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STABILIZATION OF THE RESISTIVE SHELL MODE 
IN TOKAMAKS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R. FITZPATRICK, A.Y. AYDEMIR 
Institute for Fusion Studies, 
The University of Texas at Austin, 
Austin, Texas, 
United States of America 

ABSTRACT. The stability of current-driven external-kink modes is investigated in a tokamak plasma sur- 
rounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode 
can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ‘resistive shell mode’, 
which grows as the characteristic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL / R  time of the shell, always persists. It is demonstrated, using both analytic 
and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside 
the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism is similar to that found 
recently by Bondeson and Ward, except that it does not necessarily depend on toroidicity, plasma compressibility 
or the presence of resonant surfaces inside the plasma. The general requirements for the stabilization of the 
resistive shell mode are elucidated. 

1. INTRODUCTION 

The ideal stability of current-driven helical mag- 
netic perturbations in a large aspect ratio toroidal 
pinch device (e.g., a tokamak) was first investigated 
by Newcomb [l]. The stability of a general mode is 
governed by the marginally stable equations of ideal 
magnetohydrodynamics (MHD) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, which reduce to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L* = 0 (1) 

where $ ( r )  is the perturbed poloidal flux eigenfunc- 
tion, r the minor radius of the flux surfaces and L 
the Euler-Lagrange operator which minimizes the well 
known ideal MHD quantity 6W [2]. Current-driven 
external-kink modes are of primary importance when 
there are no resonant surfaces (i.e. no flux surfaces on 
which the wavenumber of the perturbation parallel to 
the equilibrium magnetic field is zero) located inside 
the plasma. For the moment, it is assumed that the 
plasma is surrounded by a vacuum region that extends 
to infinity. The stability of the ideal external-kink 
mode can be determined via a simple test. A well 
behaved eigenfunction is launched from the magnetic 
axis ( r  = 0) and evolved according to Eq. (1). If the 
eigenfunction keeps the same sign all the way out to 
r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO then the external-kink mode is stable. On the 
other hand, if the eigenfunction crosses zero at finite r 
then the mode is unstable. This criterion is illustrated 
in Fig. 1. 

Suppose that the plasma is surrounded by a concen- 
tric perfectly conducting shell of minor radius rw. The 
physical boundary condition at the shell is $(rw) = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w 
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FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  Illustration of Newcomb’s stability criterion for  ideal 
external-kink modes i n  a large aspect ratio toroidal pinch plasma 
surrounded b y  a vacuum region that extends to infinity. 

Conducting shell 

w 

0 -  \ \ 
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FIG. 2. Illustration of Newcomb’s modified stability criterion for  
ideal external-kink modes in a large aspect ratio toroidal pinch 
plasma surrounded by a concentric perfectly conducting shell. 
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In this case, Newcomb's criterion is somewhat modi- 
fied. A well behaved eigenfunction is launched from 
the magnetic axis, as before, but the eigenfunction 
must now cross zero before reaching the shell in order 
for the ideal external-kink mode to be unstable. This 
criterion is illustrated in Fig. 2. In general, the modi- 
fied instability criterion is harder to satisfy than New- 
comb's original criterion. Indeed, it can be demon- 
strated that a perfectly conducting shell placed right 
at the edge of the plasma is proof against any external- 
kink mode [3]. 

Consider a plasma equilibrium that is unstable to 
an external-kink mode in the absence of a conducting 
shell. A well behaved eigenfunction launched from the 
magnetic axis crosses the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ = 0 line at some radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T ,  outside the plasma (see Fig. 2) .  According to the 
modified instability criterion, the ideal mode can be 
stabilized by placing a perfectly conducting shell at 
any radius T ,  < rC.  Clearly, those operational stabil- 
ity boundaries of a toroidal pinch device that are set 
by external-kink modes can be substantially improved 
by surrounding the plasma by a perfectly conducting 
shell. The optimum configuration is to have the shell 
as close as possible to the edge of the plasma. 

In most tokamaks the role of the shell is played by 
the vacuum vessel. Real vacuum vessels are made out 
of conducting material but are by no means perfect 
conductors. In fact, magnetic flux diffuses through 
them in a characteristic L I R  time, denoted by r,. 
This time-scale is invariably very much less than the 
pulse length of the device. Thus, a real vacuum ves- 
sel cannot maintain the ideal constraint $(rW) = 0 for 
any significant length of time. According to conven- 
tional theory, a resistive vacuum vessel placed inside 
the critical radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArC converts the ideal external-kink 
mode into a non-rotating resistive mode that grows in 
the characteristic L / R  time of the vessel. This mode is 
usually referred to as the resistive shell mode. A (very) 
approximate dispersion relation for the resistive shell 
mode is (see Section 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 
yr, N ~ 

rc - Tw 

Here, y is the growth rate and a is the minor radius of 
the plasma. The growth rate of the resistive mode con- 
nects smoothly with that of the ideal mode as rW + rC. 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, > r ,  the ideal mode is unstable. According to a 
well established and widely quoted result, if the ideal 
mode is unstable in the absence of an ideal conduct- 
ing shell then there is always an instability (either an 
ideal external-kink mode or a resistive shell mode) in 
the presence of a resistive conducting shell [4]. Thus, a 

real vacuum vessel is predicted to have no effect what- 
soever on those operational stability boundaries of a 
tokamak plasma that are set by external-kink modes. 

The most unambiguous observations of the resis- 
tive shell mode come from reversed field pinches 
(RFPs). RFPs are high current, short pulse toroidal 
pinch devices that are unstable to a wide spectrum 
of external-kink modes [5]. RFPs are conventionally 
surrounded by a thick close-fitting conducting shell 
whose L / R  time is much longer than the pulse dura- 
tion. This ensures stability against external-kink 
modes. However, in a number of experiments the thick 
shell was replaced by a thin shell whose L I R  time 
was much less than the pulse length. In HBTX-lC, 
non-rotating instabilities were observed growing on the 
characteristic L I R  time of the shell. These instabili- 
ties lead to the premature termination of the discharge 
after a few L / R  times. The spectrum and growth rates 
of the non-rotating instabilities agreed very well with 
those predicted for the resistive shell mode [6]. Similar 
non-rotating instabilities were observed on OHTE, but 
these did not necessarily give rise to premature termi- 
nation of the discharge [7]. Resistive shell modes were 
also observed on the Reversatron I1 device [8]. The 
conclusions drawn from the RFP 'thin shell' exper- 
iments were that the resistive shell mode is a real 
and potentially very dangerous instability. These 
experiments stimulated many theoretical investiga- 
tions. All concluded, after examining a variety of phys- 
ical effects, that the resistive shell mode could not be 
stabilized [9-121. 

Pressure-driven external-kink modes often limit the 
maximum achievable beta in tokamak plasmas. Here, 
,8 = 2 , u 0 ( p ) / ( B 2 ) ,  where (...) denotes a volume aver- 
age, is a measure of the plasma pressure. Tokamak 
beta limits are conventionally expressed in terms of 
PN = P/(lp[MA]/a[m]Bo[T]), where I ,  is the toroidal 
plasma current and Bo is the on-axis toroidal mag- 
netic field strength. Theoretical studies with opti- 
mized plasma profiles and no conducting shell predict 
a beta limit of PN 5 4li [13]. Here, li is the plasma 
self-inductance (a convenient measure of the current 
peakedness). However, the DIII-D tokamak often pro- 
duces plasmas with PN significantly greater than 41i 

[14]. These enhanced performance plasmas are sta- 
ble for many L / R  times of the vacuum vessel. In 
fact, the experimental beta limits for these particu- 
lar discharges agree quite well with those predicted 
by theory when the plasma is surrounded by a per- 
fectly conducting shell placed at about the position 
of the DIII-D vacuum vessel [15]. This result implies 
that the resistive shell mode can be stable in DIII-D. 
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Similar conclusions have been drawn, more tentatively, 
from experiments performed on the PBX-M [16] and 
HBT-EP [17] tokamaks. 

Advanced tokamak designs aim to maximize simul- 
taneously the fusion reactivity (i.e. the plasma beta), 
the plasma energy confinement and the non-inductive 
bootstrap current [18]. The eventual aim is, of course, 
to design a steady-state fusion reactor in which all 
of the toroidal current is maintained in the plasma 
by non-inductive means. The beta limits in advanced 
tokamak designs are invariably set by low mode num- 
ber external-kink modes. The advantages of these 
designs are only realizable if the stabilizing effect of a 
close-fitting conducting shell is taken into account in 
the MHD stability calculations [19]. Of course, this 
is only possible if the resistive shell mode is stabi- 
lized. Thus, advanced tokamaks are currently being 
designed on the premise that the resistive shell mode 
is stable. This is a worrying state of affairs given the 
RFP experimental results and the previous inability 

of MHD theorists to find any stabilization mechanism 
whatsoever for the resistive shell mode. Fortunately, 
however, a possible stabilization mechanism for this 
mode has recently been discovered by Bondeson and 
Ward [20]. 

The majority of present day tokamaks achieve high 
beta by heating the plasma with unbalanced neutral 
beam injection (NBI). Thus, there is a strong ten- 
dency for high beta plasmas to be also rapidly rotat- 
ing plasmas. The typical toroidal rotation frequency 
in NBI plasmas is about 10 kHz [21]. Numerical stud- 
ies by Bondeson and Ward [20], recently confirmed 
by the analytical investigations of Betti and Freidberg 
[22], have demonstrated that it is possible to stabilize 
the resistive shell mode by a combination of strong 
toroidal plasma rotation and sound wave absorption at 
a toroidally coupled sidaband rational surface located 
inside the plasma. The required levels of rotation 
are typically about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% of the Alfvkn frequency. This 
stabilization mechanism depends on strong rotation, 
toroidicity, plasma compressibility and the presence of 
at least one resonant surface inside the plasma. How- 
ever, more recent numerical work by Pomphrey et al. 
[23] has established that the resistive shell mode can 
also be stabilized by a combination of strong plasma 
rotation and viscosity in a cylindrical incompressible 
plasma. Clearly, neither toroidicity nor plasma com- 
pressibility are strictly required to stabilize the resis- 
tive shell mode. There is, at present, no clear consen- 
sus of opinion as to what are the necessary ingredients 
for the stabilization of this mode. 

The aim of this paper is to establish the minimum 
set of requirements for the stabilization of the resis- 
tive shell mode in a rotating tokamak plasma. In par- 
ticular, we hope to discover what physics determines 
the critical rotation rate needed to stabilize the mode, 
whether some form of plasma dissipation (e.g., absorp- 
tion of sound waves, viscosity) is always required for 
stabilization, and what the optimum properties of the 
conducting shell are for achieving stabilization at low 
plasma rotation rates. An analytic model based on 
reduced MHD in cylindrical geometry is presented in 
Section 2. The predictions of this model are compared 
with numerical simulations in Section 3. The analytic 
model is extended in Sections 4, 5 and 6. The conclu- 
sions of our investigations are given in Section 7. 

2. AN ANALYTIC MODEL 

2.1. Basic scenario 

Consider a conventional large aspect ratio, low 
beta, circular flux surface, tokamak equilibrium. The 
linearized, incompressible, non-ideal (i.e. including 
the effects of plasma inertia, resistivity and viscosity) 
equations of reduced magnetohydrodynamics (reduced 
MHD) are used to investigate the stability of a gen- 
eral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm / n  (m is the poloidal mode number and n is the 
toroidal mode number) current-driven external-kink 
mode in the presence of plasma rotation and a thin 
resistive vacuum vessel. The basic scenario is illus- 
trated in Fig. 3. The region between the edge of the 
main, current carrying plasma and the vacuum vessel, 
which in reality is filled with a cold tenuous plasma, 

Skin Current Layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

Resislive Vacuum Vessel 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Poloidal cross-section of the plasma illustrating the basic 
scenario of the analytic model. 
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is treated as an ‘effective vacuum’: i.e. a plasma with 
negligible inertia and viscosity, and very high resis- 
tivity. An inertial layer forms in the outer regions of 
the current carrying plasma in order to moderate the 
growth of the external-kink mode. A much thinner 

‘skin current’ layer forms on the outer edge of the iner- 
tial layer. The aim of this investigation is to establish 
whether or not plasma rotation can lead to stabiliza- 
tion of the non-rotating resistive shell mode branch of 
the external-kink dispersion relation. 

2.2. Reduced magnetohydrodynamics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2.1. Equilibrium 

The standard right-handed cylindrical polar co-ordinates ( r ,  0 ,  z )  are employed. The plasma is assumed to be 
periodic in the z direction with periodicity length 27rR0, where Ro is the simulated major radius. The equilibrium 
magnetic field is written as 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (0, B z )  (3) 

The basic large aspect ratio, low$ ordering scheme takes the form 

with 

Here, a is the minor radius of the current carrying plasma, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( r )  is the plasma pressure and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ denotes a l a r .  The 
‘safety factor’ is defined by 

Finally, the equilibrium ‘toroidal’ current is given by 

2.2.2. Linear stability 

The two equations to be analysed correspond to linearized force balance, 

(8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdW 

a t  
p -  = Sj A B  + j  A SB - VSp + F ,  

and the linearized Ohm’s law 

SE + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw A B = Q Sj 

Here, w, S p ,  SB, SE and Sj are the perturbed plasma velocity, pressure, magnetic field, electric field and current 
density, respectively, and a/& is the time derivative in the plasma frame. The 0 and z components of the perturbed 
viscous force density are 

(9) 

where an exp[i(m0 - nz/Ro)] dependence of the perturbed quantities is assumed. In the above, p( . )  is the plasma 
mass density, Q ( r )  the parallel electrical conductivity and p l ( r )  the (anomalous) perpendicular viscosity. Note 
that the effects of centrifugal forces and radial shear in the equilibrium plasma rotation profile are neglected in 

Eq. (8). 
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The perturbed magnetic field is written in terms of a poloidal flux function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Vzl, A 2  

and the perturbed plasma velocity is written in terms of a displacement stream function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v = iyov4 A f 

assuming an exp(y0t) time dependence of perturbed quantities in the plasma frame of reference (which corresponds 
to the E A B frame in reduced MHD). 

(12) 

The linearized reduced-MHD equations can be written as 

where 
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

RO r 
F = - Bz - -Be 

and 

2.2.3. Matching conditions 

Suppose that the plasma density, resistivity and viscosity change abruptly at some boundary located at minor 
radius r = b (e.g., the limiter radius). The four obvious matching conditions are 

These correspond to the continuity of the radial magnetic field, the absence of an unresolved current sheet at 
r = b,  continuity of the radial plasma displacement and continuity of the tangential displacement, respectively. 

The fifth matching condition is obtained by integrating the 0 component of Eq. (8) across the boundary, 

P d b - P ( b - 1  = PLl(b+)4’’@+) (17) 

This corresponds to the continuity of the viscous momentum flux across r = b. The sixth, and final, matching 
condition is obtained by integrating Eq. (13b) across the boundary, 

The 0 component of Eq. (8) can be written as 

j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 $ + yop4’ - iFpe - 7 6 p  = 0 
m 2 m 

It is clear that the sixth matching condition ensures that the perturbed pressure Sp is not discontinuous at r = b. 

NUCLEAR FUSION, Vol. 36, No.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1996) 15 
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According to the above matching conditions the boundary between the two plasma regions does not necessarily 

lie on a magnetic flux surface. This implies that, in general, the perturbed current at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b is non-zero. It is only 
possible for this to be the case if 

1701 >> Iqcsl  (20) 

in the vicinity of r = b ,  where ,411 = -FIBz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcs is the slower sound speed. This condition ensures that parallel 
flows are not fast enough to force the boundary to lie on a magnetic surface. If 

1701 I ~ l l C S l  (21) 

[$ - F$]r=b = 0 (22) 

p o b j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -v2$i (23) 

in the vicinity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = b then the sixth matching condition is replaced by the ideal-MHD constraint 

This also implies, from Ohm's law, Eq. (13a), that the perturbed current, 

is zero at the boundary. 
Consider the special case where the region r > b is an 'effective vacuum': i.e. a plasma with negligible inertia 

and viscosity, and very high resistivity. If the perturbed motion at the edge is supersonic, so that /yo/ >> lk1lcsl, 

where cs is the sound speed in the low temperature effective vacuum, then the fifth and sixth matching conditions 
reduce to 

$"(b-) = 0 

and 

(24) 

respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3. The ideal-MHD region 

In the main current carrying plasma (outer radius r = a ) ,  the perturbation is governed by the marginally stable 
ideal-MHD equations (i.e. the reduced-MHD equations in the limit where plasma inertia, resistivity and viscosity 
are negligible) except for a relatively thin region close to the edge where plasma inertia becomes important. The 
marginally stable ideal-MHD equations are written as 

+-F$=O (264 
F m -v2+ + 7 jL$ = o 
PO 

The m/n  mode rational surface (radius r s ,  where q(r,)  = m/n)  is assumed to lie outside the current carrying 
plasma (i.e. rs > a). This is justified because current-driven external-kink modes are only unstable when this is 
the case [24]. Equation (26b) can be integrated out from the magnetic axis ( r  = 0) to a radius just inside the 
inertial layer (radius a-, say). This yields + ( r )  in the region r < a- (the solution is assumed to be well behaved 
in the vicinity of the magnetic axis). Close to the inertial layer 

The parameter 

_ -  1 - -r "";/$I 
controls the stability of the external-kink mode. 

dc  a~ r=a_ 
(28) 
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2.4. The edge region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.4. I .  Layer  equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The edge region, comprising the inertial layer and the 'skin current' layer, is assumed to be relatively thin 
compared with the plasma minor radius. It follows that the radial length scale of perturbed quantities in the edge 
region is small compared with that of the equilibrium quantities. Under these circumstances the reduced-MHD 
equations can be written as a pair of layer equations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-- 82+ 

gsc[lc, - (. - I)($] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8x2 - 

a21c, 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 2  a4($ 
(x - 1) 622 -9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA622 + g v c  - 

a x 4  

where F = (n/Ro)Bz - (m/r)Bg is expanded linearly about T = a.  In the layer equations, 

T - a  
ca 

x=- 

Bz .. 4 = c n s ,  - ($ 
Ro 

YOTA g = -  
cns, 

3 7 3  S, = c ns, - 
TA 

vc = - TA /c3n s , 
rv 

where W O  = mRg - noz. Here, y is the mode growth rate in the frame of the resistive vacuum vessel (i.e. the 
laboratory frame) whilst 0 0  and Cl,. are, respectively, the poloidal and 'toroidal' angular rotation velocities of the 
edge plasma. 

The parameter c is essentially the normalized (with respect to the minor radius a )  distance of the rational 
surface from the edge of the current carrying plasma. The scaled radial variable x is defined such that the edge 
of the plasma lies at x = 0 and the mode rational surface at x = 1. The parameter g is the normalized mode 
growth rate in the rotating frame of the edge plasma. The parameters S ,  and vc characterize the plasma resistivity 
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FITZPATRICK and AYDEMIR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and viscosity, respectively, in the edge region. Finally, the quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr~ and r~ are, respectively, the typical 
AlfvBn, resistive and viscous time-scales of the edge plasma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.4.2. The  inertial layer 

The radial variation length scale of the inertial layer is the distance from the edge of the current carrying plasma 
to the mode rational surface; i.e. ca. This length scale is assumed to be much smaller than the plasma minor 
radius, which implies that c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1. Thus, the concept of a thin inertial layer is only valid when the rational surface 
lies relatively close to the plasma. If this is the case then the layer equations reduce to 

$0 (x - l ) $o  (324 

where the neglect of viscosity and inertia is valid provided that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, << 1 and Sc >> 1,  respectively. The above pair 
of equations can be combined to form a single equation 

d 

The solution of this equation that is consistent with the inner boundary condition, Eq. (27), is 

(33) 

Note that the perturbed current decays strongly into the plasma in the radial length scale ca (see Eq. (30b)). This 
justifies the neglect of inertia and other non-ideal effects (which is equivalent to neglecting the perturbed current) 
throughout the bulk of the current carrying plasma (since c << 1 ) .  

The viscous and resistive corrections to the above solution are obtained by expanding the layer equations (29a, b) 
to higher order in uc and S;’. It is easily demonstrated that 

1 

g s c  
(35) [(x - 1)2 + g 2 ] $ i  = gvc$6/ - - { [ ( x  - 1)2$Ojr” - 4[(x - l ) $ O ] ” }  

where denotes d/dx.  This yields 

It can also be shown that 

24.5’. The  ‘skin current’ layer 

The ‘skin current’ layer is situated on the outer edge of the inertial layer (i.e. at x = 0). It is assumed to be 
much thinner than the inertial layer, so in this region the layer equations reduce to 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 4 are constants. Thus, 

giving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k4 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg (i + s,) k 2  + (1 + g 2 )  - = 0 
VC 

Only those roots of the above quartic with positive real parts correspond to physical solutions that decay into the 
plasma. There are two such roots, denoted by k+ and I C - ,  where 

The ‘skin current’ solutions are written as 

4 exp(kx) -+ $+ exp(k+x) + J- exp(k-x) (43) 

etc. The ‘skin current’ layer is much thinner than the inertial layer provided I I C i l  >> 1, which is usually the case 
when U, << 1 and S ,  >> 1. 

2.4.4. T h e  edge boundary conditions 

At radius r = a the solution in the edge region must be matched to that in the effective vacuum region. The 
two non-trivial matching conditions (Eqs (24) and (25)) reduce to 

and 

-9 -+gv,..) = o  ( 2:: 6x3 x=o 
(45) 

where it is assumed that the edge ‘toroidal’ current is zero (i.e. j z ( a )  = 0). The condition for the validity of the 
latter matching condition, namely Eq. (20), translates to 

Here, I’ is the ratio of specific heats and p(a+)  is the plasma pressure just outside the last closed flux surface (i.e. 
in the scrape-off layer). Since g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN O(1) in a rotating plasma (see Section 2.8) and Pedge << 1, this condition is 
easily satisfied in a conventional tokamak. 

Integration of the vorticity layer equation (29b) from the inner edge of the inertial layer (z -+ -m) to the outer 
edge of the ‘skin current’ layer (x = 0) gives 
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x=o 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA84 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz=o 

(x - 1) - - $1 = [- g - dX +gut "1 ax3 [ X'-CC 
x+--DC) 

Equations (34), (36), (37), (39) and the matching condition (45) allow the above expression to be reduced to 

6 -2g2  g g2(10+2g2) +- g 2  
( IC+  + l)?j+ + ( I C -  + 1)4- 1: - - 

1 + g 2  gvc (1 +g2)4 s c  (1 + 9 2 ) 4  

where 

4* = *,-(I- ~/dc)lo* 

Likewise, the matching condition (44) reduces to 

IC@+ + IC?& 1 + 9 2  2 36- 28g2 g 60- 4g2 +- 
(1 + g2)2 + gvc (1 + g2)5 s c  (1 + 92)5 

_- (?j+ +lo- )  = 
s c v c  9 vc  

(49) 

where use has been made of Eqs (40) and (41). Equations (49) and (51) can be solved simultaneously to give q+ 
and 6- as functions of the complex growth rate g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 4 . 5 .  T h e  edge dispersion relat ion 

All the information about the edge region (as far as the asymptotic matching is concerned) is contained in the 
complex parameter A,, which is defined by 

It is clear from Eqs (28) and (30a) that A, = 0 when there is no gradient discontinuity in $ across the edge region. 
It follows from Eqs (34), (36), (37), (39) and (48) that 

(1 - c/dc)2D 
CA, = 

1 - (1 - c/dc)D 

where 

gK 
S C  

D N (1 - I )  - gvcJ + - - (lo+ + lo-) 

2 10 
K =  

The above integrals can also be written as 

I = - 1 In(-) 1 + i g  
2ig 1 - ig 

3 + 24g2 + 5g4 5(1 - g2/3 - I )  

49* 
K =  + 

12(1+ g2)3 

(53) 

(54) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(42 ) ,  (49), (51), (53), (54) and (56) allow the parameter A, to be evaluated as a function of the 

complex growth rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. 

2.5. The full dispersion relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5.1.  The external region 

The reduced-MHD equations yield 

v2+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 0 (57) 

in the effective vacuum region (since it is too resistive to carry any significant plasma current). The above equation 
has the independent solutions T * ~ .  Thus, the most general form for just outside the current carrying plasma is 

for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< r < r,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, is the 'edge flux', Q, the 'wall flux' and r ,  the minor radius of the vacuum vessel. In 
the true vacuum region r > rw the solution is 

Equations (52) and (58) imply that 

1 + (a / rw)2m + '*/ 1 - - m  dr + y=a - 1 - (a/r,)2m 

2.5.2. The vacuum vessel 

The dispersion relation for a thin, uniform, resistive vacuum vessel which is concentric with the plasma takes 
the form 

where 

POrwSw 
7, = -- 

r lW 

is the characteristic vessel time constant, or L / R  time. Here, 6, is the vessel thickness and 7, is its electrical 
resistivity. The above 'thin shell' dispersion relation is valid provided that 

6* TW - << IyIr, << - 
T W  6, 

Equations (58) and (61) imply that 

zm(a/rw)"  @a 

1 - (a / rW)2m 9, 
A, = - .  2m + 

1 - (a/r,)2m 

2.5.3.  The dispersion relation 

It is helpful to define the quantity 

1 ( r w / a ) 2 m -  1 
m ( ~ , / a ) ~ m  + 1 

d = -  (65) 

For a close-fitting vacuum vessel (i.e. rw + a ) ,  d is simply the fractional spacing of the vessel from the edge of 
the plasma (i.e. r ,  N a ( 1  + d ) ) .  The dispersion relation is obtained by combining Eqs (60) and (64 ) .  It reduces 
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to the surprisingly simple form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ d A , ( y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 + m d ]  = 1 - (md)2 

when written in terms of d .  Equation (66) describes how the perturbed currents flowing in the edge region of the 
plasma are coupled to those flowing in the vacuum vessel by the ideal-MHD eigenfunction in the ‘outer’ region 
(i.e. everywhere apart from the edge region and the vacuum vessel). The currents flowing in the edge region are 
described by the parameter A,. Those flowing in the vessel are described by A,. The ideal-MHD eigenfunction 
is specified by just three parameters; d which determines the radius of the vacuum vessel, d ,  which determines 
the critical vessel radius beyond which the ideal external-kink mode becomes unstable (see Section 2.6.2) and the 
poloidal mode number m. 

2.6. A simplified dispersion relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.6.1. Derivation of the dispersion relation 

In the limit 

< 1  2 4Scvc 
(1 + S C U C ) 2  - 

Eq. (40) yields 
- 

implying that the width of the ‘skin current’ layer is determined by a combination of plasma resistivity and 
viscosity. In this limit, Eq. (51) gives 
- -  
$J+ + $- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: -2guc (69) 

and Eqs (56) reduce to 

g2 I Y l - -  
3 

6 26g2 
5 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ p - - -  

1092 
K E -  

7 

Finally, Eqs (53) and (54) yield 

to lowest order in g. 
It is helpful to define 

d no = dz (1 - c / d , )  Im(g) = (1 - c / d . ) q r * / c n r ,  

22 

(724  

(72b) 
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In terms of these variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d A a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+ + iflo)’ + U*(+ + iflo) (73) 

where 

Equation (61) can be written as 

d A ,  = S,+ 

where 

The simplified dispersion relation is obtained by substituting Eqs (73) and (75) into Eq. (66), 

((+ + iflo)’ + U*(+ + iflo) + 1 - - (S*+ + 1 + m d )  1: 1 - (md)’ 
dC d ,  

(77) 

It can be seen that, when the inequality (67) is satisfied, the dispersion relation reduces to a simple cubic in the 
complex normalized growth rate, +. The dispersion relation is characterized by just six parameters: the poloidal 
mode number m; the normalized edge plasma rotation flo; the ‘spacing’ d between the vacuum vessel and the edge 
of the current carrying plasma; the critical ‘spacing’ d ,  of the vacuum vessel beyond which the ideal external-kink 
mode is unstable (see Section 2.6.2); S,, which parametrizes the time constant of the vacuum vessel; and U*, which 
measures viscous dissipation at the edge of the plasma. Normally, S,  >> 1 because the vessel time constants are 
typically long compared with the plasma Alfven time-scales. In addition, v* << 1 in accordance with the ordering 
vc << 1 used to derive the edge dispersion relation (73). The first factor in Eq. (77) describes the edge region: the 
first term corresponds to plasma inertia acting in the thick inertial layer; the second term corresponds to viscous 
dissipation acting predominantly in the thin ‘skin current’ layer (although there is a contribution from the inertial 
layer); the final terms describe the MHD free energy available to drive the ideal external-kink mode. The second 
factor describes the passive response of the vacuum vessel to time varying external perturbations. Finally, the 
terms on the right hand side of Eq. (77) describe the coupling of the helical currents flowing in the edge region to 
those flowing in the vacuum vessel. Note that the plasma resistivity does not appear explicitly in the simplified 
dispersion relation, despite the fact that resistivity helps to determine the width of the ‘skin current’ layer. 

8.6.8. T h e  roots  of t h e  d ispers ion re la t ion 

Since the simplified dispersion relation is cubic it naturally possesses three roots; these are denoted by root 1, 
root 2 and root 3. Assuming that S ,  >> 1 and U* << 1, root 1 can be written as 

1 - (md)’ 

2S, d m  ( d / d c  - 1 + 02) 

(79) 

23 

for d < d,. Root 2, which is closely related to root 1, becomes 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( m d ) 2  

2S* J-(d/dc - 1 + Ri)  

for d > d,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v* - _  

for d < d,. Finally, root 3 takes the form 

-j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -iRo v*[l - ( m d ) 2 ]  
+ ( 1  - m d , ) ( l  + m d ) d / d c  + ( 1  + m d ) R i  

S* ( l  - d / d c  - S*(1 - d / d c  - Cl;) 

Root 1 is uninteresting because it is always stable. The behaviour of root 2 and root 3 for the case of zero plasma 
rotation (i.e. Ro = 0) is sketched in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. It can be seen that, for d > d,, root 2 is an unstable, non-rotating 
mode with a typical external-kink growth rate (i.e. -j N 0(1), which corresponds to y N k l l ~ ~ ,  where IC11 is the 
parallel wavenumber at the plasma edge and U A  is the typical AlfvQn velocity). For d < d,, root 2 is a stable (but 
very close to marginality), negative frequency, external-kink mode (i.e. i-jl N O(1)). Root 3 is non-rotating and 
possesses a typical resistive shell mode growth rate (i.e. -j N O(l/S*),  corresponding to y N 0 ( 1 / ~ ~ ) ) :  it is stable 
for d > d ,  and unstable for d < d,. The growth rate of root 3 runs smoothly into that of root 2 as d + d,. 

Root 2 can be identified as the ideal external-kink mode and root 3 as the resistive shell mode. The ideal mode 
is only unstable for d > d,, so that d ,  can be identified as the critical ‘spacing’ of the vacuum vessel from the 
plasma required for ideal instability. According to Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 5 ) ,  this translates to the following critical radius of the 
vacuum vessel: 

1/2m l + m d c  
a 1 - m d ,  

Thus, the ideal mode is unstable for rw > T, and vice versa. The parameter d ,  is determined by the plasma 
toroidal current profile via Eqs (26) and (27). Note that in the absence of plasma rotation there is no position of 
the vacuum vessel (i.e. no value of T ~ )  for which either the resistive shell mode or the ideal external-kink mode 

Real frequency I 
Growth rate 

I 

I 

I 
Root 3 I Root 3 

Root 3 

Root 2 1 Root 3 

- - - - - - - - - - - - - - - c - - - - - -  

Root 2 I I 

FIG. 4 .  Schematic diagram showing the two non-trivial roots of the simplified dispersion relation (77) as functions 
of the vessel ‘spacing’ d in the zero plasma rotation limit. The growth rate is Re(+) and the real frequency is 
- I m ( + ) .  Here, d, is the critical vessel spacing for  the stability of the ideal external-kink mode. Note that the two 
roots cross over when d = d,. 
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Growth rate 

Root 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 

Real frequency Root 2 

I i I I t r a n s i t i o n c  region i I 

I I 

I I I 

I I I I 

I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Schematic diagram showing the two non-trivial roots of the simplified dispersion relation (77) as functions 
of the vessel spacing d for  non-zero normalized plasma rotation no. Here, d, is  the critical vessel spacing for  the 
stability of the ideal external-kink mode and do i s  defined in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (84). Note that the two roots cross over when 
d = do. 

are not unstable. Thus, in the absence of rotation the presence of a resistive vacuum vessel does not modify the 
kink stability boundaries (i.e. if the kink mode is unstable in the absence of the vacuum vessel then there is always 
some corresponding mode that is unstable in the presence of the vessel). 

The behaviour of root 2 and root 3 for the case of a rotating plasma is sketched in Fig. 5. It can be seen 
that for d > d ,  the ideal external-kink mode (i.e. root 2) is unstable and co-rotates with the edge plasma (i.e. 
-Im(+) = 0 0 ) .  For d < d o ,  where 

(84) 
2 d o  = d c ( l  - 0 0 )  

the resistive shell mode (i.e. root 3) is robustly unstable. In the ‘transition region’ (i.e. do  < d < d,) the resistive 
shell mode is robustly stable, and the kink mode takes the form of a positive frequency mode that is slipping 
backwards with respect to the edge plasma (i.e. 0 < -Im(+) < 00) and is close to marginality. The latter mode 
is destabilized by the finite resistivity of the vacuum vessel but is stabilized by viscous dissipation at the edge of 
the plasma. According to Eqs (81) and (82), the criterion for the stability of the kink and resistive shell modes 
when d < d e  (i.e. when the ideal kink mode is stabilized by the vacuum vessel) is given by 

Clearly, it is possible to stabilize both modes when d < d,, provided that the edge plasma is rotating sufficiently 
fast. It follows that in the presence of strong plasma rotation the kink mode stability boundaries are close to those 
calculated assuming that the vacuum vessel is a perfect conductor. If the vessel time constant or the dissipation 
(i.e. S ,  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv*, respectively) are sufficiently large then the stabilization criterion (85) reduces to 

00 > dl- d / d ,  (86) 

In this limit the critical rotation rate depends on only the radius of the vacuum vessel and the critical radius for 
ideal instability. Note, from Eq. (67), that the simplified dispersion relation is only valid when / g /  << 1. It follows 
from Eqs (72a, b) that the above stabilization criteria are only accurate when 

which is most likely to be the case when the vessel radius lies just inside the critical radius for ideal instability 
(i.e. when d is just less than d,) .  
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2.7. An inviscid dispersion relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
27.1. Der iva t ion  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof t h e  d ispers ion re la t ion 

In the inviscid limit 

4scuc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< g2 << 1 

Eq. (42) yields 

implying that the width of the 'skin current' layer is determined predominantly by plasma resistivity (since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ik+l >> lk -I ) .  In this limit Eqs (49) and (51) give 

where the square root is taken such that the real part is positive. Finally, Eqs (53), (54) and (70) yield 

CA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (1 - c / d c ) 2  (3' - g 2 @  

By analogy with Section 2.6.1 the dispersion relation is written as 

((+ + iflo)' - JI1* (+ + if10)5/2 + 1 - (S*+ + 1 + m d )  E 1 - ( m d ) 2  

where 

This dispersion relation is similar to the previous dispersion (77) except 
viscosity in the skin current layer is replaced by one involving resistivity. 
resistive time-scales are typically long compared to Alfvknic time-scales. 

that the dissipative term involving 
Normally, qr << 1 because plasma 

2.7.2. T h e  roots of the  d ispers ion re la t ion 

If the small dissipative term involving q* is neglected then the above dispersion relation reduces to a simple 
cubic. The three roots are similar to those described in Section 2.6.2. The resistive corrections to each of these 
roots are .easily calculated under the assumption that rl* << 1. If the vacuum vessel is sufficiently close to the 
plasma that the ideal external-kink mode is stabilized (i.e. if d < d c ) ,  root 1 can be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3/4 fi 
2 

- exp(-in/4)(1 - d / d c )  

Root 2 takes the form 

3/4 Jrlx 
2 

- exp(+ i~/4) (1 - d / d c )  

and root 3 becomes 

+ N exp(-in/4)O0 5/2 6 1 1  - ( m d l 2 1  + (1 - mdc)(l  + m d ) d / d c  + (1 + m d ) C l $  
S*(l - d / d c  - 0;)' S*(l- d / d c  - Cl,") 

(94) 

(95) 

As before, root 1 is unconditionally stable. Root 3, which corresponds to the resistive shell mode, is robustly 
unstable when d < d o  ( d o  is defined in Eq. (84)) and robustly stable when d > do. Root 2, which corresponds 
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to the external-kink mode, is destabilized by the finite resistivity of the vacuum vessel and stabilized by resistive 
dissipation in the ‘skin current’ layer. The resistive shell mode and the external-kink mode can be simultaneously 
stabilized by plasma rotation provided 

Note, again, that if the vessel time constant or the dissipation (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  or q*, respectively) are sufficiently large 
then the stabilization criterion reduces to Eq. (86), which is independent of the dissipation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.8. Discussion 

The amount of edge plasma rotation required to 
alter significantly the stability of a non-rotating helical 
kink mode, such as a resistive shell mode, is of order 

WO 2 (k/lvA)a (98) 

where VA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= &/TA is the Alfvkn velocity. It is easily 
demonstrated that 

(99) 

(see Eqs (30f) and (31)). Clearly, stabilization is only 
likely when Im(g) 2 O(1). Note that the critical rota- 
tion rate is significantly sub-Alfvknic (i.e. WOTA << l ) ,  
since the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is generally much less than unity 
in tokamaks. It should also be noted that, with the 
exception of m = 1 modes (which are a special case), 
current-driven external-kink modes only have Alfvknic 
growth rates in tokamak equilibria with unrealisti- 
cally low magnetic shear (e.g. equilibria with uniform 
current profiles). In the absence of magnetic shear, 
external-kink mode eigenfunctions extend throughout 
the plasma. Realistic levels of magnetic shear tend 
to localize the eigenfunctions close to the edge of the 
plasma [24]. This effect is particularly marked if the 
poloidal mode number is high, but it is still significant 
at low mode number (e.g., m = 2).  Current-driven 
external-kink modes are only unstable in tokamak 
equilibria possessing significant magnetic shear when 
the parallel wavenumber at the edge of the plasma is 
relatively small; i.e. when (IqRo), F nsac << 1. This 
is equivalent to saying that external-kink modes are 
only unstable when the associated mode rational sur- 
face lies just outside the edge of the current carrying 
region; i.e. when c << 1. This configuration minimizes 
the stabilizing influence of magnetic field line bending. 
The typical growth rate of a current-driven external- 
kink mode is Y T A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( I C ~ ~ R O ) ~  N mac.  Since such modes 
are only unstable in tokamaks when c << 1, it follows 
that their growth rates are significantly sub-Alfvhic 
(i.e. Y T A  << 1). It is this effect that permits the stabi- 
lization of the resistive shell mode in tokamaks at sub- 

Alfvknic plasma rotation rates (broadly speaking, the 
mode can only be stabilized when the rate of plasma 
rotation exceeds the typical kink mode growth rate). 

The fact that unstable current-driven external-kink 
modes have edge localized eigenfunctions in tokamak 
equilibria possessing significant magnetic shear sim- 
plifies the stability analysis considerably. In fact, it is 
only necessary to take plasma inertia into account in 
a relatively localized region close to the plasma edge. 
The radial extent of this region is of order ca (i.e. 
about the same as the distance of the mode rational 
surface from the edge of the plasma). The remainder 
of the plasma satisfies ideal MHD. In the conventional 
method of calculating kink stability, inertia is taken 
into account throughout the whole plasma [22, 241. 

However, this is only really necessary in tokamak equi- 
libria with very broad current profiles. It is demon- 
strated in Section 3 (see Fig. 7) that the approach 
adopted in this paper of neglecting inertia except in a 
thin layer at the plasma edge yields the correct ideal 
external-kink growth rate (to within 10%) for the case 
of a low-m mode that is far from marginal stability. 

According to the simplified dispersion relations (77) 
and (92), stabilization of the resistive shell mode is due 
to the combined effects of plasma inertia and dissipa- 
tion. Above a certain critical rotation rate, plasma 
inertia acting in the relatively thick inertial layer con- 
verts the essentially non-rotating, robustly unstable 
resistive shell mode root of the dispersion relation 
(root 3) into a rotating, almost marginally stable kink 
mode root (root 2). The latter root is slightly destabi- 
lized by the resistivity of the vacuum vessel but is sta- 
bilized by plasma dissipation (either viscous or resis- 
tive) acting in the relatively thin ‘skin current’ layer. 
Thus, given sufficient plasma rotation and dissipation, 
all of the roots of the external-kink dispersion relation 
are stable (assuming, of course, that the vacuum ves- 
sel is sufficiently close to the plasma to stabilize the 
ideal external-kink mode). 

In the presence of strong dissipation the critical 
rotation rate required to stabilize the resistive shell 
mode reduces to 
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(see Eqs (72b) and (86)), which is independent of 
the dissipation. Note from Eqs (77) and (92) that 
plasma rotation modifies the external-kink dispersion 
relation principally via the contribution from the rel- 
atively wide inertial layer. Thus, the above critical 
rotation rate is to be understood as a critical rotation 
rate of the plasma located within a radial distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAca 
(i.e. about the same as the distance of the rational 
surface from the edge of the plasma) from the edge of 
the current carrying plasma. 

Equation (100) indicates that the critical rotation 
rate is a strongly increasing function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ;  i.e. the 
distance of the rational surface from the plasma. 
External-kink modes tend to become more stable 
as c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc( (R~lc l i )~  increases, so, rather paradoxically, 
strongly unstable resistive shell modes are easier to 
stabilize (i.e. they require less plasma rotation) than 
weakly unstable modes. According to Eq. ( loo), the 
critical rotation rate for close-fitting vacuum vessels 
exceeds that for loose-fitting vessels. This result, 
which was implied by Bondeson and Ward [20], is also 
somewhat counterintuitive. The basic form of the dis- 
persion relation, Eq. (66), describes the coupling of 
the currents flowing in the edge region of the plasma 
(comprising the inertial and ‘skin current’ layers) to 
those flowing in the vacuum vessel. The strength of 
the coupling scales like l l d ;  i.e. it becomes stronger 
as the vacuum vessel moves closer to the edge of the 
plasma. The stabilization of the resistive shell mode 
comes about because plasma rotation decouples the 
edge from the vacuum vessel. Clearly, the level of 
rotation required to achieve this increases with the 
coupling strength. The optimum configuration is to 
minimize the coupling by placing the vacuum vessel as 
far away from the plasma as possible; i.e. just inside 
the critical radius for stabilizing the ideal external- 
kink mode. Indeed, it can be seen from Eq. (100) that 
the critical rotation rate becomes very small as d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ d,. 

Equations (74), (76) and (85) indicate that viscous 
dissipation is sufficiently strong that it drops out of 
the stabilization criterion provided 

5 1 - (md)2 c 2 r v  
Tw >> - 

12 1 - d / d c  d 

A similar, but more complicated, inequality (involv- 
ing the resistive time-scale m, instead of the viscous 
time-scale rv) is obtained from Eq. (97) in the resis- 
tive regime. Clearly, the ‘dissipationless’ critical rota- 
tion rate (100) is valid provided that the L I R  time 

of the vacuum vessel is sufficiently long. For ‘leaky’ 
vacuum vessels with short time constants, plasma dis- 
sipation can significantly increase the critical rotation 
rate. Plasma dissipation is also more likely to be a 
problem close to the ideal stability boundary when 
d ---f d, (see Eq. (101)). 

3. NUMERICAL RESULTS 

The ‘computational toroidal device’ (CTD) code is 
a spectral, initial value, implicit, linear, MHD stability 
code that includes compressibility and handles sheared 
plasma rotation in a self-consistent manner [25]. In 
order to check the analytic dispersion relation derived 
above, the CTD code has been used to simulate a 
cylindrical plasma with uniform toroidal rotation. In 
these simulations the density and the perpendicular 
viscosity are uniform throughout the plasma; i.e. from 
the magnetic axis to the radius of the vacuum vessel, 
r = rw.  Free-slip boundary conditions (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvT = 0 and 
U; = 0) are applied at the outer radius of the plasma. 
These conditions are consistent with no-slip bound- 
ary conditions (i.e. vT = 0 and ve = 0), assuming 
the existence of an unresolved viscous boundary layer 
just inside the vacuum vessel. The plasma resistivity 
is uniform between the magnetic axis and the outer 
radius of the hot current carrying plasma, r = a .  In 
the region between r = a and r = rw the plasma 
resistivity is extremely high (7 = lo4 in normalized 
units where all lengths are scaled to the minor radius 
of the hot plasma, a ,  and all times to the Alfvdn time, 
T A ) .  Thus, the region between the edge of the hot 
plasma and the vacuum vessel acts like a cold dense 
plasma (i.e. it is far too resistive to carry any signifi- 
cant current, but possesses non-negligible inertia and 
viscosity). The vacuum vessel itself is treated as a 
rigid annular region of low resistivity (relative to the 
cold plasma). The region outside the vacuum vessel, 
r > rw, acts like a true vacuum (i.e. the resistivity 
is large, 7 = l o4 ,  and there is no fluid, w = 0). This 
vacuum region extends out to twice the radius of the 
hot plasma, r = 2a, at which point the simulation is 
truncated by the presence of a perfectly conducting 
shell. 

The CTD simulation differs from the analytic model 
in three respects. Firstly, it allows compressible 
motion of the plasma; secondly, the cold plasma in 
the region a < r < rw possesses non-negligible inertia 
and viscosity; and, finally, there is a perfectly con- 
ducting shell at r = 2a.  The plasma flow is expected 
to be almost incompressible in this particular prob- 
lem, since /yo1 >> llcl1csl throughout most of the plasma 
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(especially close to the edge where most of the impor- 
tant physics takes place). In fact, results from CTD 
show quite clearly that the compressible component 
of the plasma motion is always far smaller than the 
incompressible component. Special test runs of CTD 
in which the inertia and viscosity of the cold plasma 
region are gradually taken to zero demonstrate that 
the presence of inertia and viscosity in this region has 
very little effect (i.e. 510%) on kink mode growth 
rates. It is easily shown (and can also be explicitly 
verified using CTD) that a perfectly conducting shell 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2a is sufficiently far from the plasma that it 
also has very little influence (i.e. 510%) on kink mode 
growth rates. Clearly, the differences between the 
CTD simulations and the analytic model are relatively 
unimportant, so both ought to give similar results. 

The current profile used in the simulations is the 
well known ‘Wesson profile’ [24] 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo q ( 0 )  is the central safety factor of the 
plasma and qa q ( a )  is the edge value. The Wes- 
son profile has the advantage that the current is zero 
at the edge of the hot plasma provided qa > 290 (which 
is always the case in the simulations presented here). 
Note, from Eq. (25), that a non-zero current at the 
plasma edge modifies the matching conditions there 
and, thereby, changes the kink mode stability bound- 
aries (usually in a detrimental manner). The above 
current profile can be inverted to give the following 
safety factor profile: 

(see Eq. (7)). This profile can be used, in conjunction 
with the marginally stable ideal-MHD equations (26), 
to fix the parameter d ,  (defined in Eq. (28)). This 
parameter is related to the critical vacuum vessel 
radius, r,, required to stabilize the ideal external-kink 
mode, via Eq. (83). Table I shows various values of 
d ,  and T ,  evaluated numerically from Eqs (26) and 
(103) for the m = 2 / n  = 1 external-kink mode. There 
is almost perfect agreement between the critical vessel 
radius evaluated in this manner and that inferred from 
the CTD code. 

Figure 6(a) shows the 2 /1  ideal external-kink mode 
growth rate evaluated at zero plasma rotation as a 
function of the vessel radius using both the analytic 
model (i.e. Eqs (42), (49), (51), (53), (54), (56), 
(61) and (66)) and the CTD code. In this compari- 

TABLE I. VALUES OF d ,  AND THE CRITICAL 
VESSEL RADIUS T ,  REQUIRED TO STABILIZE 
THE 2 /1  IDEAL EXTERNAL-KINK MODE 
(calculated as  func t ions  of the  edge safety fac to r  q, 
using a Wesson- l ike current profile wi th central safety 
fac to r  qo = 0 . 8 )  

1.6 
1.7 
1.8 
1.9 
1.99 

0.3461 
0.2919 
0.2375 
0.1812 
0.1186 

1.531 
1.397 
1.295 
1.209 
1.128 

son qo = 0.8, qa = 1.8, the vessel resistivity is effec- 
tively zero, and the plasma resistivity and viscosity 
are negligible. The analytic growth rates are slightly 
higher than the numerical ones but, otherwise, there is 
very good agreement between the two. This indicates 
that the central premise of Section 2 is correct; i.e. 
external-kink modes can be analysed by splitting the 
hot current carrying plasma into a central ideal region 
surrounded by a relatively thin non-resonant inertial 
layer. It can be seen that both the analytic and the 
numerical ideal growth rates tend to zero as the vessel 
radius approaches the critical radius T ,  = 1.295 (see 
Table I). It is evident that the ideal mode is stable for 
Tw < r,. 

Figure 6(a) also shows the growth rates for the zero 
rotation resistive shell mode calculated for rw < r,. 
In this comparison the current profile is the same as 
that used to calculate the ideal growth rates. The 
time constant of the vacuum vessel is T~ = 4000rw 
in normalized units (from now on all quantities are in 
normalized units unless explicitly stated otherwise). 
The thickness of the vessel is 0.02 in the CTD sim- 
ulations. This is sufficiently thin for the ‘thin shell’ 
approximation used in the analytic model to be valid 
(see Section 2.5.2). The plasma resistivity and kine- 
matic viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v = p l / p )  are both lop5. It can be 
seen that there is good agreement between the ana- 
lytic and numerical growth rates. The resistive and 
ideal growth rates connect together smoothly as the 
vessel radius moves outside the critical radius. There 
is clearly no vessel radius at which either a resistive 
shell mode or an ideal external-kink mode is not unsta- 
ble. Figure 6(b) is an enlargement of Fig. 6(a) showing 
the resistive shell mode growth rates in more detail. 
The analytic growth rates are slightly higher than the 
numerical ones. This discrepancy is small in abso- 
lute terms but becomes quite large in relative terms 
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FIG. 6. Growth rate (normalized to the Alfve'n t ime) of the 2/1 
external-kink mode as a junction of the vessel radius (normalized 
to the minor radius of the plasma). The sdlid symbols show 
numerical results f rom the CTD code. The open symbols show 
the predictions of the analytic dispersion relation. The square 
symbols show ideal external-kink growth rates. The triangular 
symbols are resistive shell mode growth rates. 

for slowly growing modes. The most likely reason for 
the discrepancy is the failure of asymptotic matching. 
This is only completely accurate when the widths of 
the non-ideal regions are completely negligible, which, 
of course, is never the case in the CTD simulations. 

Figure 7(a) shows the growth rate of the 2/1 resis- 
tive shell mode calculated as a function of plasma rota- 
tion for various vacuum vessel radii. The plasma and 
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FIG. 7. (a) Growth rate and (b) real frequency of the 2/1 resis- 
tive shell mode as functions of plasma rotation and the vacuum 
vessel radius. The solid symbols are numerical results and the 
open symbols are the corresponding analytic predictions. The 
round, triangular and square symbols correspond to vacuum ves- 
sel radii of 1.275, 1.2 and 1.09, respectively. 

vessel parameters (with the exception of the plasma 
rotation) are the same as those used in Fig. 6(b). 
There is fairly good agreement between the numerical 
and analytic results. All of the features displayed by 
the CTD results are reproduced by the analytic model. 
A vacuum vessel that is far from the plasma gives rise 
to a resistive shell mode with a large zero frequency 
growth rate. However, this mode is stabilized at rela- 
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tively low plasma rotation rates. Conversely, a vacuum 
vessel that is close to the plasma yields a resistive shell 
mode with a small zero frequency growth rate. How- 
ever, this mode is only stabilized at relatively high 
plasma rotation rates. Thus, somewhat paradoxically, 
the optimum configuration in the absence of plasma 
rotation (i.e. a close-fitting vacuum vessel) is the worst 
configuration in the presence of strong rotation. In the 
latter case, the optimum configuration is for the vac- 
uum vessel to be as far away from the plasma as is 
consistent with the stability of the ideal external-kink 
mode (see Section 2.8). 

Figure 7(b) shows the real frequency of the 2 /1  resis- 
tive shell mode calculated as a function of plasma rota- 
tion for the three cases featured in Fig. 7(a). It can be 
seen that stabilization of the shell mode always takes 
place just as the magnitude of its real frequency starts 
to exceed its growth rate. This is clearly a necessary 
condition for stabilization. However, it is not a suffi- 
cient condition, as can be seen from Eq. (81), where at 
low dissipation it is possible to find strongly rotating 
solutions that are nevertheless unstable. Thus, it is 
the dissipation that is responsible for the stabilization 
of the shell mode. The acquisition of a substantial real 
frequency by the mode is incidental to the stabilization 
mechanism. 

Table I1 lists some parameters of the analytic model 
for the three cases featured in Fig. 7. Also shown is the 
simplified estimate (85) for the critical plasma rotation 
rate required to stabilize the resistive shell mode. It 
can be seen, by comparison with Fig. 7(a), that this 
estimate is quite accurate when the vacuum vessel is 
far from the plasma, but is otherwise far too large. 

TABLE 11. VARIOUS PARAMETERS ASSOCI- 
ATED WITH THE ANALYTIC MODEL, EVALU- 
ATED FOR THE THREE CASES FEATURED IN 
FIG. 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( the f inal row shows the est imate (85) for the critical 
p lasma rotat ion rate required to stabilize the resistive 
s h el 1 mod e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.09 1.2 1.275 

d 0.08533 0.1746 0.2255 
dc 0.2377 0.2377 0.2377 
C 0.05556 0.05556 0.05556 
Vr 0.03837 0.05490 0.06237 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S* 75.40 118.7 143.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 2.135 0.4316 0.06461 
(W0TA)c 0.2471 0.1100 0.07728 

minor radius 

FIG. 8. Perturbed toroidal current eigenfunction (for fixed mode 
amplitude and phase inside the plasma) i n  the outer regions 
of the plasma calculated with the CTD code for the case with 
rw = 1.09 featured in Fig. 7. The solid, dashed and dotted lines 
correspond to plasma rotations of 0.01, 0.06 and 0.08, respec- 
tively. For the sake of clarity the curves are offset horizontally. 
I n  reality, the sudden cut-off in the current occurs at I = 1 in 
all three cases. 

t 

10-2 
9) 
4 
ld 
k 

9 10-3 
9 

10-4 

0 
k 
M 

0 0.05 0.1 0.15 
edge plasma rotation 

10-6 

FIG. 9. Growth rate of the 2/1 resistive shell mode as a function 
of plasma rotation and the vessel time constant. The solid sym- 
bols show numerical results and open symbols the corresponding 
analytic predictions. The round, triangular and square symbols 
correspond to time constants of 40 OOOr,, 40001, and door,, 
respectively. 
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The simplified estimate is only valid when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1 (see 
Eq. (87)), which is clearly not the case in those sit- 
uations where it fails badly. In fact, the cubic dis- 
persion relation (77), although useful for pedagogical 
purposes, does not give particularly good agreement 
with the CTD code. It generally seriously overesti- 
mates the critical rotation rate at which complete sta- 
bilization occurs. It also wildly exaggerates the slight 
tendency, apparent in Fig. 7(a), for the growth rate 
to rise initially with increasing rotation. According 
to the full analytic dispersion relation (which agrees 
quite well with the CTD code) the simplified disper- 
sion relation (77) is only applicable at relatively low 
rotation rates. As the edge plasma rotation increases, 
plasma resistivity gradually takes over from viscosity 
as the principal dissipation mechanism. In addition, 
inertial corrections (such as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg2 terms in Eqs (49), 
(51), (70a-c)) become increasingly important as the 
rotation rate becomes larger. Inertial corrections are 
particularly significant for close-fitting vacuum vessels. 
Good agreement between the analytic model and the 
CTD code is only possible when viscous, resistive and 
inertial effects are all simultaneously retained in the 
model. 

Figure 8 shows perturbed 'toroidal' current eigen- 
functions calculated with the CTD code for three dif- 
ferent plasma rotation rates. The mode amplitudes 
and phases inside the plasma are identical in all three 
cases. The plasma and vessel parameters are the same 
as those employed in the case featured in Fig. 7 with 
rw = 1.09. It can be seen that the perturbed current 
is concentrated in the outer non-ideal regions of the 
plasma, in accordance with the analysis of Section 2. 
The width of the non-ideal region is about 0.05, which 
is in good agreement with the theoretically expected 
width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc (note, from Table 11, that c = 0.05556 for these 
calculations). A (positive) 'skin current' spike is also 
clearly visible, superimposed on a broader (negative) 
inertial layer current distribution. The spike becomes 
larger as the plasma rotation rate increases. This is as 
expected if the skin current spike is ultimately respon- 
sible for the stabilization of the resistive shell mode. 

Figure 9 shows the growth rate of the 2 /1  resistive 
shell mode calculated as a function of plasma rotation 
for various vacuum vessel time constants. In these cal- 
culations the plasma resistivity and kinematic viscos- 
ity are both lov5. The other parameters are qo = 0.8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qa = 1.8, rc = 1.295 and rw = 1.09. It can be seen 
that, in general agreement with Eqs (85), (97) and 
(101), vessels with long time constants perform signif- 
icantly better (in terms of the level of plasma rotation 
required to stabilize the shell mode) than vessels with 

short time constants. This particular trend is slightly 
more marked in the numerical results. 

4. FINITE THICKNESS VACUUM VESSELS 

The thin shell dispersion relation (61) is only valid 
when the inequality (63) is satisfied. The more general 
expression 

A w  = &x t a n h ( + z x )  (104) 

is valid provided 

(105) 
6, 

IYlTw - 
TW 

For relatively thin vacuum vessels, where / Y / T ~  << 
rW/Sw, the above dispersion relation reduces to the 
thin shell limit. On the other hand, for relatively thick 
vacuum vessels, where 1 ~ 1 ~ ~  >> rw/6w, the dispersion 
relation gives the thick shell limit 

Aw = ~ v w r w / 6 ,  (106) 

Figure 10 shows the growth rate of the 2 /1  resistive 
shell mode calculated as a function of plasma rota- 
tion for vacuum vessels of various thicknesses, but the 
same overall time constant. The analytic calculations 
are performed using Eq. (104) instead of Eq. (61) in 
the external-kink dispersion relation (66). The plasma 
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FIG. 10. Growth rate of the 2/1 resistive shell mode as a func- 
t ion of plasma rotation and the vessel thickness. The solid sym- 
bols are numerical results and the open symbols are the corre- 
sponding analytic predictions. The round, triangular and square 
symbols correspond to  vessel thicknesses of 0.32, 0.16 and 0.08, 
respectively. 
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and vessel parameters (other than the vessel thickness) 
are the same as those employed in the case featured 
in Fig. 7 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.2. It can be seen that a thick 
vacuum vessel does not perform as well as a thin vac- 
uum vessel possessing the same time constant. The 
zero rotation growth rate and the critical rotation rate 
required to stabilize the shell mode are both signifi- 
cantly increased in the former case. This suggests that 
it is better to surround the plasma with a thin vessel 
made of a highly conducting material rather than a 
thicker vessel made of a more resistive material. 

5. INCOMPLETE STABILIZING SHELLS 

In many modern tokamak designs the vacuum ves- 
sel is too remote from the plasma to affect kink sta- 
bility significantly. However, such designs often incor- 
porate additional passive conductors to guard against 
external-kink modes. These conductors are usually 
placed very close to the plasma (e.g., r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 1.05) 
but are necessarily highly incomplete because of space 
and access requirements. Consider the rather ideal- 
ized case of a plasma surrounded by a concentric pas- 
sive stabilizing shell of uniform thickness but contain- 
ing toroidal gaps (i.e. gaps extending over a range of 
toroidal angles). In the thin shell regime the dispersion 
relation of the shell (i.e. the replacement of Eq. (61) 
in the full dispersion relation (66)) is written [26] as 

where f is the angular fraction of the gaps (the dis- 
tribution of gaps does not matter, as long as they are 
sufficiently large) and r, is the time constant of the 
shell with no gaps (f = 0). 

Figure 11 shows the growth rate of the 2/1 resistive 
shell mode calculated as a function of plasma rotation 
for a close-fitting ( r ,  = 1.09) stabilizing shell con- 
taining toroidal gaps of various sizes. The plasma 
parameters are the same as those employed in the 
cases featured in Fig. 7. The time constant of the 
shell in the absence of gaps is r, = 4000r,. It can 
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FIG. 11. Growth rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 2/1 resistive shell mode as a func-  
t ion  of plasma rotation and the toroidal gap size. The results 
shown are all analytic predictions. The  round, triangular and 
square symbols correspond to  toroidal gaps of angular (frac- 
t ional) extent 162" (0.45), 72' (0.2) and 0" (0), respectively. 

be seen, by comparison with Fig. 7(a), that a close- 
fitting stabilizing shell containing gaps acts very much 
like a complete shell located somewhat further away 
from the plasma. This is a significant result. For a 
complete close-fitting shell the level of plasma rota- 
tion required to stabilize the resistive shell mode can 
be prohibitively high. However, a stabilizing shell 
does not have to be complete (unlike a vacuum ves- 
sel). By a judicious choice of gap size the required 
level of plasma rotation can be significantly reduced. 
This effect becomes increasingly marked as the spac- 
ing between the shell and the plasma is reduced. Of 
course, if the gaps are made too large then the effec- 
tive radius of the shell will move outside the critical 
radius for stabilizing the ideal external-kink mode. At 
this point, the mode 'explodes' through the gaps with 
an ideal growth rate [26]. In Fig. 11, the case with 
gaps extending 162" is very close to the ideal stability 
boundary. 

6. THE EFFECT OF SIDEBAND RESONANCES 

It is necessary to adopt a slightly more flexible notation in order to deal with coupled sideband rational surfaces 
inside the plasma. The cylindrical dispersion relation (66) can be written in standard E matrix format [27] as 
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This dispersion relation is reminiscent of that of two coupled tearing modes. However, in this case there are no 
tearing layers in the plasma. The non-ideal regions (which are radially localized, like conventional tearing layers) 
occur at the plasma edge (labelled by the subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa )  and at the vacuum vessel (labelled by the subscript w). 
The outer ideal solution is described by two complex parameters: the m / n  perturbed poloidal flux at the edge of 
the plasma, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,, and the perturbed flux at the vessel radius, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQw. The non-ideal layers are characterized by two 
complex parameters: the jump in logarithmic derivative of the m / n  perturbed poloidal flux across the edge layer, 
A,, and the jump in logarithmic derivative across the vacuum vessel, A,. These layer parameters depend on the 
complex growth rate of the mode, the edge plasma rotation and the L / R  time of the vessel. Finally, asymptotic 
matching between the outer solution and the layer solutions is achieved via the elements of the E matrix (E,,, 
etc.). These are O(1) real parameters that depend only on the properties of the outer eigenfunctions. It can be 
demonstrated that 

1 1  

dc d 
E,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - - - (IOSa) 

(109b) 
qqizp 

d 
Eaw = 

- E w w  = 
1 + m d  

d 
(109c) 

The above dispersion relation can easily be generalized to take into account the presence of a toroidally coupled 
(m  - l ) / n  sideband rational surface located somewhere inside the plasma at radius rS < a.  In order to describe 
the outer solution, an additional complex parameter is required: the (m  - l ) / n  perturbed poloidal flux at the 
rational surface, 9,, which is usually referred to as the ‘reconnected flux’. An additional complex layer parameter 
is also needed: the jump in logarithmic derivative of the (m - l ) / n  perturbed poloidal flux across the rational 
surface, A,. Asymptotic matching between the outer solution and the layer solutions yields a dispersion relation 
of the form 

A a  - Eaa  -Eaw - Ea, 

-Eaw A w  - E w w  -Esw ) (i:) = (!) ( - E a s  -Esw A, - E,, 

(110) 

The O(1) parameter E,, governs the stability of the (m - l ) / n  fixed-boundary tearing mode. This mode is assumed 
to be stable, for the sake of simplicity, so that E,, < 0. The parameters E,, and Esw describe coupling between 
neighbouring poloidal harmonics and are, therefore, of order E (where E << 1 is the inverse aspect ratio). The effects 
of any coupled harmonics other than m/n  and (m - l ) /n  are neglected in Eq. (110). In addition, the vacuum 
vessel is assumed to act as a perfect conductor as far as the (m - l ) / n  harmonic is concerned. These rather drastic 
approximations are made to elucidate the analysis. 

Adopting the normalization used in Section 2.6, plus the rather restrictive ordering (67), the dispersion relation 
of the edge layer becomes (see Eq. (73)) 

dA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (+ + i f b ) 2  + v*(+ + ino) 

dAw = S*+ (112) 

(111) 

In the ‘thin shell’ limit the dispersion relation of the vacuum vessel reduces to (see Eq. (75)) 

Finally, in a strongly rotating plasma the appropriate dispersion relation for the sideband rational surface is [28], 

S, 
+ + in, 

A s p - -  

Here, 

S s  TA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sa TAs C 

S, = d i  (1 - c/d,) - - - 

34 

(1 14a) 
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(114b) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAss zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (d In q/d In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )Ts  is the magnetic shear and T A ~  = Ro d m / B ,  is the hydromagnetic time-scale at the 
rational surface, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAws is the natural frequency of the (m - l ) / n  tearing mode. Note that us = (m - 1)& - nR2,,, 
where Res and R,, are, respectively, the poloidal and 'toroidal' plasma angular rotation velocities at the rational 
surface. The dispersion relation (113) describes dissipation via absorption of AlfvQn waves at the resonant layer. 

The (nearly) non-rotating root (root 3 in the terminology of Section 2.6.2) of the dispersion relation (110) can 
be shown to take the form 

v*[l - ( m d ) 2 ]  -j N -iflo 
S,(1 - d / d c  - Ri)2 

(1 - mdc)( l  + m d ) d / d c  + (1 + m d ) R i  

S,(1 - d / d c  - 0;) 
+ 

-1- . Is% (1+ 
S* 

where 

1 

In deriving Eq. (115) it is assumed that S ,  >> 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv* << 1 and S, >> 1. It can be seen, by comparison with Eq. (82), 
that the sideband resonance gives rise to an additional (small) contribution to the real frequency of root 3 but 
does not affect its growth rate. For sufficiently strong edge plasma rotation (i.e. Ro > d-) the root is 
stable. 

The rotating root (root 2 in the terminology of Section 2.6.2) of the dispersion relation (110) can be shown to 
take the form 

It can be seen, by comparison with Eq. (81), that the sideband resonance gives rise to two additional terms. The 
first, &/2, is stabilizing and is similar in form to the term v,/2 which describes viscous dissipation in the edge 
layer. Recall that the edge dissipation is vital to the stabilization of the rotating root in the regime where the edge 
plasma rotation is sufficiently strong to stabilize the non-rotating root. It is clear that the AlfvBnic dissipation at 
the sideband rational surface has an equivalent stabilizing effect. Thus, the combination of strong edge plasma 
rotation and dissipation anywhere in the plasma is capable of stabilizing the resistive shell mode. The second 
additional term in Eq. (117) is proportional to the rotation shear, R, - GO, between the plasma at the sideband 
rational surface and the edge plasma. If this shear is positive (i.e. the central plasma rotates faster than the edge 
plasma) then the dissipation at the sideband rational surface is enhanced. However, if the shear is negative (i.e. 
the central plasma rotates slower than the edge plasma) then the dissipation is reduced. Clearly, for fixed levels 
of edge rotation it is better to have the centre of the plasma rotating faster than the edge. 

The stabilizing effect of a toroidally coupled sideband resonance, described above, is similar to that reported 
by Bondeson and Ward [20] and Betti and Freidberg [22]. The main difference is that both Bondeson and Ward 
and Betti and Freidberg consider dissipation via absorption of sound waves close to a rational surface lying within 
the plasma whereas we are concerned with dissipation via the absorption of Alfvkn waves. The fact that both 
mechanisms yield essentially the same result as that obtained in Section 3, where the dissipation takes place in a 
viscous/resistive boundary layer at the edge of the plasma, suggests that the nature and location of the dissipation 
is unimportant. 

7. CONCLUSIONS (where Re and 0 4  are, respectively, the poloidal and 
toroidal angular rotation velocities of the edge plasma) 
must exceed a critical value: Stabilization of the resistive shell mode in toroidal 

pinch devices is possible provided that three conditions 
are met. First, the edge rotation W O  = mfle - no4 W O T A  2 (w0TA)crit (k l l&)a (118) 

NUCLEAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFUSION, Vol. 36, No. I (1996) 35 



FITZPATRICK and AYDEMIR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k l l ) ,  is the parallel wavenumber of the insta- 
bility and TA is the Alfvkn time-scale; both are evalu- 
ated at the boundary of the current carrying plasma. 
Second, there must be a small amount of dissipation 
somewhere in the plasma. Finally, the resistive shell 
must be separated from the current carrying plasma 
by a region of cold tenuous plasma or, alternately, a 
vacuum region. 

The condition (118) ensures that ideal MHD breaks 
down in the outer regions of the current carrying 
plasma. A thick inertial layer forms whose typical 
width is the spacing of the rational surface from the 
boundary of the hot plasma. The formation of an 
edge inertial layer is vital to the stabilization mech- 
anism. Note that Eq. (118) is effectively a constraint 
on the average rotation of the fuelling ions in the iner- 
tial layer (since the fuelling ions possess virtually all 
of the plasma inertia). 

Tokamak plasmas are comparatively stable to MHD 
instabilities because of the rigidity afforded to the 
plasma by the strong toroidal magnetic field. The dis- 
tortion of the toroidal field associated with external- 
kink modes, whose eigenfunctions generally peak close 
to the edge of the plasma, is minimized when the 
parallel wavenumber of the instability is small at 
the boundary. In fact, free-boundary current-driven 
external-kink modes are only unstable in tokamaks 
when (IcllRo), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1 (assuming that the current pro- 
file is reasonably peaked and there is no edge cur- 
rent pedestal) [24]. This permits stabilization of the 
resistive shell mode in tokamaks at substantially sub- 
Alfvknic rotation rates (i.e. (W0TA)crit << 1). RFPs 
are far more MHD unstable than tokamaks because 
they possess a comparatively weak toroidal magnetic 
field and the plasma is therefore less rigid [5]. Con- 
sequently, free-boundary current-driven external-kink 
modes in RFPs can be unstable when (kliRo), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN O(1). 
Thus, in general, Alfvknic plasma rotation rates (i.e. 
(W0TA)crit N O(1)) are required in RFPs in order to 
stabilize the resistive shell mode. This level of rota- 
tion is unattainable in practice. 

Strong plasma rotation cannot by itself stabilize the 
resistive shell mode. In the absence of plasma dissi- 
pation the growth rate is merely asymptotic to zero 
as W O  -+ 00 [ll]. However, in the presence of a small 
amount of dissipation, the growth rate becomes neg- 
ative above a finite rotation rate. The nature of the 
dissipation is unimportant. We have found that vis- 
cosity or resistivity acting at the plasma edge or the 
absorption of Alfvkn waves at a toroidally coupled 
sideband resonant surface in the plasma are all equiv- 
alent sources of dissipation. The absorption of sound 

waves at a toroidally coupled sideband resonance is, 
presumably, also an effective source of dissipation in 
a finite beta plasma [20, 221. The dissipation must 
exceed a critical value before it is effective at stabi- 
lizing the resistive shell mode. The critical value is 
inversely proportional to the L / R  time of the shell. 
This highlights the importance of making the L / R  
time as long as practically possible (see Fig. 9). A 
thin high conductivity shell performs better than a 
thick low conductivity shell possessing the same over- 
all L / R  time (see Fig. 10). We find, like Betti and 
Freidberg [22], that once the dissipation becomes suffi- 
ciently strong it drops out of the stabilization criterion. 
The critical strength for saturation of the dissipation 
is inversely proportional to the L / R  time of the shell. 
For a tokamak surrounded by a vacuum vessel, or sta- 
bilizing shell, possessing a reasonably long L / R  time 
(see Eq. (101)) the stabilization criterion depends only 
on the level of edge plasma rotation and the equilib- 
rium current profile. 

Stabilization of the resistive shell mode occurs 
essentially because the perturbed currents that flow 
at the edge of the plasma, owing to the breakdown of 
ideal-MHD there, are decoupled from the eddy cur- 
rents flowing in the shell by the edge plasma rotation. 
The strength of the coupling between these currents 
is inversely proportional to the spacing between the 
shell and the plasma boundary. Thus, as the shell 
moves closer to the plasma, ever higher rotation rates 
are needed to decouple the two sets of currents effec- 
tively. Clearly, the optimum configuration is to place 
the shell as far away from the plasma as is consis- 
tent with the stability of the ideal external-kink mode. 
Modern tokamaks tend to have relatively loose-fitting 
vacuum vessels (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArW N 1.3a), which permit sta- 
bilization of the resistive shell mode at comparatively 
low plasma rotation rates. However, in the next gen- 
eration of tokamaks the vacuum vessel is likely to be 
too remote from the plasma to significantly affect kink 
mode stability. In existing designs, enhanced stability 
against external-kink modes is achieved by surround- 
ing the plasma with a set of extremely close-fitting 
(e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArW N 1.05a) passive stabilizing conductors. Of 
course, these conductors do not completely surround 
the plasma because of space and access requirements. 
The gaps between the conductors are actually ben- 
eficial (up to a point) because they reduce the cou- 
pling to the edge of the plasma. In fact, a conducting 
shell containing large gaps acts rather like a complete 
shell located somewhat further away from the plasma 
(see Figs 7 and 11). Thus, it is possible for a set of 
extremely close-fitting passive conductors to stabilize 
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the resistive shell mode at reasonable plasma rotation 
rates provided that the gaps between the conductors 
are sufficiently large. Of course, if the gaps are made 
too large then the effective shell moves too far from the 
plasma to stabilize the ideal mode. The optimum con- 
figuration is for the gaps to be such that the effective 
shell lies just inside the critical radius for stabilizing 
the ideal mode. 

This paper concentrates on current-driven external- 
kink modes, rather than the more experimentally rel- 
evant pressure-driven modes, because only the former 
can be investigated analytically. Most of the impor- 
tant physics associated with the stabilization of the 
resistive shell mode takes place close to the edge of 
the plasma. The free energy of kink modes emanates 
from gradients in the current and pressure profiles in 
the interior of the plasma. It is plausible, therefore, 
that the stabilization mechanism for the resistive shell 
mode is essentially the same for current and pressure 
driven modes. The one major difference between cur- 
rent and pressure driven modes is that the latter do 
not possess a unique poloidal mode number, owing 
to the large Shafranov shift of flux surfaces, and the 
consequent strong coupling of neighbouring poloidal 
harmonics, in a high beta tokamak equilibrium [29]. 

However, we expect the dominant poloidal harmonic 
of pressure-driven external-kink modes in tokamaks, 
whose eigenfunctions tend to peak towards the edge 
of the plasma, to be such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ic~iRo)~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1 in order 
that the distortion of the relatively rigid magnetic field 
associated with the instability is kept to a minimum. 
Thus, it is plausible that the pressure-driven version of 
the resistive shell mode can be stabilized in tokamaks 
at substantially sub-Alfvdnic rotation rates. 

In general, a pressure-driven external-kink mode in 
a high beta tokamak equilibrium possesses an eigen- 
function that is resonant at various sideband rational 
surfaces throughout the plasma. A magnetic separa- 
trix introduces many additional sideband resonances 
close to the edge of the plasma. The conventional def- 
inition of the ideal external-kink mode is that it is a 
free-boundary mode which does not reconnect mag- 
netic flux at any of the sideband resonances inside 
the plasma. A resistive shell mode is defined as a 
free-boundary mode that does not reconnect magnetic 
flux at any of the sideband resonances, is stabilized 
by a close-fitting ideal shell, but grows on the char- 
acteristic L / R  time of a close-fitting resistive shell. 
This is a sensible definition because comparatively low 
levels of differential plasma rotation effectively sup- 
press magnetic reconnection at the sideband rational 

surfaces for a non-rotating (or very slowly rotating) 
mode such as a resistive shell mode [27]. For a given 
plasma equilibrium there is a critical plasma beta ( p c ,  
say) above which the free-boundary ideal external-kink 
mode becomes unstable. This mode can only be sta- 
bilized by a close-fitting resistive shell (i.e. converted 
into a stable resistive shell mode) if the outer regions 
of the plasma rotate at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWOTA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (IcilRo),. Here, Icl i is 
the parallel wavenumber of the dominant harmonic, 
which can easily be estimated (see, for instance, the 
discussion in Betti and Freidberg [22]). There exists 
a band of values of beta, lying just below the critical 
value, for which the ideal external-kink mode is stable 
but the resistive external-kink mode, which reconnects 
magnetic Aux at one or more of the sideband ratio- 
nal surfaces inside the plasma, is unstable [30]. It is 
well known that such a mode can be stabilized by a 
close-fitting resistive shell in the presence of plasma 
rotation rates that are of the order of the inverse mag- 
netic reconnection time-scale [9, 31-33]. These rota- 
tion rates are typically far lower than those required 
to stabilize the ideal mode. Clearly, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp < p c ,  then 
the resistive shell effectively acts like an ideal shell at 
fairly modest plasma rotation rates, but once p > p c  
then far larger rotation rates are required to achieve 
the same effect. Note that the critical beta, required 
to destabilize the free-boundary external-kink mode, 
obtained from conventional ideal-MHD codes, corre- 
sponds to the p c  defined above. It is clear that sub- 

stantial edge plasma rotation (i.e. WOTA 2 (Icl~Ro)~) 
is required before it can be hoped that plasma equi- 
libria can exceed this critical beta with the aid of a 
close-fitting resistive shell. 

In conclusion, we have identified the physical mech- 
anism that governs the stabilization of the resistive 
shell mode in a rotating tokamak plasma. Accord- 
ing to our model, the fact that this mode is gener- 
ally unstable in RFPs does not necessarily imply that 
it is unstable in tokamaks. The resistive shell mode 
can be stabilized in tokamaks via a combination of 
strong (but substantially sub-Alfvhic) edge plasma 
rotation and a thin, long time-constant shell that is 
situated neither too close to nor too distant from the 
plasma. It is, therefore, not completely unreasonable 
for advanced tokama,k designs to invoke the stabilizing 
effect of a conducting shell in order to obtain accept- 
able beta limits. Nevertheless, it is by no means clear 
that the level of edge plasma rotation required to elim- 
inate the resistive shell mode, and thereby realize the 
stabilizing effect of the shell, is either achievable in 
practice or can be maintained for any significant length 
of time against locked modes, and other types of MHD 
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activity, which are known to degrade plasma rotation 
in existing tokamaks [34, 351. 
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