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Stabilization of Resistive Kink Modes 

in the Tokamak t 

A. H. Glasser, H. P. Furth, and P. H. Rutherford 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

Optimized current profiles are shown to be 

capable of providing simultaneous stability against 

all resistive kink modes in the tokamak. 
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The utility of the tokamak increases with the ratio 

B8/B¢ of peloidal to toroidal field strength. In order to 

avoid unstable helical MHD perturbations (kink modes} of the 

form ex~ i(m8- n¢}, the "safety factor" q(r} ~ 2rr/L (r} = 

rB¢/RB 8 must, however, be restricted. 1 If there is a radial 

range wherein q(r} < 1, then the fundamental mode m = 1, 

n = 1 is ~nstable ,1 
whether or not the plasma is perfectly 

conducting at the point where q(r} = 1. Higher modes 

(m > 1} can 'be unstable only as resistive kink, or tearing, 

modes2 for which the singular point,where q(s} = m/n, falls 

into a resistive region. 

The object of this letter is to demoristrate the.exis-
.1 

I 

tence of _q-profiles that provide simultaneous stability·against 

all the low-m kink modes, while minimizing the limiter value 

q = q(a) ... a 
. . 2 

The principle is contained in a comparison theorem 

that states: for two profiles of the rotational transform L 

having tbe .same shear (dt./dr}s and the same transform L 
s 

at the singular point of a given mode, if the two profiles 

everywher: ·satisfy I t. 1 (r} - LsI > I t. 2 (r} - LsI, then L 1 (r} 

.i~ more stable against the given mode than L 2 (r}. Resistive 

kink instabilities can also be eliminated (in sufficiently hot 

plasmas} by a local pressure gradient at s due to favorable 
.. 3 

average toroidal curvature, or by the proximity of a perfectly 

conductiri~ exterior shell. 

To illustrate optimum profiles, we will consider. two 

cases: ~~~e A, a profile with q > 2, giving stability 
a 

against al.l fini te-rn modes, without need of a conducting 

• 
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shell or of toroidal-curvature effects; and Case B, a similar 

profile, but adding a conducting shell to achieve stability at 

q < 2. a 

We consider first a straight cylindrical configuration, 

and neglect pressure-gradient effects. The magnetic pertur-

bations outside the resistive layer satisfy the equation for a 

marginal MHD mode, namelyl,2 

2 
_!_ _ _l_ ( r2 aljJ ) _ m ljJ __ m ~ ljJ 

- rF dr 2 ar ar 2 
r r 

where ljJ = irB /m is the perturbed poloidal flux function, 
r 

(1) 

j = d(rB
8
)/rdr is the equilibrium longitudinal current density, 

and 

-+ -+ 
F = k. B = (m - nq)B8/r 

( 2) 

For a marginal resistive mode, Eq. (1) is satisfied everywhere, 

i.e. , there is no discontinuity at the singular surface. 

Analytic solutions of Eq. (1) can readily be found for 

the model of j (r) shown in Fig. 1. In this model, there is 

a central current channel of radius r = c with uniform current 

density j (r) = j
1

, surrounding by a "pedestal" of radius r = a 

with uniform, but lo:wer, current density j(r) = j
2

. For r >a, 

the current density vanishes, so that the limiter could be placed 
',/. 

just outside r = a, with a conducting shell at r = b. 
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Within 0 < r < c, the soluti6n of Eq.-(1) is given by 

Across 

m = (r/c) 

r = c, the matching conditions are that be 

continuous, and that 

where L 

2m (1 -· p) 
c(m- nq ) c 

]c denotes the discontinuity across r = c , and 

(3) 

( 4) 

p = j 2/j 1 
, is a factor describing the height of the pedestal. 

(Given q and qa , values of p are possible within the range 
c 

0 < p. < ~q· /q ; the relation 
.. c a· 

2 c 
2 
a 

then determines the ratio 

= 
( 5) 

c/a.) Applying these matching 

conditions at r = c, the solution of Eq. (1) within c < r < a 

is giv~n by 

m 

= ( ~ ) 1 - J:.l 

m - nq 
. c ( 6) 

Across r = a, the matching conditions are again that ~ = ~a 

be continuous and that 

l.• 

(. )l 
L' 

, 
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1/la 

2mq p a 
aq (m - nq ) 

c a (7) 

Applying these matching conditions at r = a, and using Eq. (6) 

at r = a for 1jJ , the solution of Eq. (1) for 
a 

r > a is given by 

m 
( ~ ) 

q (m - nq ) c a 

1 - p 
m - nqc [ m m]l 

(~) -(~)) 

( 8) 

If the conducting shell is absent b + oo), the stability 

condition (i.e., the condition that no marginal mode exists) is 

that the coefficient of the m b 't' r . term e pos1 1ve, i.e. , 

1 - 1 - p 
m - nqc 

1 - p 
m - nq c ( 9) 

Supp.ose, first, that the pedestal is entirely absent, 

i.e., p = 0. In this case, instability occurs if 0 < m- nqc 

< 1. For the (m,n) = (2,1) mode to be stable, it is clearly 

necessary to have q < 1, in which case the c (m,n) = (1,1) 

mode is unstable. Moreover, if qc is just above 1, the entire 

sequence.of modes (2,1), ·(3,2), (4,3), etc., is unstable. Even 

if the m = 2 mode were stabilized by means of a fairly close 

conducting shell, the higher-m modes of this sequence would, 
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typical~y, remain unstable, since the effect of the shell falls 

off rapidly with rising m. With the m = 2 mode stabilized by 

a conducting shell, one might consider setting qc just above 

1.5, so that the modes (3,2), (4,3), etc., become stable. How-

ever, in.this case, the sequence of modes (5,3), (8,5), etc., 

would be, unstable. It is, thus, of considerable interest to 

determine whether, in either case, a current profile with a non-

zero pe~estal can pr6vide simultaneous stability against all 

modes. 

Let 
' 

us consider Case A, in which qc is just above 1, 

and qa :is just above 2' with a finite value of p in the 

range 0 < p < 0.5. If qc is infinitesimally above 1, Eq. 

(9.) show~ clearly that the "inner" sequence of modes (2,1), (3,2), 

(4,3), etc., whose sin~ular surfaces fall into the pedestal re-

gion, i~positively stable, since in each case the left side of 

Eg. (9) is positive and the right side is negative. We must also, 

however, demonstrate the stability of the "outer" sequence of 

modes ( 3,:1) , ( 5, 2) , ( 7, 3) , etc. , whose singular surfaces fall 

outside the pedestal.region. A condition stronger than (Q) wnul~ 

result from replacing (c/a)
2

m. by (c/a) 2 ; we do this, ~nd sub-

stitute Eq. (5) for c/a, to obtain the sufficient stability con-

dition (1 - 2p) (m -

q /q = 2. 
a c . 

Since 

> 0, after using m - nq = 1 a 

0.5, this condition is always 

and 

satisfied by the modes of the "outer" sequence, which have 

m - nq ~ ·2. 
c 

.. 
If q exceed 

a 1 and 2, respectively, by small 

ir 
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but finite increments, a reasonable number of the modes in both 

the "inner" and "outer" sequences can be made positively stable. 

This is illustrated in Fig. 2, for the case where qc = 1.05 

and qa = 2.1, and for various values of the pedestal p. We 

see that, in this case, the optimum value for p, in the sense 

of stabilizing the greatest range of low m-values (m < 8), is 

about 0.3. 

Let us now consider Case B, which requires a conducting 

shell to stabilize the m = 2 mode, but offers the advantage that 

the limiter q-value can be dropped below 2. Here qc is again 

just above 1, but qa is chosen to be just above 1.5, with a 

value of p in the range 0 < p < 2/3. As before, if qc is 

infini~esimally above 1, Eq. (9) shows that the "inner" sequence 

of modes with (m,n) = (3,2), (4,3), etc., is positively stable, 

for any finite value of p in the above range. We must also, 

however, demonstrate the stability of the "outer" sequence of 

modes !(2,1), (5,3), (8,5), etc. For qa infinitesimally above 

I . 
1.5, we f1nd that the stability condition is never satisfied for 

the (2,1) mode, but it can be satisfied for the (5,3) mode, and 

all higher modes of this "outer" sequence, provided p < 0.32. 

The (2,1) mode can, however, be stabilized by means of a con-

ducting shell. The requirement on the radius b of the shell 

can be determined trom Eq. (8) by setting ~~~c > 0 at r = ~

Employing qc = 1, qa = 1.5, Eq. (5) for c/a, and (m,n) = (2,1), 

we obta.in 

b/a < (4/3p) 1/ 4 

(lU) 
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For p ~ 0.3, this gives b/a < 1.45 a requirement that could 

be met rather easily. 

The simple analytic treatment given above has the advan-

tage of clarifying the role of a current pedestal in stabilizing 

low-m modes. However, as we have seen, the use of a discontin-

uous function for j(r) has the disadvantage of exciting high-m 

modes. -: In order to investigate the possiblity of stabilizing 

all k1nk modes simultaneously, we have employed a computer pro-

gram that determines the stability of nrhitrnry 8mooth currQnt 

profiles by calculating the quantities ~· that measure the 

potential energy perturbations for the various modes . 

. Figures 3A and 3B show two examples of "realistic" cur-

rent profiles resembling the analytic cases A and B. In both 

cases, w.e see that the entire spectrum of modes is stabilized 

(~' < 0), the higher-m modes apparently being suppressed by the 

smoothing of j(r). The corresponding limiter q-values are 2.6 

and 1.8, respectively. In Fig. 3B a fairly close conducting 

shell was needed (b/a = 1.2); alternatively, one could invoke 

toroidal7 curvature stabilization3 of the weakly unstable higher-

m modes. of the "inner" sequence, thus permitting a lower ped-

estal and a larger value of b/a. 

Our results are in accord with the experimentally ob-

served destabilizing effects of limiter q-values that approach 

2, or high levels of impurity influx. In either case, the outer 

plasma region would be cooled, so that the pedestal on the cur-

rent profile would tend to be truncated short of the q(r) = 2 

,, 
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point. In larger tokamaks, it may be possible to achieve better 

control over the current distribution, so that profiles resem-

bling Fig. ·3A could be approximated. 

:Experiments on conducting-shell stabilization
4 

proved 

successful in suppressing the (m,n) = (2,1) mode, thus obtaining 

gross stability at q < 2. a There was, however, evidence of a 

deterioration in confinement, particularly for q ~ 1.5. a Our 

results for Case B show that this could be explained in terms 

of the truncation of the pedestal on the current profile short 

of the point where q(r) = 1.5. 

I, 
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762252 
Fig. 3(a). Example of a s'hable profile similar to Case 

A, with no conducting shell; the computed values of 11' show 
that all the indicated modes are stable. 
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Fig. 3(b). Example of a stable profile similar to Case 

B, with a conducting shell at r/a = 1.2. 
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