Kmol/m3. We construct
a bounded controller of the form of Eq. (4) using V (x)=x′Px

where x = (CA − Cs
A, TR − T s

R),

P =
[

9.35 0.41
0.41 0.02

]
,

where the matrix P was computed using the linearized system.
The computation of the stability region estimates, under input
constraints �u and under state and input constraints �x,u, how-
ever, was done using the nonlinear system dynamics, and are
shown in Fig. 2. The parameters in the objective function of
Eq. (12) are chosen as Q = qI , with q = 1.0, and R = rI , with
r = 1.0 and those in the objective function of Eq. (16) are cho-
sen as q = 10.0 and R = rI , with r = 0.01. The constrained
nonlinear optimization problem is solved using the MATLAB
subroutine fmincon, and the set of ODEs is integrated using
the MATLAB solver ODE45.

We first demonstrate the implementation of the Lyapunov-
based predictive controller of Proposition 2 (Eqs. (8)–(13)) for
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the case when the state constraints are hard constraints and
need to be satisfied at all times. To this end, we consider an
initial condition that belongs to the state and input constrained
stability region of the predictive controller, �x,u. As shown
by the solid line in Fig. 2, starting from the initial condition
(CA, TR)=(0.702 Kmol/m3, 392.6 K), successful stabilization
of the closed-loop system is achieved, together with state and
input constraint satisfaction for all times. The corresponding
state and input profiles are shown in Fig. 3.

Consider now the case where the state constraints reflect de-
sirable bounds on the state variables, and can be treated as
soft constraints. In this case, the closed-loop state could be ini-
tialized in �u, from initial conditions where state constraints
are initially violated. Starting from an initial condition that
violates the state constraint on the temperature, (CA, TR) =
(0.4 Kmol/m3, 401 K), it takes 0.34 min for the state trajectory
to enter �x,u under the implementation of the bounded con-
troller (see dashed lines in Figs. 2 and 3). Setting Tb=0.34 min,
therefore and implementing the predictive controller of The-
orem 1, we find that the controller is able to drive the state
trajectory inside of �x,u at t = 0.18 min, substantially reduc-
ing the time for which the soft constraints are violated (see
dotted lines in Figs. 2 and 3). After Tswitch = 0.18 min the
predictive controller of Proposition 2 is employed to success-
fully achieve stabilization in the presence of state and input
constraints.

6. Conclusions

In this work, we considered the problem of stabilization of
nonlinear systems subject to state and control constraints. We
proposed a Lyapunov-based MPC design that guarantees sta-
bilization and state and input constraint satisfaction from an
explicitly characterized set of initial conditions. An auxiliary
Lyapunov-based analytical bounded control design was used to
characterize the stability region of the predictive controller and
also provide a feasible initial guess to the optimization prob-
lem in the predictive controller formulation. For the case when
the state constraints are soft, we proposed a switched predictive
control strategy that reduces the time during which state con-
straints are violated, driving the states into the state and input
constraints feasibility region of the Lyapunov-based predictive
controller. We demonstrated the application of the Lyapunov-
based predictive controller designs through a chemical process
example.
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