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Abstract. In this paper we study the stabilization of the wave equation on general 1-d networks. For that,
we transfer known observability results in the context of control of conservative systems (see [14]) into a weighted
observability estimate for the dissipative one. Then we use an interpolation inequality similar to the one proved in
[7] to obtain the explicit decay estimates of the energy for smooth initial data. The obtained decay rate depends
on the geometric and topological properties of the network. We give also some examples of particular networks in
which our results apply yielding different decay rates.
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1. Introduction and main results. In this paper, we consider a planar network of elastic
strings that undergoes small perpendicular vibrations. Recently, the control, observation and
stabilization problems of these networks have been the object of intensive research (see [14, 16]
and the references therein).

Here we are interested in the problem of stabilization of the network by means of a damping
term located on one single exterior node. The aim of this paper is to develop a systematic method
to address this issue and to give a general result allowing to transform an observability result for
the corresponding conservative system into a stabilization one for the damped one.

Before going on, let us recall some definitions and notations about 1− d networks used in the
paper. We refer to [1, 19, 24] for more details.

A 1− d network R is a connected set of Rn, n ≥ 1, defined by

R =
N⋃
j=1

ej

where ej is a curve that we identify with the interval (0, lj), lj > 0, and such that for k 6= j, ej ∩ek
is either empty or a common end called a vertex or a node (here ej stands for the closure of ej).

For a function u : R −→ R, we set uj = u|ej the restriction of u to the edge ej .
We denote by E = {ej ; 1 ≤ j ≤ N} the set of edges of R and by V the set of vertices of R.

For a fixed vertex v, let

Ev = {j ∈ {1, ..., N} ; v ∈ ej}

be the set of edges having v as vertex. If card (Ev) = 1, v is an exterior node, while if card (Ev) ≥ 2,
v is an interior one. We denote by Vext the set of exterior nodes and by Vint the set of interior
ones. For v ∈ Vext, the single element of Ev is denoted by jv.
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We now fix a partition of Vext: Vext = D ∪ {v1}, where D 6= ∅. In this way, we distinguish the
conservative exterior nodes, D, in which we impose Dirichlet homogeneous boundary condition,
and the one in which the damping term is effective, v1. To simplify the notation, we will assume
that v1 is located at the end 0 of the edge e1.

Let uj = uj(t, x) : R× [0, lj ] → R be the function describing the transversal displacement in
time t of the string ej of length lj . Let us denote by L the sum of the lengths of all edges of the
network, the total length of the network.

We assume that the displacements uj satisfy the following system

∂2uj
∂t2 (x, t)− ∂2uj

∂x2 (x, t) = 0 0 < x < lj , t > 0, ∀j ∈ {1, ..., N},
uj(v, t) = ul(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂uj
∂nj

(v, t) = 0 ∀v ∈ Vint, t > 0,

ujv (v, t) = 0 ∀v ∈ D, t > 0,
∂u1
∂x (0, t) = ∂u1

∂t (0, t) ∀t > 0,
u(t = 0) = u(0), ∂u∂t (t = 0) = u(1),

(1.1)

where ∂uj/∂nj(v, .) stands for the outward normal (space) derivative of uj at the vertex v. We
denote by u the vector u = (uj)j=1,...,N .

The above system has been considered by several authors in some particular situations. We
refer, for instance, to [6], [2], [3, 4], [5] and [25], where explicit decay rates are obtained for networks
with some special structures. We also refer to [20] where the problem is considered in the presence
of delay terms in the feedback law.

The object of this paper is not to give an additional result in a particular case, but rather
to develop a systematic method allowing to address the issue in a general context. We do this
transfering known observability results for the corresponding conservative system into stabilization
results for the dissipative one. This provides a new proof for the existing results mentioned above
and allows getting new ones.

As mentioned above, in this paper, we consider the case where the dissipation is located on an
external node of the network, but the method can be adapted to treat the case where the damping
term is located in several nodes, both exterior and interior ones.

In order to study system (1.1) we need a proper functional setting. We define the real Hilbert
spaces

L2(R) = {u : R → R;uj ∈ L2(0, lj),∀j = 1, · · · , N},

and

V := {φ ∈
N∏
j=1

H1(0, lj) : φj(v) = φk(v)∀j, k ∈ Ev, ∀v ∈ Vint ; φjv (v) = 0∀v ∈ D},

equipped with the natural inner products

< φ, φ̃ >L2(R)=
N∑
j=1

∫ lj

0

φj φ̃jdx and < φ, φ̃ >V =
N∑
j=1

∫ lj

0

∂φj
∂x

∂φ̃j
∂x

dx

respectively.
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It is well known that system (1.1) may be rewritten as the first order evolution equation{
U ′ = AU,
U(0) = (u(0), u(1)),

(1.2)

in the Hilbert space

H := V × L2(R),

equipped with the usual inner product〈(
u
w

)
,

(
ũ
w̃

)〉
:=

N∑
j=1

∫ lj

0

(
∂uj
∂x

∂ũj
∂x

+ wjw̃j

)
dx.

Here U is the vector U = (u, ∂u∂t )T , the operator A is defined by

A
(

u
w

)
:=
(

w
∆u

)
,

∆ being the Laplace operator: ∆u =
(
∂2uj
∂x2

)
j=1,...,N

. The domain D(A) of the operator A is

defined by

D(A) := {(u, w) ∈ (V ∩
N∏
j=1

H2(0, lj))× V :
∂u1

∂x
(0) = w1(0) ;

∑
j∈Ev

∂uj
∂nj

(v) = 0, ∀v ∈ Vint}.

Since A is maximal dissipative, by Lumer-Phillips’ theorem, for an initial datum U0 ∈ H, there
exists a unique solution U ∈ C([0, +∞), H) to problem (1.2). Moreover, if U0 ∈ D(A), then

U ∈ C([0, +∞), D(A)) ∩ C1([0, +∞), H).

We define the natural energy of u by

Eu(t) :=
1
2

N∑
j=1

∫ lj

0

((
∂uj
∂t

)2

+
(
∂uj
∂x

)2
)
dx. (1.3)

This energy satisfies

E′u(t) = −
(
∂u1

∂t
(0, t)

)2

≤ 0, (1.4)

and therefore it is decreasing.
Remark 1.1. Integrating the expression (1.4) between 0 and T , we obtain∫ T

0

(
∂u1

∂t
(0, t)

)2

dt = Eu(0)− Eu(T ) ≤ Eu(0).

Consequently, this estimate implies that ∂u1
∂t (0, .) belongs to L2(0, T ) for finite energy solutions.

This is a "hidden" regularity property in the sense that it is not a direct consequence of the regularity
of finite energy solutions.
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In [2, 3, 4, 5, 6, 20], the method to obtain the stabilization of (1.1) in particular cases is
based on the use of observability estimates for the solutions φ of the conservative problem without
damping, with Neumann boundary condition at the node x = 0:

∂2φj
∂t2 −

∂2φj
∂x2 = 0 0 < x < lj , t > 0, ∀j ∈ {1, ..., N},

φj(v, t) = φl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂φj
∂nj

(v, t) = 0 ∀v ∈ Vint, t > 0,

φjv (v, t) = 0 ∀v ∈ D, t > 0,
∂φ1
∂x (0, t) = 0 ∀t > 0,
φ(t = 0) = u(0), ∂φ∂t (t = 0) = u(1).

(1.5)

It is well known that this problem is well posed in the natural energy space. If we suppose that
(u(0), u(1)) ∈ H, then problem (1.5) admits a unique solution

φ ∈ C(0, T ; V ) ∩ C1(0, T ; L2(R)).

This system is obviously conservative and its energy is constant: Eφ(t) = Eφ(0) for all t > 0. Let us
then denote by (λ2

n)n≥1 the sequence of eigenvalues of (1.5) and let (ϕn)n≥1 be the corresponding
eigenvectors forming an orthonormal basis of L2(R). In particular cases, in [2, 3, 4, 5, 6, 20], under
appropriate conditions, observability inequalities of the form∑

n≥1

c2n(λ2
na

2
n + b2n) ≤ C

∫ T

0

∣∣∣∣∂φ1

∂t
(0, t)

∣∣∣∣2 dt, (1.6)

are proved for system (1.5), where an, bn are the Fourier coefficients of the initial data of φ in
the basis (ϕn)n, and with weights c2n > 0 depending on the network. To obtain the stabilization
result from the observability inequality (1.6), the authors decompose the solution u as the sum
of φ, solution of (1.5) with the same initial data than u, and a rest with vanishing initial data.
Then they show regularity results of trace type for this rest (see section 4 of [20]). However, in
these articles, the analysis is limited to strong observability inequalities (leading to exponential or
polynomial decay results) which hold only for a restricted class of networks.

In the present paper we are able to deal with arbitrary networks in which weaker observability
inequalities may hold leading to arbitrarily slow decay rates.

Our analysis is based on the existing observability results for the following system with Dirichlet
boundary conditions at all exterior nodes

∂2ψj
∂t2 (x, t)− ∂2ψj

∂x2 (x, t) = 0 0 < x < lj , t > 0, ∀j ∈ {1, ..., N},
ψj(v, t) = ψl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂ψj
∂nj

(v, t) = 0 ∀v ∈ Vint, t > 0,

ψjv (v, t) = 0 ∀v ∈ D, t > 0,
ψ1(0, t) = 0 t > 0,
ψ(t = 0) = ψ(0), ∂ψ∂t (t = 0) = ψ(1).

(1.7)

The study of the observability of this system is motivated by control problems (see [9, 10, 11, 12,
13, 14]).

The difference between systems (1.5) and (1.7) is the boundary condition at the end 0 of e1:
the Dirichlet one for (1.7) and Neumann one for (1.5).
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If we suppose that (ψ(0), ψ(1)) ∈ H̃ = Ṽ × L2(R) where

Ṽ = {ψ ∈
N∏
j=1

H1(0, lj) : ψj(v) = ψk(v)∀j, k ∈ Ev, ∀v ∈ Vint ; ψjv (v) = 0, ∀v ∈ D ; ψ1(0) = 0},

then problem (1.7) admits a unique solution ψ ∈ C(0, T ; Ṽ ) ∩ C1(0, T ; L2(R)). This system is
obviously also conservative.

In this paper, we show the link between the existing observability results for (1.7) and the
stabilization properties of (1.1).

To be more precise, let us denote by (λ̃2
n)n≥1 the sequence of eigenvalues corresponding to

problem (1.7) and let (ϕDn )n≥1 be the corresponding eigenvectors forming an orthonormal basis
of L2(R). Under some conditions on the topology of the network and the lengths of the strings
entering in it, Dager and Zuazua [9, 10, 11, 12, 13, 14] proved weighted observability inequalities
for (1.7) of the following form

ED∗ (ψ, 0) :=
∑
n≥1

c2n(λ̃2
nψ

2
0,n + ψ2

1,n) ≤ C
∫ T

0

∣∣∣∣∂ψ1

∂x
(0, t)

∣∣∣∣2 dt, (1.8)

for a positive constant C, where ψ0,n, ψ1,n are the Fourier coefficients of the initial data of ψ in
the basis (ϕDn )n and with positive weights (c2n)n≥1 depending on the properties of the network.

To obtain this weighted observability estimate (1.8), several methods have been developed in
those articles. The first one, that uses the D’Alembert representation formula, applies to tree-
shaped networks. Its main advantage is that it does not require computing the spectrum of the
network. This method has been later adapted in [3] and [5] to analyze the stabilization of stars
and trees. A second method uses the Fourier expansion of solutions and the Beurling-Malliavin
Theorem (see for instance [13, 14, 20]). This applies for general networks and avoids the difficulties
related to applying the D’Alembert formula to more complex networks that may contain circuits
(see, for instance, [?]).

The key observation of this paper is that the weighted observability estimates for u solution
of (1.1) can be obtained directly from (1.8). This method is of systematic application and avoids
remaking all the fine analysis already carried out in [9, 14], that uses, in particular, tools from
Number Theory, to analyze the properties of the weights

{
c2n
}
n≥1

in terms of those of the network
under consideration.

Let us now explain how (1.8) can be applied directly in our context. For that we decompose
u as the sum of w, a solution of (1.7) with appropriate initial data (u(0) − u(0)

1 (0)ϕ, u(1)) (where
ϕ is a given smooth function such that ϕ1(0) = 1), and a rest. Applying (1.8) to the solution w of
(1.7), we obtain the following weighted observability estimate for u solution of (1.1)

ED∗ (w, 0) + u
(0)
1 (0)2 ≤ CT

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt, (1.9)

where ED∗ (w, 0) is defined by (1.8), with weights (c2n)n depending on the network. If the weights c2n
are non-trivial for all n ∈ N∗, the energy of the dissipative system tends to 0 as t→∞. However, in
general, the weights tend to 0 as n→∞, the observed quantity is weaker than the V ×L2(R)-norm
and the decay rate is not exponential.

It is important to underline that (1.9) holds under the same assumptions on the network needed
for (1.8) to hold for the Dirichlet problem (1.7). Thus, no further analysis is required to establish
the existence of the weights

{
c2n
}
n≥1

in terms of the properties of the network.
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To derive decay properties out of (1.9), we view this inequality as a weak observability estimate
in which the observed energy E−(0) is equal, roughly speaking, to ED∗ (w, 0)+u

(0)
1 (0)2. In practice

we often take, if necessary, the lower convex envelop of c2n instead of the weights c2n in the definition
of ED∗ (see Section 3.1). The observed energy E− is weaker than the V ×L2(R)-norm of the initial
data that would be required to prove exponential decay and, consequently, we obtain weaker decay
rates. To obtain explicit decay rates out of this weak observability inequality we use an interpolation
inequality which is a variant of the one from Bégout and Soria [7] and which is a generalization of
Hölder’s inequality. For this to be done we need to assume more regularity of the initial data. To be
more precise we shall consider initial data (u(0), u(1)) ∈ Xs :=

[
D(A), D(A0)

]
1−s for 0 < s < 1/2.

In this way we deduce an interpolation inequality of the form

1 ≤ Φs

(
E−(0)
CEu(0)

) ∥∥(u(0), u(1))
∥∥2

Xs

C ′Eu(0)
,

where Φs is an increasing function which depends on s and on the energy E− under consideration.
The previous interpolation inequality implies

E−(0) ≥ CEu(0)Φ−1
s

 Eu(0)

C ′
∥∥(u(0), u(1))

∥∥2

Xs

 .

With (1.4) and (1.9), we obtain

Eu(0)− Eu(T ) ≥ CEu(0)Φ−1
s

 Eu(0)

C ′
∥∥(u(0), u(1))

∥∥2

Xs

 ,

which implies, by the semigroup property (see Ammari and Tucsnak [6])

∀t > 0, Eu(t) ≤ CΦs

(
1

t+ 1

)∥∥∥(u(0), u(1))
∥∥∥2

Xs
. (1.10)

Obviously, the decay rate in (1.10) depends on the behaviour of the function Φs near 0. Thus, in
order to determine the explicit decay rate we need to have a sharp description of the function Φs,
which depends on s and on the energies E and E− and thus, on the weights (c2n)n of (1.9) in an
essential way. These weights depend on the topology of the network and the number theoretical
properties of the lengths of the strings entering in it.

This approach allows getting in a systematic way decay rates for the energy of smooth solutions
of the damped system as a consequence of the observability properties of the undamped one.

The analysis in this paper is limited to networks of strings with damping in one single end but
the same methods, combined with the tools developped in [14], can be applied in other situations
as, for instance:

a) networks of strings with damping in several end points;
b) networks with damping on end points and internal nodes;
c) networks of beams.
The paper is organized as follows. In the second section, we show how to pass from the

observability inequality for the conservative problem (1.7) with Dirichlet boundary conditions at
all exterior nodes to the weighted observability inequality (1.9) for (1.1). In section 3 we give an
interpolation inequality which is a variant of the one by Bégout and Soria [7] and we apply it to
obtain the explicit decay estimate of the energy. Finally we end up discussing some illustrative
examples in section 4.
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2. The weighted observability inequality. In this section, we prove that we can obtain
a weighted observability estimate for u solution of (1.1) directly from (1.8). First of all, we recall
some results about system (1.7) with Dirichlet boundary conditions at all exterior nodes.

2.1. Preliminaries about the Dirichlet problem. Recall that if we suppose that (ψ(0), ψ(1)) ∈
H̃, then problem (1.7) admits a unique solution

ψ ∈ C(0, T ; Ṽ ) ∩ C1(0, T ; L2(R)).

Denote by (λ̃2
n)n≥1 the sequence of eigenvalues corresponding to problem (1.7) and let (ϕDn )n≥1

be the corresponding eigenvectors forming an orthonormal basis of L2(R). We assume now that
(ψ(0), ψ(1)) ∈ H̃ and we set

ψ(0) =
∑
n≥1

ψ0,nϕ
D
n and ψ(1) =

∑
n≥1

ψ1,nϕ
D
n ,

where (λ̃nψ0,n)n, (ψ1,n)n ∈ l2(N∗).
In [14], a weighted observability inequality is derived, motivated by control problems. More

precisely, it is shown that, under some conditions on the topology of the network and the lengths
of the strings entering in it, for all T > T0 (where T0 > 0 is large enough), there exists a sequence
of positive weights

{
c2n
}
n≥1

and a positive constant C such that for all solution ψ of (1.7) it holds

∑
n≥1

c2n(λ̃2
nψ

2
0,n + ψ2

1,n) ≤ C
∫ T

0

∣∣∣∣∂ψ1

∂x
(0, t)

∣∣∣∣2 dt. (2.1)

Notice that, for this to be true, it is essential that the time T0 > 0 to be large enough. More
precisely, in [14] inequality (2.1) is proved in the case of general networks for T > 2L, where
L is the total length of the network. In the case of tree-like networks, (2.1) is obtained by the
D’Alembert representation formula and the weights c2n are strictly positive for every n ∈ N∗ if the
tree is non-degenerate. In the case of stars, this comes down to impose irrationality conditions
on the ratio of each pair of lengths. In the case of trees, the condition of non-degeneracy of the
network is a natural extension of the irrationality one for stars and is also generically true (see
[9, 12, 14] for more details). In the case of general networks, (2.1) is established by means of
the Beurling-Malliavin Theorem under the assumption that all eigenfunctions have a non-trivial
Neumann trace at the observation node. This condition is generically satisfied.

We set

ED∗ (ψ, 0) :=
1
2

∑
n≥1

c2n(λ̃2
nψ

2
0,n + ψ2

1,n) (2.2)

the weighted energy for ψ at time 0. Note that (ED∗ )
1
2 defines a norm on H̃ because the weights

c2n, according to the results in [14], are assumed to be positive. In the sequel, we assume that the
network under consideration is such that the solutions ψ of (1.7) satisfy (2.1).

2.2. The weighted observability inequality. In this section, we prove that we can obtain
a weighted observability estimate for u solution of (1.1) directly from (2.1). Thus, we assume that
the network is such that (2.1) holds and (u(0), u(1)) ∈ H.
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We introduce w solution of (1.7) with initial data (w(0), w(1)) = (u(0) − u(0)
1 (0)ϕ, u(1)), where

ϕ is a given smooth function satisfying
ϕ1(0) = 1
ϕjv (v) = 0 ∀v ∈ D
ϕj(v) = ϕl(v) ∀j, l ∈ Ev, v ∈ Vint∑
j∈Ev

∂ϕ

∂nj
(v) = 0 ∀v ∈ Vint.

(2.3)

In this manner, the initial data (w(0), w(1)) belong to H̃, i. e. w(0) satisfies the Dirichlet boundary
condition at the end 0 of e1. Therefore, by hypothesis, w satisfies (2.1).

We also consider ε, the solution of the following non-homogeneous Dirichlet problem:

∂2εj
∂t2 (x, t)− ∂2εj

∂x2 (x, t) = 0 ∀x ∈ (0, lj), t > 0, ∀j ∈ {1, ..., N},
εj(v, t) = εl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂εj
∂nj

(v, t) = 0 ∀v ∈ Vint, t > 0,

εjv (v, t) = 0 ∀v ∈ D, t > 0,
ε1(0, t) = u1(0, t) t > 0,
ε(t = 0) = u

(0)
1 (0)ϕ, ∂ε∂t (t = 0) = 0.

(2.4)

Note that ε satisfies a non-homogeneous Dirichlet boundary condition at x = 0. Actually it
coincides with the value of the solution u1 of (1.1) at that point. By Remark 1.1, we notice that
∂u1/∂t(0, .) ∈ L2(0, T ), so that the non-homogeneous Dirichlet boundary condition belongs to
H1(0, T ).

In this way we have the decomposition

u = w + ε. (2.5)

In this section, we prove the following theorem
Theorem 2.1. Assume that the network is such that the weighted observability inequality (2.1)

is satisfied for the conservative system (1.7) with Dirichlet boundary conditions at all exterior
nodes. We split up u, solution of (1.1), as (2.5) where w is solution of (1.7) with initial data
(u(0) − u(0)

1 (0)ϕ, u(1)) and ε is solution of (2.4). We define E∗(u, 0) by

E∗(u, 0) := ED∗ (w, 0) + u
(0)
1 (0)2, (2.6)

where ED∗ (w, 0) is defined by (2.2). Then for all T > T0, there exists CT > 0 such that all solution
u of (1.1) satisfies the weighted observability inequality

E∗(u, 0) ≤ CT
∫ T

0

(
∂u1

∂t
(0, t)

)2

dt, (2.7)

provided (u(0), u(1)) ∈ H.
Remark 2.2. Note that, according to Theorem 2.1, we transform the observability inequality

for the Dirichlet problem (1.7) into a similar one for the dissipative one (1.1). Thus, in particular,
estimate (2.7) holds under the same assumptions on the network that are needed for the Dirichlet
problem and that are discussed in [14]. Some examples will be discussed in Section 4.

Note also that (E∗(u, 0))
1
2 defines a norm in the space of initial data (u(0), u(1)) ∈ H. Indeed,

when E∗(u, 0) vanishes, u(0)
1 (0) = 0. Thus (u(0), u(1)) ∈ H̃ and then E∗(u, 0) = ED∗ (u, 0), and,

by assumption,
(
ED∗ (u, 0)

) 1
2 defines a norm in H̃.
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2.3. Proof of Theorem 2.1. Let (u(0), u(1)) ∈ H. We decompose u as in (2.5) where
w and ε solve (1.7) and (2.4) respectively. Therefore, w is solution of (1.7) with initial data
(w(0), w(1)) = (u(0) − u(0)

1 (0)ϕ, u(1)), and thus, by hypothesis, it satisfies (2.1).
First, we have the following lemma
Lemma 2.3. For all T > 0 there exists CT > 0 such that the solutions u of (1.1) and ε of

(2.4) satisfy the following estimate∫ T

0

(
∂ε1
∂x

(0, t)
)2

dt ≤ CT

(∫ T

0

(
∂u1

∂t
(0, t)

)2

dt+
(
u

(0)
1 (0)

)2
)
. (2.8)

Remark 2.4. Note that (2.8) holds for all networks since, in fact, it holds locally near the
boundary of a single string. In this context we apply it along the string containing the extreme
x = 0, getting (2.8).

Proof. First of all, we easily show that the energy Eε of the solution ε (defined as in (1.3))
satisfies

d

dt
Eε(t) = −∂ε1

∂x
(0, t)

∂u1

∂t
(0, t),

and then for all t > 0

Eε(t) = Eε(0)−
∫ t

0

∂ε1
∂x

(0, s)
∂u1

∂t
(0, s)ds.

Therefore, by using Cauchy’s inequality, we obtain

Eε(t) ≤ Eε(0) +
1
4

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds+
∫ t

0

(
∂u1

∂t
(0, s)

)2

ds. (2.9)

Secondly, for all t ∈ (0, T ], multiplying the wave equation satisfied by ε1 by (l1 − x)∂ε1∂x and
by integrating on (0, l1)× (0, t), we have∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂t2

dxds−
∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂x2

dxds = 0.

By integration by parts, we have∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂t2

dxds = −
∫ t

0

∫ l1

0

(l1 − x)
∂2ε1
∂xt

∂ε1
∂t

dxds

+
∫ l1

0

(l1 − x)
∂ε1
∂x

(s, x)
∂ε1
∂t

(s, x)dx

∣∣∣∣∣
t

0

= −1
2

∫ t

0

∫ l1

0

(
∂ε1
∂t

)2

dxds+
l1
2

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds

+
∫ l1

0

(l1 − x)
∂ε1
∂x

(t, x)
∂ε1
∂t

(t, x)dx,

because ∂ε
∂t (t = 0) = 0, and∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂x2

dxds =
1
2

∫ t

0

∫ l1

0

(l1 − x)
∂

∂x

((
∂ε1
∂x

)2
)
dxds

=
1
2

∫ t

0

∫ l1

0

(
∂ε1
∂x

)2

dxds− l1
2

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds.
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Therefore, we obtain

−1
2

∫ t

0

∫ l1

0

(
∂ε1
∂t

)2

dxds+
l1
2

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds+
∫ l1

0

(l1 − x)
∂ε1
∂x

(t, x)
∂ε1
∂t

(t, x)dx

−1
2

∫ t

0

∫ l1

0

(
∂ε1
∂x

)2

dxds+
l1
2

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds = 0,

and thus ∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds ≤ 2
l1

∫ t

0

Eε(s)ds+ 2Eε(t). (2.10)

By grouping (2.9) and (2.10), we find

Eε(t) ≤ Eε(0) +
1

2l1

∫ t

0

Eε(s)ds+
1
2
Eε(t) +

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds.

That is to say

Eε(t) ≤ 2Eε(0) +
1
l1

∫ t

0

Eε(s)ds+ 2
∫ t

0

(
∂u1

∂t
(0, s)

)2

ds.

By Gronwall’s lemma, we obtain that, for all t ∈ (0, T ],

Eε(t) ≤ CT

(
Eε(0) +

∫ T

0

(
∂u1

∂t
(0, s)

)2

ds

)
,

where CT depends on T . By inserting this expression into (2.10), we find∫ T

0

(
∂ε1
∂x

(0, t)
)2

dt ≤ CT

(
Eε(0) +

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt

)
.

But

Eε(0) =
(
u

(0)
1 (0)

)2

1
2

N∑
j=1

∫ lj

0

(
∂ϕj
∂x

(x)
)2

dx

 = C
(
u

(0)
1 (0)

)2

,

where C is a constant, since ϕ is given as in (2.3), independently of the solution under consideration.
This proves (2.8).

Let us now return to the proof of Theorem 2.1.
Since w satisfies (2.1), we have

ED∗ (w, 0) = ED∗ (w, t) ≤ C
∫ T

0

(
∂w1

∂x
(0, t)

)2

dt, (2.11)

where ED∗ (w, 0) is defined as in (2.2) for w solution of (1.7) with initial data (u(0)−u(0)
1 (0)ϕ, u(1)).

Moreover, we have∫ T

0

(
∂w1

∂x
(0, t)

)2

dt ≤ C
∫ T

0

((
∂u1

∂x
(0, t)

)2

+
(
∂ε1
∂x

(0, t)
)2
)
dt.
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Therefore, with (2.8) and (2.11), we obtain

ED∗ (w, 0) = ED∗ (w, t) ≤ CT
∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt+ CT

(
u

(0)
1 (0)

)2

. (2.12)

We recall that E∗(u, 0) is given by (2.6) where ED∗ (w, 0) is defined by (2.2). Then, (2.12)
becomes

E∗(u, 0) ≤ CT
∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt+ CT

(
u

(0)
1 (0)

)2

. (2.13)

In fact, we can remove the last term in the right hand side of (2.13).
Lemma 2.5. For T large enough, the solutions u of (1.1) satisfy

E∗(u, 0) ≤ CT
∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt,

for a positive constant CT depending on T .
Proof. In view of (2.13) it is sufficient to show that there exists a positive constant C > 0 such

that ∣∣∣u(0)
1 (0)

∣∣∣2 ≤ C ∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt.

We argue by contradiction. If this is not the case, there exists a sequence of solutions un such that∣∣∣u(0)
n, 1(0)

∣∣∣ = 1, ∀n ∈ N (2.14)

and ∫ T

0

((
∂un, 1
∂t

(0, t)
)2

+
(
∂un, 1
∂x

(0, t)
)2
)
dx→ 0, as n→ +∞. (2.15)

In view of this and (2.13), we deduce that E∗(un, 0) are uniformly bounded. Passing weakly to the
limit in the Hilbert space H, defined as the closure of V with respect to the norm (E∗(un, 0))

1
2 ,

we obtain a limit solution u such that ∣∣∣u(0)
1 (0)

∣∣∣ = 1 (2.16)

and ∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dx = 0. (2.17)

The fact that (2.16) holds is a consequence of the compactness of the trace operator from R to R
(it is in fact an operator of rank one). On the other hand, (2.17) holds as a consequence of the
weak lower semicontinuity. But, by unique continuation, it is easy to see, in view of (2.17), that
for all T > 2L, the whole limit solution u vanishes. Indeed, we obtain by (2.17)

∂u1

∂t
(0, t) =

∂u1

∂x
(0, t) = 0,

11



and therefore ∂u/∂t solves system (1.7) with initial data (u(1), ∂2u(0)/∂x2). Then, we can apply
(2.1) to obtain

u(1) =
∂2u(0)

∂x2
= 0.

Consequently, ∂u/∂t = 0 on R× (0, T ), and thus u is independent of t. Thus u = 0 on R× (0, T )
since it is harmonic on the network and fulfills the Dirichlet boundary condition. This contradicts
(2.16).

This lemma proves Theorem 2.1, because u is solution of (1.1).

3. The stabilization result.

3.1. An interpolation inequality. In this subsection, we give an interpolation result similar
to the one of [7].

Let m ∈ [0, 1), 0 < s < 1/2 and assume that

ω : (m, ∞)→ (0, ω(m)) is a convex and decreasing function with ω(∞) = 0, (3.1)

Φs : (0, ω(m))→ (0, ∞) is a concave and increasing function with Φs(0) = 0, (3.2)

∀t ∈ [1, ∞), 1 ≤ Φs(ω(t))t2s, (3.3)

The function t 7→ 1
t
Φ−1
s (t) is nondecreasing on (0, 1). (3.4)

Before stating the needed interpolation inequality, we recall the inverse Jensen’s inequality,
which is the inverse version of the classical Jensen’s inequality (see Lemma 2.4 from [7] and Rudin
[22]).

Lemma 3.1 (Inverse Jensen’s inequality). Let (Ω, Υ, ν) be a measure space such that ν (Ω) = 1
and let −∞ ≤ a < b ≤ ∞. Assume that

1) ϕ : (a, b)→ R is a concave function,
2) g ∈ L1(Ω, Υ, ν) is such that for almost every x ∈ Ω, g(x) ∈ (a, b).
Then ϕ(g)+ ∈ L1(Ω, Υ, ν) and ∫

Ω

ϕ(g)dν ≤ ϕ
(∫

Ω

gdν

)
.

Under the conditions (3.2)-(3.3), we have the following result which is a generalized Hölder’s
inequality, a variant of Theorem 2.1 given in [7]:

Theorem 3.2. Let (ω, Φs) be as above satisfying (3.1)-(3.3). Then for any f = (fn)n∈N∗ ∈
l1(N∗), f 6= 0, we have

1 ≤ Φs


∑
n≥1

|fn|ω(n)∑
n≥1

|fn|


∑
n≥1

|fn|n2s

∑
n≥1

|fn|
, (3.5)
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as soon as (fnω(n))n ∈ l1(N∗) and (fnn2s)n ∈ l1(N∗).
Proof. The proof is similar to that of Theorem 2.1 of [7]. We give it for the sake of completeness.

By (3.3) and Cauchy-Schwarz’s inequality, we have

1 =

∑
n≥1

|fn|∑
n≥1

|fn|


2

≤

∑
n≥1

|fn|∑
n≥1

|fn|
Φ

1
2
s (ω(n))ns


2

≤

∑
n≥1

|fn|∑
n≥1

|fn|
Φs(ω(n))


∑
n≥1

|fn|∑
n≥1

|fn|
n2s

 .

Now, we apply Lemma 3.1 with ϕ = Φs a concave function, g = ω and the discrete measure
ν =

∑
n≥1

|fn|P
n≥1|fn|

δn, by noticing that∑
n≥1

|fn|∑
n≥1

|fn|

 = 1.

We then obtain (3.5).
We now give some examples of pairs (ω, Φs) satisfying (3.1)-(3.4):
Example 3.3. 1. If

ω(t) =
c

tp
,

for some p ≥ 1, we can take Φs of the form

Φs(t) =
(
t

c

) 2s
p

.

We can easily prove that (ω, Φs) satisfy (3.1)-(3.2) with m = 0 and (3.3)-(3.4).
2. If

ω(t) = Ce−At

where A > 2(2s+ 1) and C > 0, we can take Φs of the form

Φs(t) =

(
A

ln
(
C
t

))2s

.

We can easily prove that Φs is an increasing function on (0, ω(0)), a concave function on (0, ω(1/2))
(because A > 2(2s + 1)), that t 7→ 1

tΦ
−1
s (t) is nondecreasing on (0, 1) and that the pair (ω, Φs)

satisfies (3.3) on [1, ∞). Thus (ω, Φs) satisfy (3.1)-(3.4) with m = 1/2.
In the application of the interpolation inequality of Theorem 3.2 to our stabilization problem

the weight ω is determined by the weights (c2n)n in (2.2). However, notice that, in general, the
weights c2n may degenerate fast and, consequently, we have to work in a more general context.
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Moreover, in principle, (c2n)n does not necessarily satisfy the convexity or the monotony prop-
erty in (3.1). To ensure that this assumption is satisfied, we introduce the notion of the lower
convex envelop of a sequence (un)n satisfying lim infn→∞ un = 0. Roughly, it is the "nearest"
convex and decreasing function ω(n) satisfying 0 < ω(n) ≤ un for all n ∈ N. The existence of this
function is guaranteed by the following lemma:

Lemma 3.4. ([7]) Let −∞ < a < b ≤ ∞ and let ε : [a, b)→ (0, ∞) be a continuous function
such that lim inft↗b ε(t) = 0. Then there exists a convex function ϕ ∈ C1

b ([a, b); R) such that
0 < ϕ ≤ ε and ϕ′ < 0 on [a, b).

The proof of this lemma can be found in [7].
Now, we show how to construct the weight ω satisfying (3.1) from (un)n∈N ⊂ (0, ∞) such

that lim infn→∞ un = 0. Let ε ∈ C([0, ∞); R) be such that 0 < ε(n) ≤ un, for any n ∈ N. Let
ϕ ∈ C([0, ∞); R) be a decreasing and convex function such that for any t ≥ 0, 0 < ϕ(t) ≤ ε(t)
(which exists by the previous lemma) and consider C ⊂ [1, ∞)× [0, ∞) the closure of the convex
envelop of the set {(n, un); n ∈ N}. Finally, fix arbitrarily t ≥ 1. Then the set Ct = C ∩ ({t} × R)
is nonempty, closed and the previous lemma ensures that for any st ∈ R such that (t, st) ∈ Ct,

0 < ϕ(t) ≤ st.

So by compactness, we may define the function ω as

∀t ≥ 1, ω(t) = min {st; (t, st) ∈ Ct} .

Finally we extend ω as a decreasing, continuous and convex function on [0, 1]. Therefore, ω satisfies
(3.1) with m = 0. This function ω is called the lower convex envelop of the sequence (un)n.

In the sequel, assuming that the weights in (2.1) are such that lim inf
n→∞

cn = 0 and cn 6= 0 for all
n ∈ N∗, we choose the function ω as follows

ω is the lower convex envelop of the sequence
(
1, (c2n)n≥1

)
. (3.6)

3.2. The main results. In this subsection, we assume that the network is such that the
weighted observability inequality (2.1) holds, for every solution of problem (1.7). Therefore, by
Theorem 2.1, u satisfies (2.7). Let us make some remarks:

Remark 3.5. 1. If for all n ∈ N∗, we have c2n > 0, then the energy Eu tends to 0 as t→∞.
2. If there exists a positive constant c such that for all n ∈ N∗, c2n ≥ c > 0, then the energy of

u solution of (1.1) is exponentially decreasing. Unfortunately this does not hold in general except,
for example, for the simplest network which consists simply of a single string and for trees with all
but one damped ends ([20]), but never for non-trivial networks with one single damped end.

The statement in the first point can be proved by the La Salle’s invariance principle and the
second one by a classical energy method combining the observability inequality (2.7) and the energy
dissipation law (1.4) (see for instance [20]).

Before stating the main result of this paper, let us give a technical lemma which will be used
in the sequel. For that, we need to define Xs the interpolation space between D(A) and D(A0):

Xs :=
[
D(A), D(A0)

]
1−s ,

where 0 < s < 1/2. Note that if s = 0 then X0 = D(A0) = V × L2(R) and if s = 1 then
X1 = D(A). More precisely we can identify the space Xs:
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Lemma 3.6. For 0 < s < 1/2,

Xs =

V ∩∏
j

H1+s(0, lj)

×∏
j

Hs(0, lj).

Proof. First D(A) is a dense subset of V × L2(R) and
(
V ∩

∏N
j=1H

2(0, lj)
)
× V is a dense

subset of V × L2(R) with D(A) ⊂
(
V ∩

∏N
j=1H

2(0, lj)
)
× V . Then

[
D(A), V × L2(R)

]
1−s is a

subset of V ∩ N∏
j=1

H2(0, lj)

× V, V × L2(R)


1−s

with the same norms.
ButV ∩ N∏

j=1

H2(0, lj)

× V, V × L2(R)


1−s

=

V ∩ N∏
j=1

H1+s(0, lj)

× N∏
j=1

Hs(0, lj),

and thus, if D(A) is dense in
(
V ∩

∏N
j=1H

1+s(0, lj)
)
×
∏N
j=1H

s(0, lj), then, by a classical result
of [23],

Xs =

V ∩ N∏
j=1

H2(0, lj)

× V, V × L2(R)


1−s

=

V ∩ N∏
j=1

H1+s(0, lj)

× N∏
j=1

Hs(0, lj).

To verify that D(A) is dense in
(
V ∩

∏N
j=1H

1+s(0, lj)
)
×
∏N
j=1H

s(0, lj), we note that D(∆)×∏N
j=1D(0, lj) ⊂ D(A), where

D(∆) := {u ∈ V ∩
N∏
j=1

H2(0, lj) :
∑
j∈Ev

∂uj
∂nj

(v) = 0, ∀v ∈ Vint ;
∂u1

∂x
(0) = 0}

and D(0, lj) is the space of C∞ functions with compact support in (0, lj). As
∏N
j=1D(0, lj)

is dense in
∏N
j=1H

s(0, lj) (because 0 < s < 1/2), it remains to show that D(∆) is dense in
V ∩

∏N
j=1H

1+s(0, lj). For that, let ξ ∈ V ∩
∏N
j=1H

1+s(0, lj). For j ∈ {1, ..., N}, we take

ξ̂j = ξj − ξj(0)ηj − ξj(lj)η̃j ,

where ηj , η̃j are C∞ functions satisfying

ηj(0) = 1 near 0, ηj(lj) = 0 near lj and η̃j(0) = 0 near 0, η̃j(lj) = 1 near lj .

Then ξ̂j ∈ H1+s
0 (0, lj). As D(0, lj) is dense into H1+s

0 (0, lj), there exits a sequence ξ̂n,j ∈ D(0, lj)
such that ξ̂n,j → ξ̂j in H1+s

0 (0, lj) when n→∞. Setting

ξn,j := ξ̂n,j + ξj(0)ηj + ξj(lj)η̃j ,
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we see that ξn = (ξn,j)j=1,...,N ∈ D(∆) and ξn → ξ in
∏N
j=1H

1+s(0, lj).

AsD(∆) is dense in V ∩
∏N
j=1H

1+s(0, lj), D(A) is dense in
(
V ∩

∏N
j=1H

1+s(0, lj)
)
×
∏N
j=1H

s(0, lj),
which finishes the proof.

Then we have the following lemma:
Lemma 3.7. Assume that (u(0), u(1)) belongs to Xs, where 0 < s < 1/2, and (w(0), w(1)) =

(u(0) − u(0)
1 (0)ϕ, u(1)) where ϕ is a given smooth function satisfying (2.3). Then there exists a

positive constant C such that∥∥∥(w(0), w(1)
)∥∥∥2

D(AsD)
+
∣∣∣u(0)

1 (0)
∣∣∣2 ≤ C ∥∥∥(u(0), u(1)

)∥∥∥2

Xs
,

where D(AsD) is the domain of the operator As with Dirichlet boundary conditions at all exterior
nodes.

Proof. First, we know that there exists C > 0 such that∥∥∥(w(0), w(1)
)∥∥∥2

D(AsD)
≤ C

∥∥∥(w(0), w(1)
)∥∥∥2

(Ṽ ∩QN
j=1H

1+s(0, lj))×
QN
j=1H

s(0, lj)

by interpolation (see [23] for example).
This estimate leads to the existence of a positive constant C such that∥∥∥(w(0), w(1)

)∥∥∥2

D(AsD)
≤ C

∥∥∥(w(0), w(1)
)∥∥∥2

(V ∩QN
j=1H

1+s(0, lj))×
QN
j=1H

s(0, lj)
, (3.7)

because w(0) ∈ V ∩ Ṽ .
The Sobolev’s injection theorem and the fact that (w(0), w(1)) = (u(0) − u(0)

1 (0)ϕ, u(1)) imply
that there exists C > 0 such that∥∥∥w(0)

∥∥∥2

V ∩
QN
j=1H

1+s(0, lj)
+
∣∣∣u(0)

1 (0)
∣∣∣2 ≤ C ∥∥∥u(0)

∥∥∥2QN
j=1H

1+s(0, lj)
. (3.8)

By definition of w(1), we have also∥∥∥w(1)
∥∥∥2QN

j=1H
s(0, lj)

=
∥∥∥u(1)

∥∥∥2QN
j=1H

s(0, lj)
. (3.9)

Moreover, by the continuous injection of[
D(A), D(A0)

]
1−s = Xs

in  N∏
j=1

H2(0, lj)×
N∏
j=1

H1(0, lj),
N∏
j=1

H1(0, lj)× L2(R)


1−s

=
N∏
j=1

H1+s(0, lj)×
N∏
j=1

Hs(0, lj),

there exists C > 0 such that∥∥∥(u(0), u(1)
)∥∥∥2QN

j=1H
1+s(0, lj)×

QN
j=1H

s(0, lj)
≤ C

∥∥∥(u(0), u(1)
)∥∥∥2

Xs
. (3.10)
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The estimates (3.7)-(3.10) prove this lemma.
The main results of the paper are the following
Theorem 3.8. Assume that the weighted observability inequality (2.1) holds for every solution

of (1.7) with lim infn→∞ cn = 0 and cn 6= 0 for all n ∈ N∗. Let ω be defined by (3.6). Assume that
the initial data (u(0), u(1)) belong to Xs, characterized by Lemma 3.6, where 0 < s < 1/2. Let Φs
be a function such that the pair (ω, Φs) satisfies (3.1)-(3.4). Then there exists a constant C > 0
such that the corresponding solution u of (1.1) verifies

∀t ≥ 0, Eu(t) ≤ CΦs

(
1

t+ 1

)∥∥∥(u(0), u(1))
∥∥∥2

Xs
. (3.11)

Remark 3.9. We see that the decay rate of the energy directly depends on the behaviour of
the interpolation function Φs near 0 and thus of ω and of the weights c2n as n→∞.

Proof. We split up u as in (2.5) and we decompose w(0) = u(0) − u(0)
1 (0)ϕ and w(1) = u(1) as

w(0) = u(0) − u(0)
1 (0)ϕ =

∑
n≥1

w0,nϕ
D
n and w(1) = u(1) =

∑
n≥1

w1,nϕ
D
n ,

where (λ̃nw0,n)n, (w1,n)n ∈ l2(N∗). We write

E−(0) =
∑
n≥1

unω(n), (3.12)

where (un)n∈N∗ ∈ l1(N∗; R) is defined by

∀n ≥ 2, un =
1
2

(
λ̃2
n−1w

2
0,n−1 + w2

1,n−1

)
and

u1 = u
(0)
1 (0)2.

Observe that, by the construction (3.6) of ω, we have

E−(u, 0) ≤ E∗(u, 0).

Then, by (1.4) and (2.7) of Theorem 2.1, we have

Eu(0)− Eu(T ) =
∫ T

0

(
∂u1

∂t
(0, t))2dt ≥ CE−(0). (3.13)

Assume further that (u(0), u(1)) ∈ Xs. We define

E+(0) =
∑
n≥1

unn
2s. (3.14)

It follows from Theorem 3.2 (applied to the function f = u and the weight ω) that

1 ≤ Φs

E−(0)∑
n≥1

un

 E+(0)∑
n≥1

un
. (3.15)
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By the so-called Weyl’s formula (see for instance Theorem 1.3 of [1], Proposition 6.2 of [14] or
[19, 24]), we have

λ̃k ∼
kπ

L
, (3.16)

and thus, there exist c1, c2 > 0 such that, for n large enough, we have

c1
(n+ 1)π

L
≤ λ̃n ≤ c2

(n+ 1)π
L

.

Therefore, we have

E+(0) = 1
2

(
L
π

)2s∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)( (n+ 1)π
L

)2s

+
∣∣∣u(0)

1 (0)
∣∣∣2

≤ C

∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)
λ̃2s
n +

∣∣∣u(0)
1 (0)

∣∣∣2


≤ C

(∥∥(w(0), w(1)
)∥∥2

D(AsD)
+
∣∣∣u(0)

1 (0)
∣∣∣2) .

Consequently, by Lemma 3.7, we obtain that there exists C > 0 such that

E+(0) ≤ C
∥∥∥(u(0), u(1)

)∥∥∥2

Xs
.

Moreover,∑
n≥1

un =
1
2

∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)
+ u

(0)
1 (0)2 =

∥∥∥w(0)
∥∥∥2

Ṽ
+ u

(0)
1 (0)2 +

∥∥∥u(1)
∥∥∥2

L2(R)
.

Furthermore, there exists C ′ > 0 such that∥∥∥u(0)
∥∥∥2

V
=
∥∥∥w(0) + u

(0)
1 (0)ϕ

∥∥∥2

V
≤ C ′

(∥∥∥w(0)
∥∥∥2

V
+
∣∣∣u(0)

1 (0)
∣∣∣2) = C ′

(∥∥∥w(0)
∥∥∥2

Ṽ
+
∣∣∣u(0)

1 (0)
∣∣∣2)

because ϕ is given and w(0) ∈ Ṽ . Therefore, there exists C ′ > 0 such that∑
n≥1

un ≥ C ′
∥∥∥(u(0), u(1)

)∥∥∥2

V×L2(R)
.

Consequently, (3.15) becomes, by the increasing character of Φs

1 ≤ Φs

 E−(0)

C ′
∥∥(u(0), u(1))

∥∥2

V×L2(R)

 C
∥∥(u(0), u(1))

∥∥2

Xs

C ′
∥∥(u(0), u(1))

∥∥2

V×L2(R)

,

which yields

E−(0) ≥ C ′
∥∥∥(u(0), u(1))

∥∥∥2

V×L2(R)
Φ−1
s

∥∥(u(0), u(1))
∥∥2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

 , (3.17)
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with C, C ′ > 0. From (3.13) and (3.17), it follows that there exist C, C ′ > 0,

Eu(T ) ≤ Eu(0)− C ′
∥∥∥(u(0), u(1))

∥∥∥2

V×L2(R)
Φ−1
s

∥∥(u(0), u(1))
∥∥2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

 , (3.18)

for any (u(0), u(1)) ∈ Xs.
We follow now the proof of Ammari and Tucsnak [6]. We rewrite (3.18) as follows:

‖(u(T ), ut(T ))‖2V×L2(R) ≤
∥∥(u(0), u(1))

∥∥2

V×L2(R)

−C ′
∥∥(u(0), u(1))

∥∥2

V×L2(R)
Φ−1
s

(‖(u(0), u(1))‖2
V×L2(R)

C‖(u(0), u(1))‖2
Xs

)
.

This estimate remains valid in successive time-intervals [lT, (l + 1)T ]. Notice that there exists
C > 0 such that

∀t ≥ 0, ‖(u(t), ut(t))‖Xs ≤ C
∥∥∥(u(0), u(1)

)∥∥∥
Xs
, (3.19)

for 0 < s < 1
2 by interpolation, because it is true for s = 0 and s = 1 (see Theorem 5.1 of [18]).

By (3.19) and the fact that the energy is decreasing by (1.4) and that Φ−1
s is increasing, we obtain

that

‖(u((l + 1)T ), ut((l + 1)T ))‖2V×L2(R) ≤ ‖(u(lT ), ut(lT ))‖2V×L2(R)

−C ′ ‖(u(lT ), ut(lT ))‖2V×L2(R) Φ−1
s

(
‖(u((l+1)T ), ut((l+1)T ))‖2

V×L2(R)

C‖(u(0), u(1))‖2
Xs

)
,

(3.20)

for every l ∈ N ∪ {0} .
Our expression (3.20) coincides with (4.16) in Ammari and Tucsnak [6] (with G = Φ−1

s and
θ = 1/2). The rest of the proof follows as in [6], where (3.4) is used, by noticing that

‖(u((l + 1)T ), ut((l + 1)T ))‖2V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

< 1,

taking a higher constant C if necessary. Then (3.11) follows.
In addition, using (3.11) and making a particular and explicit choice of the concave function

Φs, we obtain a more explicit dependence of the weights on the decay rate of the energy:
Theorem 3.10. Assume that the weighted observability inequality (2.1) holds for every so-

lution of (1.7) with lim inf
n→∞

cn = 0 and cn 6= 0 for all n ∈ N∗. Let ω be defined by (3.6). We
set

∀t > 0, ϕ(t) =
ω(t)
t2

.

Then there exists a constant C > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2),
the corresponding solution u of (1.1) verifies

∀t ≥ 0, Eu(t) ≤ C(
ϕ−1

(
1
t+1

))2s

∥∥∥(u(0), u(1))
∥∥∥2

Xs
. (3.21)
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Proof. We set

Φs(t) =
1

(ϕ−1(t))2s

where 0 < s < 1/2. Then the pair (ω, Φs) verifies (3.1)-(3.2) on (0, ∞). Indeed, as Φs is the
composition of the functions t 7→ 1/ϕ−1(t) and t 7→ t2s which are increasing and concave functions
(by Lemma 2.6 of [7]), Φs is an increasing and concave function.

Moreover, we easily check that

1
ϕ−1(ω(t))

≥ 1
t

on [1, ∞). As a consequence, (3.3) holds on [1, ∞).
Finally, we have

1
t
Φ−1
s (t) = t

1−s
s ω

(
1
t

1
2s

)
,

which is an increasing function on (0, ∞) because 0 < s < 1/2, and therefore (ω, Φs) satisfy
(3.1)-(3.4). We apply now (3.11) of Theorem 3.8 with

Φs(t) =
(

1
ϕ−1(t)

)2s

,

to obtain the result.

4. Examples. In [14] the authors proved observability inequalities of type (2.1) on which
our analysis is based. In the case of star-shaped networks, the weights in (2.1) depend on the
irrationality properties of the ratios of the lengths of the strings. In the case of tree-shaped
networks, the observability inequality is proved under a condition (that is fulfilled generically within
the class of tree-shaped networks) that generalizes the condition on the irrationality of the ratios
of the lengths of the strings arising in the case of stars. Finally, in the case of general networks,
the observability inequality holds under the condition that all eigenfunctions of the network are
observable. This last result is a generalization of the previous one for stars and trees.

To illustrate the wide range of applications of the main result of this paper, in this section, we
apply our previous results to some examples of particular networks: a star-shaped network and a
particular tree. We obtain the weights (cn)n directly by [14] and deduce an explicit decay rate for
the corresponding dissipative system.

4.1. The star-shaped network with N strings. The star-shaped network with N strings
is formed by N strings connected at one point v, which constitutes a particular tree. Recall that
the damping term is located on the vertex v1, the origin of the controlled edge e1 of length l1. The
remaining N − 1 exterior nodes are denoted by vi, i = 2, ..., N , the string that contains vi by ei
and its length by li.

In [14], the authors proved the observability inequality (2.1) for the conservative system (1.7)
with Dirichlet boundary conditions at all exterior nodes with the following weights

ck = max
i=2,...,N

∏
j 6=i

∣∣∣sin(λ̃klj)
∣∣∣ , ∀n ≥ 1.
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v

v1

e1
v2

e2

vNeN

Fig. 4.1. A star-shaped network with N strings

First, if the ratio of any two of the lengths of the uncontrolled strings is an irrational number,
i.e. li/lj /∈ Q for all i 6= j, then for all k ∈ N, we have ck > 0. In this case, the energy of u solution
of the dissipative system (1.1) tends to 0 as t → ∞. This can be easily proved with LaSalle’s
invariance principle, using the energy as Lyapunov functional, but it does not yield any explicit
decay rate.

Thus assume that li/lj /∈ Q for all i 6= j. Denote by S the set of all real numbers ρ such
that ρ /∈ Q and so that its expansion as a continued fraction [0, a1, ..., an, ...] is such that (an) is
bounded. It is well known that S is uncountable and that its Lebesgue measure is zero. Roughly
speaking, the set S contains all irrational numbers which are badly approximated by rational ones.
In particular, by the Euler-Lagrange theorem, S contains all irrational quadratic numbers (i. e.
the roots of second order equations with rational coefficients).

We use also a well-known result asserting that, for all ε > 0 there exists a set Bε ⊂ R, such
that the Lebesgue measure of R\Bε is equal to zero, and a constant Cε > 0 for which, if ξ ∈ Bε,
then

o
ξm

o
≥ Cε
m1+ε

,

where
g
η

g
is the distance from η to the set Z:

o
η

o
= min
η−x∈Z

|x| .

In particular, S is contained in the sets Bε for every ε > 0 (see [14] for more details).
Then, by Corollary A.10 of [14], we have
Lemma 4.1. 1. If for all values i, j = 2, ..., N, i 6= j, the ratios li/lj belong to S, then there

exists a constant c > 0 such that

ck ≥
c

λ̃N−2
k

, ∀k ∈ N∗.

2. If for all values i, j = 2, ..., N, i 6= j, the ratios li/lj belong to Bε, then there exists a
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constant cε > 0 such that

ck ≥
cε

λ̃N−2+ε
k

, ∀k ∈ N∗.

With more restrictive assumptions on the lengths of the uncontrolled strings, we have another
bound for ck. Let us recall a definition of [14].

Definition 4.2. We say that the real numbers l1, ..., lN verify the conditions (S) if
• l1, ..., lN are linearly independent over the field Q of rational numbers;
• the ratios li/lj are algebraic numbers for i, j = 1, ..., N . In this case, we have the following

result (see Corollary A.10 of [14]):
Lemma 4.3. If the numbers l2, ..., lN verify the conditions (S), then for every ε > 0, there

exists a constant cε > 0 such that

ck ≥
cε

λ̃1+ε
k

, ∀k ∈ N∗.

Consequently, we have
Proposition 4.4. 1. Assume that for all values i, j = 2, ..., N, i 6= j, the ratios li/lj belong to

S. Then there exists a constant C > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2),
the corresponding solution u of (1.1) verifies

Eu(t) ≤ C

(t+ 1)
s

N−2

∥∥∥(u(0), u(1))
∥∥∥2

Xs
.

2. Assume that for all values i, j = 2, ..., N, i 6= j, the ratios li/lj belong to Bε for ε > 0.
Then there exists a constant Cε > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2),
the corresponding solution u of (1.1) verifies

Eu(t) ≤ C

(t+ 1)
s

N−2+ε

∥∥∥(u(0), u(1))
∥∥∥2

Xs
.

3. Assume that the numbers l2, ..., lN verify the conditions (S). Let ε > 0. Then there exists a
constant Cε > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2), the corresponding
solution u of (1.1) verifies

Eu(t) ≤ Cε

(t+ 1)
s

1+ε

∥∥∥(u(0), u(1))
∥∥∥2

Xs
.

Proof. We set α = N − 2 and cα = c in the first case, α = N − 2 + ε and cα = cε in the second
one and α = 1 + ε and cα = cε in the third one. For α ≥ 1, we take

ω(t) = d2
α

(
1
t

)2α

,

where dα verifies d2
α ≤ 1 and c2αλ̃

−2α
n−1 ≥ d2

αn
−2α for all n ∈ N∗, which is possible because of Weyl’s

formula (3.16).
We are in the situation 1 of Example 3.3 with p = 2α ≥ 1. Therefore, we take

Φs(t) =
(
t

d2
α

) s
α
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Then (ω, Φs) satisfy (3.1)-(3.4) and we apply Theorem 3.8 to finish the proof.
Finally, if the lengths l2, ..., lN verify li/lj /∈ Q for all i 6= j, but the conditions 1, 2 and 3 of

Proposition 4.4 are not verified, it can be proved that cn verify

cn ≥ ψ(n) > 0, ∀n ∈ N∗, (4.1)

where ψ is a positive convex and decreasing function which can be smaller than cλ̃−αn , with α > 0.
Indeed, we know by Appendix A of [14], that if we set

a(λ) =
N∑
i=2

∏
j 6=i

|sin(λlj)| ,

we have

a(λ) ≥ C min
i=2,...,N

∏
j 6=i

o li
lj
mi(λ)

o
,

where

mi(λ) = E
(
li
π
λ

)
,

E(η) being the closest integer number to η: |η −E(η)| =
g
η

g
. Therefore, it is sufficient to bound

by below
∥∥∥∣∣∣ liljm∣∣∣∥∥∥ for all m ∈ N and i 6= j to get a lower bound of cn.

Moreover, we know that Liouville’s numbers ξ are such that for all n ∈ N, there exists q ∈ N,
q > 1 such that

0 <
o
ξq

o
<

1
qn+1

.

That is why, when li/lj is a Liouville’s number (see [8]), the function ψ in (4.1) is smaller than
any negative power of λ̃n (for example of the order of e−n), and thus the decay rate of the energy
of u is slower than polynomial. Indeed, for instance, it is possible to construct real numbers ξ of
the form

ξ =
∑
k∈N

10−ak ,

where (ak)k is an increasing sequence of natural numbers, which are approximated by rational ones
faster than any given positive increasing function ρ:

o
10apξ

o
ρ(10ap) < ε, ∀p ∈ N

for ε > 0 (see [14], p.66 for more details).
Let us construct an irrational number x which is approximated by rational ones at an expo-

nential speed. The aim is to find an irrational xa such that

lim inf
q→∞

‖|xaq|‖
1
q = e−a, where a is a positive constant. (4.2)
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This construction uses the theory of continued fractions (see [21]). We recall here some results
about the continued fractions which are used in the sequel and we refer to [8, 15, 17] for more
details. Let [a0, a1, ..., an, ...] be the expansion as a continued fraction of x ∈ R\Q. We set
xn = [a0, a1, ..., an] = pn

qn
where pn, qn are integers. The integers pn, qn are relatively prime and

satisfy the following relations:

p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1 (4.3)

and

q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1. (4.4)

First, we can notice that

lim inf ‖|xq|‖
1
q = lim inf a

− 1
qn

n+1 , (4.5)

(see [21] for more details).
Thus finding xa ∈ R\Q such that (4.2) is equivalent to finding xa ∈ R\Q such that

lim inf a
− 1
qn

n+1 = e−a.

We construct a such xa by induction. Set a0 = 0, which determines p0 and q0. Then, if a0, ..., an,
p0, ..., pn, q0, ..., qn are found, we choose an+1 by

an+1 = E(eaqn).

Then, pn+1 and qn+1 are imposed by the relations (4.3) and (4.4).
Therefore, for all a > 0, we have found an irrational number xa such that there exists a positive

constant δ such that,

‖|qxa|‖ ≥ δe−aq, ∀q ∈ N. (4.6)

Consequently, if li/lj are reals of the form xai,j for ai,j > 0, which verify (4.6), then there exists a
positive constant C such that for all k ∈ N,

ck ≥ Ce−b(N−2)λ̃k
l
π ,

where b = maxi6=j(ai,j) > 0 and l = max
j

(lj). By the Weyl’s formula, there exists c2 > 0 such that

λ̃k ≤ c2kπ/L, and thus, we obtain

c2k ≥ Ce−2c2b(N−2)k = Ce−Ak,

where A = 2c2b(N − 2).
Consequently, we have
Proposition 4.5. Assume that for all values i, j = 2, ..., N, i 6= j, the ratios li/lj are reals of

the form xai,j for ai,j > 0 which verify (4.6). Then there exist constants C, C ′ > 0 such that for
any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2), the corresponding solution u of (1.1) verifies

∀t ≥ 0, Eu(t) ≤ C ′

(ln(C(1 + t)))2s

∥∥∥(u(0), u(1))
∥∥∥2

Xs
. (4.7)
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Proof. We apply Theorem 3.8 with

ω(t) = Ce−At,

for C > 0 and A > 2(2s+ 1), and

Φs(t) =

(
A

ln
(
C
t

))2s

.

We are in the situation 2 of Example 3.3 and we simply apply (3.11) to obtain (4.7).

4.2. A non star-shaped tree. Now let us consider a tree, which is not star-shaped, having
the simple structure in figure 4.2.

v1
e1

e2

e3

e4

e5

Fig. 4.2. A non star-shaped tree

Recall that the damping term is on the vertex v1, the origin of the damped edge e1 of length
l1. We will assume, in addition, that l4 = l2.

Recall that in [14], the authors proved the observability inequality (2.1) for the conservative
system (1.7) with Dirichlet boundary conditions at all exterior nodes with the weights ck given by

ck = max
{∣∣∣d5(λ̃k)

∣∣∣ , ∣∣∣d4(λ̃k)
∣∣∣ , ∣∣∣d2(λ̃k)

∣∣∣} ,
where

d5(λ) = − sin(λl2) sin(λl4), d4(λ) = − sin(λl2) sin(λl5),

d2(λ) = −(cos(λl3) sin(λl5) sin(λl4) + sin(λl3) cos(λl5) sin(λl4) + sin(λl3) sin(λl5) cos(λl4)).

First, if ck = 0, then
∣∣∣d5(λ̃k)

∣∣∣ =
∣∣∣d4(λ̃k)

∣∣∣ =
∣∣∣d2(λ̃k)

∣∣∣ = 0. As l4 = l2, we obtain sin(λl4) = 0
and sin(λl3) sin(λl5) = 0. If sin(λl3) = 0 (resp. sin(λl5) = 0), then, necessarily l3/l2 (resp. l5/l2)
is a rational number. Consequently, ck 6= 0 if l3/l2 and l5/l2 are irrational numbers and then, in
this case, the energy of u solution of (1.1) decays to 0.
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Secondly, applying Appendix A of [14], we know that there exists a positive constant c such
that for every k ∈ N∗,

ck ≥
c

λ̃αk

if one of the following three conditions holds
• the ratios l5/l2, l3/l2 and l3/l5 belong to S and α > 4
or
• the ratios l5/l2, l3/l2 and l3/l5 belong to some Bε and α > 4 + ε
or
• the numbers l3, l5, l2 satisfy the conditions (S) and α > 2 + ε.
Consequently, by using (3.11) of Theorem 3.8 and the first statement of Example 3.3, there

exists a constant C > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2), the
corresponding solution u verifies

Eu(t) ≤ Cε
(t+ 1)

s
α

∥∥∥(u(0), u(1))
∥∥∥2

Xs
.

Finally, if these previous conditions do not hold, we can apply Theorem 3.8 to obtain a decay
rate of the energy of u with an admissible pair (ω, Φs), or Theorem 3.10 to obtain a more explicit
decay rate of the energy.

As we have seen in these examples, our method to obtain decay rates of the dissipative system
(1.1) is of systematic application:

First, we find the weights (c2n) of the observability inequality (1.8) for the conservative problem
(1.7) with Dirichlet boundary conditions at all exterior nodes.

Then we take, for the weight ω, the lower convex envelop of the sequence (1, (c2n)n).
Finally we choose Φs such that (ω, Φs) satisfy (3.1)-(3.4) to obtain the decay rate of the energy,

given by

Φs

(
1

1 + t

)
.

Note that the study of the observability inequality (1.8) for (1.7) and the weights (c2n) have
been already done in some works (see [14]). Consequently we can use directly these results and
it is not necessary to show another observability inequality. In addition, notice that the weighted
observability inequality (2.7) holds under the same assumptions on the network that are needed
for the Dirichlet problem (1.7). This method allows to treat an important class of networks.

Moreover we can extend this general principle to networks of strings with damping in several
exterior vertices, or with damping in interior nodes.
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