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Stabilization of Systems With Probabilistic Interval Input
Delays and Its Applications to Networked Control Systems

Dong Yue, Engang Tian, Zidong Wang, and James Lam

Abstract—Motivated by the study of a class of networked control sys-
tems, this correspondence paper is concerned with the design problem of
stabilization controllers for linear systems with stochastic input delays.
Different from the common assumptions on time delays, it is assumed here
that the probability distribution of the delay taking values in some intervals
is known a priori. By making full use of the information concerning the
probability distribution of the delays, criteria for the stochastic stability
and stabilization controller design are derived. Traditionally, in the case
that the variation range of the time delay is available, the maximum
allowable bound of time delays can be calculated to ensure the stability
of the time-delay system. It is shown, via numerical examples, that such
a maximum allowable bound could be made larger in the case that the
probability distribution of the time delay is known.

Index Terms—Delay, linear matrix inequality (LMI), Lyapunov func-
tional, networked control system (NCS), stabilization.

I. INTRODUCTION

In many practical systems, such as networked and process control
systems, the arrival of the measurement and control signals at the
receiving point will often take some time, which leads to delayed input.
For example, considering the transfer delays of sensor to controller,
controller to actuator, and the effect of the data dropout, the linear
networked control system (NCS) can be expressed as [31], [32]

ẋ(t) = Ax(t) + Bu (t − τ(t)) (1)

where x(t) ∈ R
n and u(t) ∈ R

m denote the state and control vectors,
respectively, A and B are constant matrices with appropriate dimen-
sions, and τ(t) denotes the time delay which is piecewise continuous
and bounded.

In the past several decades, there has been much attention on the
study of stability and stabilization of systems with state delay or
control input delay [1]–[3], [5], [6], [8], [12], [13], [15]–[17], [20],
[21], [26]. Among these references, delay-independent methods [6],
[13], [16] or delay-dependent methods [5], [12], [17], [20], [21] were
proposed based on the Lyapunov functional approach, Riccati equation

Manuscript received June 5, 2007; revised February 19, 2008 and June 23,
2008. Current version published June 19, 2009. This work was supported
in part by the Royal Society of the U.K., by the National Natural Science
Foundation of China under Grants 60774060, 60474079, and 60834002, by the
High Technology Project of Jiangsu Province BG2006042, and by the Research
Grant Committee of Hong Kong under Grant HKU 7031/07P. This paper was
recommended by Associate Editor G. Calafiore.

D. Yue is with the Institute of Information and Control Engineering Tech-
nology, Nanjing Normal University, Nanjing 210042, China, and also with the
Department of Control Science and Engineering, Huazhong University of Sci-
ence and Technology, Wuhan 430074, China (e-mail: medongy@vip.163.com).

E. Tian is with the Institute of Information and Control Engineering
Technology, Nanjing Normal University, Nanjing 210042, China (e-mail:
teg@njnu.edu.cn).

Z. Wang is with the Department of Information Systems and Comput-
ing, Brunel University, Uxbridge UB8 3PH, U.K. (e-mail: Zidong.Wang@
brunel.ac.uk).

J. Lam is with the Department of Mechanical Engineering, University of
Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TSMCA.2009.2019875

method, and linear-matrix-inequality (LMI) technique. For the delay-
independent results given in [6], [13], and [16], the input delay term is
treated as an uncertainty, which is obviously not suitable for the system
(1) when A is not Hurwitz stable. For the delay-dependent results given
in [5], [12], [17], [20], and [21], it has been proved that the system (1)
is stabilizable provided that the input delay is small enough and, then,
the upper bound of the delay guaranteeing the stabilizability of the sys-
tem has been derived by solving a set of LMIs. It should be noted that,
for the analysis and control design of the system, only the information
of variation range and/or variation rate of the time delay was employed
in [5], [12], [17], [20], and [21]. In some applications, however, such
as those systems connected over a wireless network, the observation
of communication delay of the data also includes the probability
distribution of the delay values. As pointed out in [14] and [23], for
a given wireless network, it can be measured that there exists a small
number ε such that Prob{τ(t) > d} < ε, where d is a constant. In this
case, the possible value of the delay may be very large, although the
probability of the delay taking such a large value is very small. Since
the possible value of the delay with a low probability can be very large,
it may lie outside the allowable variation range derived by traditional
methods [5], [12], [17], [20], [21]. Therefore, the challenging issue is
on how to derive some criteria which can exploit the known probability
distribution of the delay and obtain a larger allowable variation range
of the delay. In [4], when the probability of transfer of the delay from a
value to the other is known, the delay-dependent stability analysis and
controller design were investigated. However, the delay can only take
values in a finite space in [4]. To the best of the authors’ knowledge,
no result has been reported for the stability analysis and stabilization
control of system (1) when both the information of variation range of
the time delay and the information of probability of the time-varying
delay in an interval are taken into consideration.

In this correspondence paper, we are concerned with the stability
analysis and stabilization controller design for the system with a
stochastic input delay, which can be viewed as a general model of the
system connected over a network medium. In terms of the probability
distribution of the delay taking values in an interval, a new model is
proposed, which can translate the probabilistic effects of the delay to a
parameter matrix of the transformed system. Based on the new model,
criteria for the stability and stabilization of the system are derived
based on the Lyapunov functional method and LMI techniques.

Notation: R
n denotes the n-dimensional Euclidean space, R

n×m is
the set of real n × m matrices, I is the identity matrix of appropriate
dimensions, and ‖ · ‖ stands for the Euclidean vector norm or spectral
norm as appropriate. Z0+ denotes the set of nonnegative integers.
The notation X > 0 (respectively, X ≥ 0) for X ∈ R

n×n means
that the matrix X is a real symmetric positive definite (respectively,
positive semidefinite). For a real matrix B and two real symmetric

matrices A and C of appropriate dimensions,

[
A ∗
B C

]
denotes a real

symmetric matrix, where ∗ denotes the entries implied by symmetry.
E{·} denotes the mathematical expectation.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

The following assumption is needed to state our main results.
Assumption 1: There exist constants τ̂1 and τ̂2, where 0 ≤ τ̂1 ≤ τ̂2,

such that either τ(t) ∈ [0, τ̂1] or τ(t) ∈ (τ̂1, τ̂2]. Furthermore, the
probability distribution of τ(t) taking values in [0, τ̂1] and (τ̂1, τ̂2] is
known a priori.

1083-4427/$25.00 © 2009 IEEE
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For the stochastic input delay τ(t), we define the following two
random events:

F1 : τ(t) ∈ [0, τ̂1]

F2 : τ(t) ∈ (τ̂1, τ̂2].

Then, a random variable can be defined as follows:

δ(t) =
{

1, F1 occurs
0, F2 occurs.

Furthermore, define two functions τ1 : R+ → [0, τ̂1] and τ2 : R+ →
[τ̂1, τ̂2] such that

τ1(t) =

{
τ(t), if δ(t) = 1
τ̂1, if δ(t) = 0

τ2(t) =

{
τ̂1, if δ(t) = 1
τ(t), if δ(t) = 0 .

Using δ(t) and τi(t)(i = 1, 2), (1) can be equivalently written as

ẋ(t)=Ax(t)+δ(t)Bu (t − τ1(t))+(1 − δ(t))Bu (t − τ2(t)) . (2)

Remark 1: It can be shown that δ(t) is a Markovian process. For
the following use, it is assumed that δ(t) follows an unknown but
exponential distribution of switchings. Moreover, from the definitions
of τ1(t), τ2(t), and δ(t), it is shown that the solution of (1) is also
that of (2). Therefore, by checking the stability of (2), we can also
deduce that of (1). If τ(t) ∈ [0, τ̂1] for any t ∈ R+, (2) becomes
ẋ(t) = Ax(t) + Bu(t − τ1(t)), which is a commonly studied system
with bounded time-varying input delay. If τ(t) ∈ (τ̂1, τ̂2] for any
t ∈ R+, (2) becomes ẋ(t) = Ax(t) + Bu(t − τ2(t)), which is the
system with interval time-varying input delay.

Remark 2: The introduction of δ(t) is motivated by the ideas in
[22], [24], [25], and [29], where the signal transmission is subject
to random communication delays. However, in this correspondence
paper, the random variable δ(t) is used to account for the probabilistic
nature of the time delay taking values in a certain interval. To our
knowledge, this correspondence paper represents the first attempt to
consider the probabilistic behavior of the time delays falling into a
given interval.

Assumption 2: δ(t) is a Bernoulli distributed sequence with
Prob{δ(t)=1}=E{δ(t)}=δ0, and Prob{δ(t)=0}=1−E{δ(t)}=
1 − δ0, where 0 ≤ δ0 ≤ 1 is a constant.

Remark 3: From Assumption 2, it can be shown that E{δ(t) −
δ0} = 0 and E{(δ(t) − δ0)

2} = δ0(1 − δ0).
In this correspondence paper, the designed controller is of a linear

type, i.e.,

u(t) = Kx(t) (3)

where K is a constant matrix to be determined later.
Under control law (3), the closed-loop system of (2) is

ẋ(t) = Ax(t) + δ(t)BKx (t − τ1(t))

+ (1 − δ(t))BKx (t − τ2(t)) . (4)

Since (4) is a stochastic system, for the stability analysis of (4), the
following definition is needed.

Definition 1: The system (4) is said to be exponentially stable in the
mean-square sense if there exist constants α > 0 and β > 0 such that

E
{
‖x(t)‖2

}
≤ αeβt sup

−2τ̂2 ≤ s ≤ 0

E
{
‖φ(s)‖2

}
where φ(·) is the initial function in (4) defined as x(t) = φ(t),
t ∈ [−τ̂2, 0].

Moreover, we also need the following lemmas. The proof of
Lemma 1 can be obtained easily while Lemma 2 can be derived via
Lemma 1 and Remark 4.

Lemma 1: Suppose X1 and X2 are two constant matrices of same
dimensions. Then for a given h ∈ [0, 1]

qX1 + (1 − q)X2 < 0 (5)

holds for any q ∈ [h, 1] if and only if

X1 < 0 (6)
hX1 + (1 − h)X2 < 0. (7)

Remark 4: It can be seen that, when q �= h (i.e., q ∈ (h, 1]), (6) and
(7) are just sufficient (but not necessary) conditions for guaranteeing
(5) to hold for any q ∈ (h, 1].

Lemma 2: Suppose τi(t) (i = 1, 2) are defined as previously and
Φi, Πi(i = 1, 2), Ω = ΩT are some constant matrices with appropri-
ate dimensions, then

τ1(t)Φ1 + (τ̂1 − τ1(t))Φ2 + (τ2(t) − τ̂1)Π1

+ (τ̂2 − τ2(t))Π2 + Ω < 0 (8)

if the following inequalities hold:

τ̂1Φ1 + (τ̂2 − τ̂1)Π1 + Ω < 0 (9)
τ̂1Φ1 + (τ̂2 − τ̂1)Π2 + Ω < 0 (10)
τ̂1Φ2 + (τ̂2 − τ̂1)Π1 + Ω < 0 (11)
τ̂1Φ2 + (τ̂2 − τ̂1)Π2 + Ω < 0. (12)

III. STABILITY ANALYSIS

We rewrite (4) as

ẋ(t) =Ax(t) + δ0BKx (t − τ1(t)) + (1 − δ0)

× BKx (t − τ2(t)) + (δ(t) − δ0)

× [BKx (t − τ1(t)) − BKx (t − τ2(t))] . (13)

Next, we will derive some sufficient conditions for guaranteeing the
exponential stability in the mean-square sense of (13).

Define

y(t) = Aζ(t) (14)

where A and ζT(t) are shown at the bottom of the page. Then, (13)
can be expressed as

ẋ(t) = y(t) + (δ(t) − δ0)Bζ(t) (15)

where B = [ 0 BK 0 −BK 0 0 ].

A = [A δ0BK 0 (1 − δ0)BK 0 0 ]

ζT(t) = [xT(t) xT (t − τ1(t)) xT(t − τ̂1) xT (t − τ2(t)) xT(t − τ̂2) yT(t) ]
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Theorem 1: System (4) is exponentially stable in the mean-square
sense if, for given constants τ̂1, τ̂2, δ0, and matrix K, there exist
matrices P > 0, Qi > 0, Ri > 0, Zi > 0 (i = 1, 2), Nj , Mj , Tj ,
Wj (j = 1, 2, 3, 4, 5, 6), and Sl (l = 1, 2, 3, 4) of appropriate dimen-
sions such that the following LMIs hold:[

Ξ11 ∗ ∗
Ξl

21 Ξ22 ∗
Ξ31 0 Ξ33

]
< 0, l = 1, 2, 3, 4 (16)

where

Ξ1
21 =

⎡
⎢⎣

τ̂1N
T

τ̂1N
T

(τ̂2 − τ̂1)T
T

(τ̂2 − τ̂1)T
T

⎤
⎥⎦ Ξ2

21 =

⎡
⎢⎣

τ̂1N
T

τ̂1N
T

(τ̂2 − τ̂1)W
T

(τ̂2 − τ̂1)W
T

⎤
⎥⎦

Ξ3
21 =

⎡
⎢⎣

τ̂1M
T

τ̂1M
T

(τ̂2 − τ̂1)T
T

(τ̂2 − τ̂1)T
T

⎤
⎥⎦ Ξ4

21 =

⎡
⎢⎣

τ̂1M
T

τ̂1M
T

(τ̂2 − τ̂1)W
T

(τ̂2 − τ̂1)W
T

⎤
⎥⎦

NT = [NT
1 NT

2 NT
3 NT

4 NT
5 NT

6 ]

MT = [MT
1 MT

2 MT
3 MT

4 MT
5 MT

6 ]

TT = [TT
1 TT

2 TT
3 TT

4 TT
5 TT

6 ]

WT = [WT
1 WT

2 WT
3 WT

4 WT
5 WT

6 ]

Ξ22 =diag (−τ̂1R1 −τ̂1Z1 −(τ̂2−τ̂1)R2 −(τ̂2 − τ̂1)Z2 )

Ξ33 =diag(−Z1 −Z2 )

and Ξ11 and Ξ31 are shown at the bottom of the page.
Proof: Construct a Lyapunov functional as

V (xt) =xT(t)Px(t) +

t∫
t−τ̂1

xT(s)Q1x(s) ds

+

t∫
t−τ̂2

xT(s)Q2x(s) ds

+

t∫
t−τ̂1

t∫
s

yT(v)R1y(v) dvds

+

t−τ̂1∫
t−τ̂2

t∫
s

yT(v)R2y(v) dvds

+ δ0(1 − δ0)

t∫
t−τ̂1

t∫
s

ζT(v)BTZ1Bζ(v) dvds

+ δ0(1 − δ0)

t−τ̂1∫
t−τ̂2

t∫
s

ζT(v)BTZ2Bζ(v) dvds (17)

where P > 0, Qi > 0, Ri > 0, and Zi > 0 (i = 1, 2). The infinitesi-
mal operator L of V (xt) is defined as follows [18]:

LV (xt) = lim
Δ→0+

1

Δ
{E (V (xt+Δ)|xt) − V (xt)} . (18)

Then, from (17) and (18) and by using the slack matrix method [9], we
can obtain

LV (xt)

= 2xT(t)Py(t) − xT(t − τ̂1)Q1x(t − τ̂1)

+ xT(t)(Q1 + Q2)x(t) − xT(t − τ̂2)

× Q2x(t − τ̂2) + yT(t) (τ̂1R1 + (τ̂2 − τ̂1)R2) y(t)

+ δ0(1 − δ0)ζ
T(t)BT (τ̂1Z1 + (τ̂2 − τ̂1)Z2)Bζ(t)

−
t∫

t−τ̂1

yT(s)R1y(s)ds −
t−τ̂1∫

t−τ̂2

yT(s)R2y(s)ds

− δ0(1 − δ0)

t∫
t−τ̂1

ζT(s)BTZ1Bζ(s)ds

− δ0(1 − δ0)

t−τ̂1∫
t−τ̂2

ζT(s)BTZ2Bζ(s)ds

Ξ11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 + NT
1 + S1A

+AT ST
1 + Q1 + Q2 ∗ ∗

N2 − NT
1 + MT

1 −N2 − NT
2 + M2 + MT

2

+S2A + δ0K
T BT ST

1 +δ0S2BK + δ0K
T BT ST

2 ∗
N3 − MT

1 + T T
1 −N3 + M3 − MT

2 + T T
2 −M3 − MT

3 − Q1 + T3 + T T
3

N4 − T T
1 + W T

1 + S3A −N4 + M4 − T T
2 + W T

2

+(1 − δ0)K
T BT ST

1 +δ0S3BK + (1 − δ0)K
T BT ST

2 −M4 − T T
3 + W T

3 + T4

N5 − W T
1 −N5 + M5 − W T

2 −M5 − W T
3 + T5

N6 − ST
1 + S4A + P −N6 + M6 − ST

2 + δ0S4BK −M6 + T6

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−T4 − T T
4 + W4 + W T

4

+(1 − δ0)S3BK + (1 − δ0)K
T BT ST

3 ∗ ∗
−T5 + W5 − W T

4 −W5 − W T
5 − Q2 ∗

−T6 + W6 − ST
3 + (1 − δ0)S4BK −W6 −S4 − ST

4 + τ̂1R1 + (τ̂2 − τ̂1)R2

⎤
⎥⎥⎥⎥⎥⎥⎦

Ξ31 =

[
0

√
τ̂1δ0(1 − δ0)Z1BK 0 −

√
τ̂1δ0(1 − δ0)Z1BK 0 0

0
√

(τ̂2 − τ̂1)δ0(1 − δ0)Z2BK 0 −
√

(τ̂2 − τ̂1)δ0(1 − δ0)Z2BK 0 0

]
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+ 2ζT(t)N

⎡
⎣x(t) − x (t − τ1(t)) −

t∫
t−τ1(t)

ẋ(s)ds

⎤
⎦

+ 2ζT(t)M

⎡
⎣x (t − τ1(t)) − x(t − τ̂1) −

t−τ1(t)∫
t−τ̂1

ẋ(s)ds

⎤
⎦

+ 2ζT(t)T

⎡
⎣x(t − τ̂1) − x (t − τ2(t)) −

t−τ̂1∫
t−τ2(t)

ẋ(s)ds

⎤
⎦

+ 2ζT(t)W

⎡
⎣x (t − τ2(t)) − x(t − τ̂2) −

t−τ2(t)∫
t−τ̂2

ẋ(s)ds

⎤
⎦

+ 2γT(t)S [Ax(t) + δ0BKx (t − τ1(t))

+ (1 − δ0)BKx (t − τ2(t)) − y(t)] (19)

where

γT(t) = [xT(t) xT (t − τ1(t)) xT (t − τ2(t)) yT(t) ]

ST = [ST
1 ST

2 ST
3 ST

4 ] .

Note that, from (15)

− 2ζT(t)N

t∫
t−τ1(t)

ẋ(s)ds

≤ τ1(t)ζ
T(t)N

(
R−1

1 + Z−1
1

)
NTζ(t)

+

t∫
t−τ1(t)

yT(s)R1y(s)ds

+

t∫
t−τ1(t)

(δ(s) − δ0)
2 ζT(s)BTZ1Bζ(s)ds. (20)

Similarly, we can show that

− 2ζT(t)M

t−τ1(t)∫
t−τ̂1

ẋ(s) ds

≤ (τ̂1 − τ1(t)) ζT(t)M
(
R−1

1 + Z−1
1

)
MTζ(t)

+

t−τ1(t)∫
t−τ̂1

yT(s)R1y(s) ds

+

t−τ1(t)∫
t−τ̂1

(δ(s) − δ0)
2 ζT(s)BTZ1Bζ(s) ds (21)

− 2ζT(t)T

t−τ̂1∫
t−τ2(t)

ẋ(s) ds

≤ (τ2(t) − τ̂1) ζT(t)T
(
R−1

2 + Z−1
2

)
TTζ(t)

+

t−τ̂1∫
t−τ2(t)

yT(s)R2y(s) ds

+

t−τ̂1∫
t−τ2(t)

(δ(s) − δ0)
2 ζT(s)BTZ2Bζ(s) ds (22)

− 2ζT(t)W

t−τ2(t)∫
t−τ̂2

ẋ(s) ds

≤ (τ̂2 − τ2(t)) ζT(t)W
(
R−1

2 + Z−1
2

)
WTζ(t)

+

t−τ2(t)∫
t−τ̂2

yT(s)R2y(s) ds

+

t−τ2(t)∫
t−τ̂2

(δ(s) − δ0)
2 ζT(s)BTZ2Bζ(s) ds. (23)

Combining (19)–(23) and taking the expectation on both sides of
(19), we obtain

E {LV (xt)}
≤ E

{
ζT(t)

[
Ξ11 + δ0(1 − δ0)BT (τ̂1Z1 + (τ̂2 − τ̂1)Z2)B

+ τ1(t)N
(
R−1

1 + Z−1
1

)
NT

+ (τ̂1 − τ1(t))M
(
R−1

1 + Z−1
1

)
MT

+ (τ2(t) − τ̂1)T
(
R−1

2 + Z−1
2

)
TT

+ (τ̂2 − τ2(t))W
(
R−1

2 + Z−1
2

)
WT

]
ζ(t)

}
.

(24)

By Lemma 2, it can be seen that (16) with l = 1, 2, 3, 4 are sufficient
conditions for guaranteeing that the right-hand side of (24) is less than
zero. Moreover, it is easy to show that, under the conditions in (16),
there exists a small enough constant λ > 0 such that the right-hand
side of (24) is less than −λI . Therefore, from (24), we have

E {LV (xt)} ≤ −λE
{
ζT(s)ζ(s)

}
.

Then, using a method similar to that of [19], we can show that

E
{
xT(t)x(t)

}
≤ ᾱe−εt sup

−2τ̂2 ≤ s ≤ 0

E
{
‖φ(s)‖2

}
(25)

where ᾱ = (α/λmin(P )). �
Remark 5: In the special case, when τ(t) ∈ [τ̂1, τ̂2] for any

t ∈ R+, (4) can be expressed as

ẋ(t) = Ax(t) + BKx(t − τ2(t)). (26)

For (16) with l = 1, 2, letting δ0 = 0, deleting the rows and columns
corresponding to Ξ31 and Ξ33 and to Zj (j = 1, 2), and deleting
the second row and second column and replacing Mi by Ni (i =
1, 3, 4, 5, 6), we can obtain a result, denoted as Theorem 1′, to check
the exponential stability of (26). Due to this correspondence paper’s
space limitation, the detailed statement of Theorem 1′ is omitted here.

IV. STABILIZATION CONTROLLER DESIGN

In this section, the design criteria for the feedback control gain K
will be derived based on Theorem 1 and Remark 5.

Theorem 2: System (4) with K = Y X−T is exponentially stable in
the mean-square sense, if, for given constants τ̂1, τ̂2, δ0, and ρm (m =
2, 3, 4), there exist matrices P̂ > 0, Q̂i > 0, R̂i > 0, Ẑi > 0 (i =
1, 2), X , Y , N̂j , M̂j , T̂j , and Ŵj (j = 1, 2, 3, 4, 5, 6) of appropriate
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dimensions such that the following matrix equalities hold:

[
Γ11 ∗ ∗
Γl

21 Γ22 ∗
Γ31 0 Γ33

]
< 0, l = 1, 2, 3, 4 (27)

where

Γ1
21 =

⎡
⎢⎣

τ̂1N̂
T

τ̂1N̂
T

(τ̂2 − τ̂1)T̂
T

(τ̂2 − τ̂1)T̂
T

⎤
⎥⎦ Γ2

21 =

⎡
⎢⎣

τ̂1N̂
T

τ̂1N̂
T

(τ̂2 − τ̂1)Ŵ
T

(τ̂2 − τ̂1)Ŵ
T

⎤
⎥⎦

Γ3
21 =

⎡
⎢⎣

τ̂1M̂
T

τ̂1M̂
T

(τ̂2 − τ̂1)T̂
T

(τ̂2 − τ̂1)T̂
T

⎤
⎥⎦ Γ4

21 =

⎡
⎢⎣

τ̂1M̂
T

τ̂1M̂
T

(τ̂2 − τ̂1)Ŵ
T

(τ̂2 − τ̂1)Ŵ
T

⎤
⎥⎦

N̂T = [ N̂T
1 N̂T

2 N̂T
3 N̂T

4 N̂T
5 N̂T

6 ]

M̂T = [ M̂T
1 M̂T

2 M̂T
3 M̂T

4 M̂T
5 M̂T

6 ]

T̂T = [ T̂T
1 T̂T

2 T̂T
3 T̂T

4 T̂T
5 T̂T

6 ]

ŴT = [ ŴT
1 ŴT

2 ŴT
3 ŴT

4 ŴT
5 ŴT

6 ]

Γ22 =diag(−τ̂1R̂1 −τ̂1Ẑ1 −(τ̂2 − τ̂1)R̂2 −(τ̂2 − τ̂1)Ẑ2)

Γ33 =diag (−XTẐ−1
1 X −XTẐ−1

2 X )

and Γ11 and Γ31 are shown at the bottom of the page.
Proof: First, note that (16) equals to

[
Ξ11 ∗ ∗
Ξl

21 Ξ22 ∗
Ξ̂31 0 Ξ̂33

]
< 0, l = 1, 2, 3, 4 (28)

where

Ξ̂33 = diag (−Z−1
1 −Z−1

2 )

and Ξ̂31 is shown at the bottom of the page.
Define S1 = X−1, S2 = ρ2X

−1, S3 = ρ3X
−1, and S4 = ρ4X

−1,
where ρ4 �= 0 and X is a nonsingular matrix. Pre and postmultiplying
(28) with (X X . . . X︸ ︷︷ ︸

10

I I ) and its transpose, respectively, and defin-

ing P̂ = XPXT, N̂i = XNiX
T, T̂i = XTiX

T, Ŵi = XWiX
T,

M̂i = XMiX
T, Q̂i = XQiX

T, R̂i = XRiX
T, Ẑi = XZiX

T, and
Y = KXT, by using Theorem 1, the result follows. �

Remark 6: Along a similar line of Remark 5, we can conclude a
result based on Theorem 2, which can be used to solve the stabilization
feedback gain K for (26). We denote the result as Theorem 2′.

Remark 7: It should be noted that (27) is a nonconvex feasibility
problem, since XTẐ−1

i X (i = 1, 2) appear in (27). Define Gi (i =
1, 2) such that

XTẐ−1
i X > Gi, i = 1, 2. (29)

Then, the solvability of (27) can be replaced by (27)′ and (29), where
(27)′ is derived from (27) by changing Γ33 as Γ′

33 = (−G1 −G2 ).
To efficiently solve it, we may employ the cone-complementarity
method [7].

By Schur complements, (29) is equivalent to[
Ẑ−1

i X−T

X−1 G−1
i

]
> 0.

Define Z̄i = Ẑ−1
i , Ḡi = G−1

i , and X̄ = X−1. Similar to [7], we
provide the following linearization algorithm for the solvability of
Theorem 3.

Γ11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N̂1 + N̂T
1 + AXT

+XAT + Q̂1 + Q̂2 ∗ ∗
N̂2 − N̂T

1 + M̂T
1 −N̂2 − N̂T

2 + M̂2 + M̂T
2

+ρ2AXT + δ0Y
T BT +δ0ρ2BY + δ0ρ2Y

T BT ∗
N̂3 − M̂T

1 + T̂ T
1 −N̂3 + M̂3 − M̂T

2 + T̂ T
2 −M̂3 − M̂T

3 − Q̂1 + T̂3 + T̂ T
3

N̂4 − T̂ T
1 + Ŵ T

1 −N̂4 + M̂4 − T̂ T
2 + Ŵ T

2

+ρ3AXT + (1 − δ0)Y
T BT +δ0ρ3BY + (1 − δ0)ρ2Y

T BT −M̂4 − T̂ T
3 + Ŵ T

3 + T̂4

N̂5 − Ŵ T
1 −N̂5 + M̂5 − Ŵ T

2 −M̂5 − Ŵ T
3 + T̂5

N̂6 − X + ρ4AXT + P̂ −N̂6 + M̂6 − ρ2X + δ0ρ4BY −M̂6 + T̂6

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−T̂4 − T̂ T
4 + Ŵ4 + Ŵ T

4

+(1 − δ0)ρ3BY + (1 − δ0)ρ3Y
T BT ∗ ∗

−T̂5 + Ŵ5 − Ŵ T
4 −Ŵ5 − Ŵ T

5 − Q̂2 ∗
−T̂6 + Ŵ6 − ρ3X + (1 − δ0)ρ4BY −Ŵ6 −ρ4X

T − ρ4X + τ̂1R̂1 + (τ̂2 − τ̂1)R̂2

⎤
⎥⎥⎥⎥⎥⎥⎦

Γ31 =

[
0

√
τ̂1δ0(1 − δ0)BY 0 −

√
(τ̂2 − τ̂1)δ0(1 − δ0)BY 0 0

0
√

(τ̂2 − τ̂1)δ0(1 − δ0)BY 0 −
√

τ̂1δ0(1 − δ0)BY 0 0

]

Ξ̂31 =

[
0

√
τ̂1δ0(1 − δ0)BK 0 −

√
τ̂1δ0(1 − δ0)BK 0 0

0
√

(τ̂2 − τ̂1)δ0(1 − δ0)BK 0 −
√

(τ̂2 − τ̂1)δ0(1 − δ0)BK 0 0

]
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TABLE I
MAXIMUM ALLOWABLE τ̂2

Algorithm 1 (For Theorem 2)
Given constants ρm (m = 2, 3, 4) and let N denote the maxi-

mum number of iterations.
Step 1: Find a feasible solution {X, X̄, Z̄1, Ẑ1, Z̄2, Ẑ2, Ḡ1,

G1, Ḡ2, G2} to LMIs (27)′ and

[
Z̄i X̄T

X̄ Ḡi

]
> 0

[
Ẑi I

I Z̄i

]
≥ 0

[
Gi I

I Ḡi

]
≥ 0, (i = 1, 2)

[
X I

I X̄

]
≥ 0. (30)

If no feasible solution, EXIT and try other constants
ρm (m = 2, 3, 4). Set k = 0.

Step 2: Solve the following minimization problem:

min tr

(
XkX̄ + X̄kX

+

2∑
i=1

(
ẐikZ̄i+Z̄ikẐi+GikḠi+ḠikGi

))
(31)

subject to LMIs (27)′ and (30).

Step 3: If XTẐ−1
i X > Gi (i = 1, 2) are satisfied, a controller

is given by K = Y X−T. Otherwise, set k = k + 1. If k < N , go to
Step 2; otherwise, EXIT (no feasible solution is found).

V. NUMERICAL EXAMPLES

In this section, two numerical examples will be employed to show
the applications of our method. In Example 1, stability criteria in
Section III will be used to solve the maximum allowable value of the
time delay under different cases. The applications of criteria in this
correspondence paper to NCSs will be shown in Example 2.

Example 1: Consider the system

ẋ(t)=

[
−0.5 −2

1 −1

]
x(t)+

[
−0.5 −1

0 0.6

]
x (t − τ(t)) (32)

we are now concerned with the following two cases of the time
delay τ(t):

Case 1) 0 ≤ τ̂1 ≤ τ(t) ≤ τ̂2.
Table I compares our results with existing ones.

Case 2) Probability distribution of τ(t) is known.

In this case, Table II shows the upper bounds of τ(t) for different
values of δ0 and τ̂1.

TABLE II
MAXIMUM ALLOWABLE τ̂2

TABLE III
COMPUTATION RESULTS FOR DIFFERENT VALUES OF τ̂1 AND δ0 = 0.8

Example 2: Consider a feedback control system [33]

ẋ(t) =

[
0 1

0 −0.1

]
x(t) +

[
0

0.1

]
u(t) (33)

which is assumed that the sensor, controller, and actuator are connected
by a common network medium. For a given linear controller u(t) =

[−3.75 −11.5 ]x(t), the asymptotic stability of closed-loop system
was investigated [11], [12], [21], [31], [33] under the consideration of
the effect of the network conditions, such as the transmission delay
of the data packet. The upper bounds of the transmission delay for
guaranteeing the asymptotic stability of the system are, respectively,
4.5 × 10−4 [33], 0.0538 [21], 0.7805 [12], 0.8695 [31], and 0.9412
[11]. By using Theorem 1′, it can be computed that the allowable upper
bound of the transmission delay is 1.0432.

As pointed out in [31], an NCS can also be transformed into a
system with interval time-varying delay. When assuming that the
lower bound of the delay is not zero, the allowable upper bounds
of the delay are given in [11] for the system. It was computed that
the upper bound of the delay is 0.9635 for the case of τ̂1 = 0.2 [11]
or 0.9916 for the case of τ̂1 = 0.3 [32]. By using Theorem 1′, the
obtained upper bounds of the delay are 1.0467 for the case of τ̂1 = 0.2

and 1.0487 for the case of τ̂1 = 0.3.
By using Theorem 2′ and considering ρ2 = 0.2, ρ3 = 10, we obtain

that the upper bound of the time delay is 67 for the case of τ̂1 =0

and the corresponding feedback gain K = [−0.0022 −0.0218 ].
Similarly, by using the method developed in [31] and employing
Theorem 1′ with K = [−0.0022 −0.0218 ], it can be obtained that
the allowable upper bound of the time delay is 608. Choosing ρ2 =0.2,
ρ3 = 0.12, and ρ3 = 20 and using Algorithm 1, we can obtain the
computation results for different values of τ̂1 and δ0 = 0.8. Then, by
using Theorem 1, we can finally compute the allowable upper bound
of the time delay for the corresponding feedback gains (see Table III).

It can be found by Table III that, when the probability distribution of
the time delay can be observed, using Theorem 2 can lead to a larger
allowable upper bound of the delay than that using Theorem 2′ under
the similar requirements for the system performance.
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VI. CONCLUSION

In this correspondence paper, the stabilization problem has been
investigated for a class of linear systems with stochastic input delay.
Based on the information of probability distribution of the time de-
lay, a new model of the system, which has probability-distribution-
dependent parameter matrices, has been proposed. In terms of the new
model, some stability and stabilization criteria for the system have
been derived by solving a set of LMIs. To derive the LMI conditions
for determining the stability and stabilizability of the system, the con-
vexity of a matrix equation has been employed to give less conservative
results. Our main results have been applied to a commonly employed
NCS. Examples have shown that the proposed method can lead to less
conservative results than those obtained by existing ones. Furthermore,
if the probability distribution of the delay is known a priori, the
allowable upper bound of the delay may be larger than those derived
for the case when only the variation range of the delay is used.
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