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In this research, a sliding mode regulator with sine mapping is suggested for the stabilization of electricity generators being
affected by magnet interaction nonlinearities and generator nonlinearities. To reach this goal, our suggested regulator has the
following contributions: (a) it starts from the sliding mode regulator with the modifications that the saturation mapping is used to
reach a smoother performance instead of the signum mapping, and the sine mapping is applied to reach an upper bound in the
proportional gain error, (b) it is used to reach some chosen constant behaviors for the angle position, angle speed, and current in
the electricity generators, and (c) its stabilization is ensured based on the Lyapunov approach. We show the simulation of the
suggested regulator in two electricity generators.

1. Introduction

*e term alternative energy is utilized in the electricity
generation from the environment by the utilization of re-
newable fuels, evading the necessity of a no renewable fuel.
Some of the most relevant alternative energies can be
classified in electricity generators based on wind turbines,
magnets, or solar panels. *e electricity generator of this
research uses the interactions between static and dynamic
magnets for the electricity generation [1, 2]. *e motivation
of this research is the stabilization of electricity generators. A
regulator is one technique for the stabilization of electricity
generators which let us to reach some constant behaviors for
the angle position, angle speed, and current [3–8].

*ere are many kinds of nonlinearities which impede to
reach the stabilization of electricity generators, and some
examples of these nonlinearities are the arbitrary switching

[9–13], the time-delays [14–18], the impulse perturbations
[19, 20], or the unknown nonlinearities [21–24]. *e major
issue is that in most of the cases, the mentioned nonline-
arities are unknown. *e challenge of this research is the
stabilization of electricity generators being affected by un-
known nonlinearities.

*e magnet interaction nonlinearities and generator
nonlinearities are two unknown nonlinearities of the elec-
tricity generators which can severely affect their perfor-
mance [21–24]. Hence, the research about regulators for the
stabilization of electricity generators where the magnet in-
teraction nonlinearities and generator nonlinearities are
unknown, which is of interest, and two alternatives are the
proportional derivation regulator of [3–5] and the sliding
mode regulator of [6–8].

In this research, a sliding mode regulator with sine
mapping is suggested for the stabilization of electricity

Hindawi
Complexity
Volume 2020, Article ID 8683521, 13 pages
https://doi.org/10.1155/2020/8683521

mailto:rubio.josedejesus@gmail.com
https://orcid.org/0000-0002-2005-5979
https://orcid.org/0000-0002-2377-1639
https://orcid.org/0000-0001-6261-4081
https://orcid.org/0000-0002-5511-1053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8683521


generators being affected by magnet interaction nonline-
arities and generator nonlinearities. To reach this goal, our
suggested regulator has the following contributions:

(a) *e sliding model regulator starts from the pro-
portional derivation regulator with one additional
term of the signum mapping used to reach the
stabilization. *e sliding mode regulator with sine
mapping starts from the sliding mode regulator with
the modifications that the saturation mapping is
used to reach a smoother performance instead of the
signum mapping, and the sine mapping is applied to
reach an upper bound in the proportional gain error.

(b) Since the sliding mode technique is used in the
suggested regulator instead of themagnet interaction
nonlinearities and generator nonlinearities, the
knowledge of these nonlinearities is not required in
the electricity generators. Our suggested regulator is
also used to reach some chosen constant behaviors
for the angle position, angle speed, and current.

(c) We ensure the stabilization of the regulator error in
our suggested regulator based on the Lyapunov
approach. *is research is focused on the asymptotic
stabilization.

We organize the paper as follows: in Section 2, we
present the mathematical model of electricity generators. In
Section 3, we present the sliding mode regulator with sine
mapping for the stabilization of electricity generator. In
Section 4, we simulate the suggested regulator for the sta-
bilization of two electricity generators. In Section 5 we
present the conclusions and future research.

2. Mathematical Model and Regulators for the
Electricity Generators

In Appendix A of this research, the descriptions of the
electricity generator symbols are shown in Table 1 and the
parameter values for mathematical models are shown in
Table 2.*e descriptions of themathematical model symbols
are shown in Table 3, and the descriptions of the regulator
symbols are shown in Table 4.

In this section, we address some concepts such as the
mathematical model and regulators for the electricity
generators.

We consider the electricity generator with two static
magnets and two dynamic magnets of Figure 1 via the
utilization of two static magnets and two dynamic magnets.

We express the electricity generator with two static
magnets and two dynamic magnets as [1, 2]

z
•

1 � z2,

z
•

2 �
1

me 1/24a2 + 1/24c2 + r2g( ) +mi r
2
i + 2r2g( ) 

· v −
πB2r2i r

2
g sin z1

μ h2 + 2r2g 1 − cos z1( )[ ]0.5 +
πB2r2i r

2
g sin z1

μ h2 + 2r2g 1 + cos z1( )[ ]0.5 − bz2 ,

z
•

3 � −
R + Re( )
L

z3 +
Km

L
z2.

(1)

Since all magnets are equal, B11 � B12 � B.
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We consider the electricity generator with four static
magnets and four dynamic magnets of Figure 1 via the
utilization of four static magnets and four dynamic
magnets.

We express the electricity generator with four static
magnets and four dynamic magnets as [1, 2]

z
•

1 � z2,

z
•

2 �
1

me 1/24a2 + 1/24c2 + r2g( ) +mi r
2
i + 2r2g( )  v −

πB2r2i r
2
g sin z1

μ h2 + 2r2g 1 − cos z1( )[ ]0.5

−
πB2r2i r

2
g cos z1

μ h2 + 2r2g 1 + sin z1( )[ ]0.5 +
πB2r2i r

2
g sin z1

μ h2 + 2r2g 1 + cos z1( )[ ]0.5 +
πB2r2i r

2
g cos z1

μ h2 + 2r2g 1 − sin z1( )[ ]0.5 −
πB2r2i r

2
g sin z1 − π/4( )

μ h2 + 2r2g 1 − cos z1 − π/4( )( )[ ]0.5

−
πB2r2i r

2
g cos z1 − π/4( )

μ h2 + 2r2g 1 + sin z1 − π/4( )( )[ ]0.5 +
πB2r2i r

2
g sin z1 − π/4( )

μ h2 + 2r2g 1 + cos z1 − π/4( )( )[ ]0.5 +
πB2r2i r

2
g cos z1 − π/4( )

μ h2 + 2r2g 1 − sin z1 − π/4( )( )[ ]0.5 − bz2),

z
•

3 � −
R + Re( )
L

z3 +
Km

L
z2.

(2)

Since all magnets are equal, B11 � B12 � B21 � B22 � B.
From the electricity generator with two static magnets

and two dynamic magnets of equation (1) and the electricity

generator with four static magnets and four dynamic
magnets of equation (2), we express the mathematical model
for the electricity generators as

Table 1: Description of the electricity generator symbols.

Symbol Description

me *e mass of the link 1
a *e width of the link 1
c *e length of the link 1
mi *e mass of the dynamic magnet
ri *e radius of the surface in the magnet
m *e mass
rg *e radius of the body rotation
B11 *e magnet flux density produced by dynamic magnet 1 and static magnet 1
B12 *e magnet flux density produced by dynamic magnet 1 and static magnet 2
B21 *e magnet flux density produced by dynamic magnet 2 and static magnet 1
B22 *e magnet flux density produced by dynamic magnet 2 and static magnet 2
μ *e magnet permeability constant in magnets
h *e distance of a dynamic magnet and a static magnet on the axis z
Km *e electromotive force constant
R *e resistance
i *e current
L *e inductance
Re *e load resistance
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z
•

1 � z2,

Qz
•

2 + Jz2 + O z1( ) � v,
z3
•

+Xz3 + Yz1 � 0.

(3)

*e fictitious input v is affected by the generator non-
linearities, it is like a chattering movement presented in the
electricity generator. We express the fictitious input v as [6]

v �

nr u − wr( ), u≥wr,
0, wl < u<wr,
nl u − wl( ), u≤wl.

 (4)

We see that the model of equation (1) can be expressed as
the model of equations (3) and (4) with

Q � me

1

24
a2 +

1

24
c2 + r2g( ) +mi r

2
i + 2r2g( ),

J � b,

X �
R + Re( )
L

,

Y � −
Km

L
,

O z1( ) � πB2r2i r
2
g sin z1

μ h2 + 2r2g 1 − cos z1( )[ ]0.5

−
πB2r2i r

2
g sin z1

μ h2 + 2r2g 1 + cos z1( )[ ]0.5.

(5)

Table 2: Parameters of electricity generators.

Parameter Value Parameter Value

mi 9.2×10–2 kg Re 30Ω
μ 9.42×10–5Hm− 1 rg 7.5×10–2m
B 8.4×10–1T ri 2.9×10–2m
L 6.03×10–1H a 1.5×10–1m
Km 45×10–2Vsrad− 1 c 1.5×10–2m
b 1×10–1 kgm2 rads− 1 nr 0.5
me 5×10–3 kg nl 0.5
h 4×10–2m wr 0.5
R 6.96Ω wl − 0.5

Table 3: Description of the mathematical model symbols.

Symbol Description

z1 ∈ R *e angle position
z2 ∈ R *e angle speed
z3 ∈ R *e current
v ∈ R *e fictitious input of torque produced by the magnets interaction
O(z1) ∈ R *e magnets interaction nonlinearities
z1, z2, z3 *e states
Q, J, X, Y Scalar constants
u *e input of the generator nonlinearities
nr, nl, wr, wl Constant terms for the generator nonlinearities
P(u) *e generator nonlinearities

Table 4: Description of the regulators symbols.

Symbol Description

z̃1 � z1 − z
d
1 ∈ R *e position regulator error

zd1 ∈ R *e constant reference position
z̃2 � z2 ∈ R *e speed regulator error
K1 ∈ R *e proportional gain
K2 ∈ R *e derivation gain
sign(·) *e signum mapping
sat(·) *e saturation mapping
sin(·) *e sine mapping
cos(·) *e cosine mapping
K *e sliding mode gain
z̃21 � (z1 − z

d
1 )

2 *e position regulator error
z̃22 � z2

2 *e speed regulator error
z̃23 � z3

2 *e current regulator error
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We see that themodel of equation (2) can be expressed as
the model of equations (3) and (4) with

Q � me

1

24
a2 +

1

24
c2 + r2g( ) +mi r

2
i + 2r2g( ),

J � b,

X �
R + Re( )
L

,

Y � −
Km

L
,

O z1( ) � πB2r2i r
2
g sin z1

μ h2 + 2r2g 1 − cos z1( )[ ]0.5 +
πB2r2i r

2
g cos z1

μ h2 + 2r2g 1 + sin z1( )[ ]0.5 −
πB2r2i r

2
g sin z1

μ h2 + 2r2g 1 + cos z1( )[ ]0.5 −
πB2r2i r

2
g cos z1

μ h2 + 2r2g 1 − sin z1( )[ ]0.5

+
πB2r2i r

2
g sin z1 − (π/4)( )

μ h2 + 2r2g 1 − cos z1 − (π/4)( )( )[ ]0.5 +
πB2r2i r

2
g cos z1 − (π/4)( )

μ h2 + 2r2g 1 + sin z1 − (π/4)( )( )[ ]0.5 −
πB2r2i r

2
g sin z1 − (π/4)( )

μ h2 + 2r2g 1 + cos z1 − (π/4)( )( )[ ]0.5

−
πB2r2i r

2
g cos z1 − (π/4)( )

μ h2 + 2r2g 1 − sin z1 − (π/4)( )( )[ ]0.5.
(6)
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Figure 1: Electricity generator with static magnets and dynamic magnets.
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*e generator nonlinearities of electricity generators are
symmetric as nr � nl in equation (4); consequently, we can
express the fictitious input v of equation (4) as

v �

nlu, u≥wr,
nlu, wl < u<wr,
nlu, u≤wl,

 +

− nlwr, u≥wr,
− nlu, wl < u<wr.
− nlwl, u≤wl,

 (7)

After some mathematical operations, the fictitious input
v of equation (7) is expressed as

v � nlu − P(u),

P(u) �

nlwr, u≥wr,
nlu, wl < u<wr,
nlwl, u≤wl.


(8)

We notice that the generator nonlinearities P(u) are
bounded as

|P(u)| ≤P. (9)

Remark 1. Even the mathematical model for the electricity
generators of equations (3) and (4) seems to be simple, the
complexity in this mathematical model is mainly focused on
the magnets interaction nonlinearities O(z1) ∈ R, such that
the design and validation of this mathematical model
resulted in two publications [1, 2].

Remark 2. From equations (5) and (6), it is observed that the
magnet interaction nonlinearities O(z1) ∈ R are the most
complex part in the mathematical model of equations (3)
and (4), while Q, J, X, and Y are scalar constants corre-
sponding to the electricity generators. *us, these magnet
interaction nonlinearities O(z1) ∈ R are mainly focused on
this research.

Now, we express the proportional derivation and sliding
mode regulators due to they will be utilized for the com-
parisons in a future section.

We express the proportional derivation regulator as
[3–5]

u �
1

nl
− K1z̃1 − K2z̃2{ }. (10)

We express the sliding mode regulator as [6–8]

u �
1

nl
− K1z̃1 − K2z̃2 − Ksign z̃2( ){ },

sign z̃2( ) �
1, z̃2 > 0,

0, z̃2 � 0,

− 1, z̃2 < 0.


(11)

3. Sliding Mode Regulator with Sine Mapping

In this section, we address the design and stabilization of the
sliding mode regulator with sine mapping.

We notice that the magnet interaction nonlinearities
O(z1) of equation (3) are bounded as

O z1( )∣∣∣∣ ∣∣∣∣≤O. (12)

Since we use the reference speed states as zd2 � 0, we
consider the stabilization case, and the zd1 ∈ R reference
position is a constant in this research. We express the sliding
mode regulator with sine mapping u as

u �
1

nl
− cos z̃1( )TK1 sin z̃1( ) − K2z̃2 − Ksat z̃2( ){ },

sat z̃2( ) �
1, z̃2 > 1,

z̃2, z̃2
∣∣∣∣ ∣∣∣∣≤ 1,

− 1, z̃2 < − 1,


(13)

where K is a constant such as O + P≤K, where O is in
equation (12) and P is in equation (9). It is relevant to note
that we do not know the behaviors of O(z1) and P(u), and
we use their upper bounds O and P.

Remark 3. Since we consider the stabilization case, we do
not require the application of the sine mapping to the term
K2z̃2, i.e., since z

d
2 � 0 and z̃2 � z2, we obtain small values in

z̃2. Since the state z3 is dependent of the other states z1, z2,
the stabilization of the states z1, z2 yields the stabilization of
the state z3 and we do not require the state z3 in the
regulator.

Remark 4. *e convergence speed of the suggested regulator
can be affected by choosing the gains K1, K2, and K. *e
complexity in the implementation of the suggested regulator
is in the programming of the saturation mapping sat(·);
nevertheless, this complexity also is in all the regulators
which use mappings.

In Figure 2, we show the slidingmode regulator with sine
mapping of equations (13), (12), and (9) termed SMWS for
the stabilization in the electricity generators of equations (3)
and (4) termed EGM.

From Figure 3, it is shown that the proportional deri-
vation regulator of equation (10) and [3–5] termed PD, the
sliding model regulator of equations (11), (12,) and (9) and
[6–8] termed SM, and the suggested sliding mode regulator
with sine mapping of equations (13), (12), and (9) termed
SMWS use the proportional gain K1 and the derivation gain
K2. Furthermore, the existence, similarities, and differences
between PD, SM, and SMWS are detailed as follows: the
sliding model regulator starts from the proportional deri-
vation regulator with one additional term of the signum
mapping used to reach the stabilization, the sliding mode
regulator with sine mapping starts from the sliding mode
regulator with themodifications that the saturationmapping
is used to reach a smoother performance instead of the
signum mapping, and the sine mapping is applied to reach
an upper bound of the proportional gain error.

Now, we will discuss the stabilization of the regulator.
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Theorem 1. /e stabilization in the regulator error of the
sliding mode regulator with sine mapping of equations (13),
(12), and (9), and electricity generators of equations (3) and
(4) are ensured, and the speed regulator error z̃2 will converge
to

limsup
T⟶∞

z̃2
 2 � 0, (14)

with T as the final time, z̃2 � z2, the magnets interaction
nonlinearities and generator nonlinearities are bounded as
|O(z1)|≤O, |P(u)|≤P, and O + P≤K.

Proof. We denote the candidate mapping as

V1 �
1

2
z̃T2Qz̃2 +

1

2
sin z̃1( )TK1 sin z̃1( ), (15)

with Q as the positive constant of equation (3) andK1 as the
positive constant of equation (13). We denote z̃2 � z2, we
substitute equations (13) and (8) into equation (3), and we
obtain the closed-loop model as

Qz
•

2 + Jz2 + O z1( ) � v � nlu − P(u)
� nl

1

nl
− cos z̃1( )TK1 sin z̃1( ) − K2z̃2 − Ksat z̃2( ){ } − P(u),

⇒Qz̃
•

2 � − cos z̃1( )TK1 sin z̃1( ) − K2z̃2 − Jz̃2 − O z1( ) − P(u) − Ksat z̃2( ).
(16)

z d

u =
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≤ 1
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.
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0
TK1sin nr (u – wr)

z1 = z2,

Qz2 + J z2 + O (z1) = v,

z3 + X z3 + Yz1 = 0

u ≥ wr
wl <u < wr

u ≤ wlnl (u – wl)
–K2

n
j

1

z1,
z2

z1,
z2

~ (z1)~ (z1)~

(z2)~

(z2) =~
z2
~

z2
~

z2
~

z2
~

z2 – Ksat

sat

~~
1

—

+

1

–1

Figure 2: Sliding mode regulator with sine mapping.
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We use the fact z̃2 � z2, and we obtain the derivation of
equation (15) as

V
•

1 � z̃
T
2Qz̃

•

2 + z̃
T
2 cos z̃1( )TK1 sin z̃1( ), (17)

with z̃
•

1 � z
•

1 − z
•d

1 � z2 − z
d
2 � z2 � z̃2 and z̃

•

2 � z
•

2. We
substitute last equation (16) into equation (17) as

V
•

1 � z̃
T
2Qz̃

•

2 + z̃
T
2 cos z̃1( )TK1 sin z̃1( ),

⇒V
•

1 � z̃
T
2 − cos z̃1( )TK1 sin z̃1( ) − K2z̃2− Jz̃2 − O z1( ) − P(u) − Ksat z̃2( )}z̃T2 cos z̃1( )TK1 sin z̃1( ),{

⇒V
•

1 � − z̃
T
2K2z2 − z̃

T
2 Jz̃2 − z̃

T
2O z1( ) − z̃T2P(u) − z̃T2Ksat z̃2( ) − z̃T2 cos z̃1( )TK1 sin z̃1( ) + z̃T2 cos z̃1( )TK1 sin z̃1( ).

(18)

After somemathematical operations,V
•

1 of equation (18)
is as

V
•

1 � − z̃
T
2K2z̃2 − z̃

T
2 Jz̃2 − z̃

T
2O z1( ) − z̃T2P(u) − z̃T2Ksat z̃2( ).

(19)
Equation (19) can be expressed as

V
•

1 � − z̃
T
2 K2 + J[ ]z̃2 − z̃T2O z1( ) − z̃T2P(u) − z̃T2Ksat z̃2( ).

(20)
Form equation (12),

O(z1)≤ |O(z1)| + |P(u)|≤O + P≤K, and from equation

(13), sat(z̃2) �
1 z̃2 > 1
z̃2 |z̃2|≤ 1
− 1 z̃2 < − 1

 , we notice that there are

three cases of the saturation mapping: (1) if z̃2 > 1, then
sat(z̃2) � 1 and z̃2 � |z̃2|, and we substitute into equation
(20) as

V
•

1 ≤ − z̃T2 K2 + J[ ]z̃2 + z̃2∣∣∣∣ ∣∣∣∣TO + z̃2∣∣∣∣ ∣∣∣∣TP − z̃2∣∣∣∣ ∣∣∣∣TK,
⇒V

•

1 ≤ − z̃T2 K2 + J[ ]z̃2. (21)

(2) If |z̃2|≤ 1, then sat(z̃2) � z̃2 and z̃
T
2 z̃2 � |z̃2|

T|z̃2|, and
we substitute into equation (20) as

V
•

1 � − z̃
T
2 K2 + J[ ]z̃2 + z̃2∣∣∣∣ ∣∣∣∣TO + z̃2∣∣∣∣ ∣∣∣∣TP − z̃T2 z̃2K,

⇒V
•

1 � − z̃
T
2 K2 + J[ ]z̃2 + z̃2∣∣∣∣ ∣∣∣∣TO + z̃2∣∣∣∣ ∣∣∣∣TP − z̃2∣∣∣∣ ∣∣∣∣T z̃2∣∣∣∣ ∣∣∣∣K,

⇒V
•

1 � − z̃
T
2 K2 + J[ ]z̃2 − z̃2∣∣∣∣ ∣∣∣∣T z̃2

∣∣∣∣ ∣∣∣∣K − O − P[ ],
⇒V

•

1 � − z̃
T
2 K2 + J[ ]z̃2,

(22)
since, in this case, |z̃2|≤ 1,
|z̃2|K − O − P≥ 0⇒O + P≤ |z̃2|K≤K. (3) If z̃2 < − 1, then
sat(z̃2) � − 1 and z̃2 � − |z̃2|, and we substitute into equation
(20) as

V
•

1 � − z̃
T
2 K2 + J[ ]z̃2 − − z̃2

∣∣∣∣ ∣∣∣∣T( )O z1( ) − − z̃2
∣∣∣∣ ∣∣∣∣T( )P(u) − − z̃2

∣∣∣∣ ∣∣∣∣T( )K(− 1),
⇒V

•

1 ≤ − z̃T2 K2 + J[ ]z̃2 + z̃2∣∣∣∣ ∣∣∣∣TO + z̃2∣∣∣∣ ∣∣∣∣TP − z̃2∣∣∣∣ ∣∣∣∣TK,
⇒V

•

1 ≤ − z̃T2K2z̃2.

(23)

From equations (21)–(23), the three cases have the same
inequality expressed as

V
•

1 ≤ − z̃T2 K2 + J[ ]z̃2. (24)

From the results of [5, 6], the stabilization of the reg-
ulator error is ensured. We integrate equation (24) from the
initial time 0 to the final time T as

∫T
0
z̃T2 K2 + J[ ]z̃2dt≤V1,0 − V1,T ≤V1,0,

⇒ K2 + J[ ]
T

∫T
0
z̃2
 2dt≤ 1

T
∫T

0
z̃T2 K2 + J[ ]z̃2dt≤ 1TV1,0,

(25)

and we apply the limsup
T⟶∞

to both sides of the last inequality of
equation (25) as

limsup
T⟶∞

1

T
∫T

0
z̃2
 2dt( )≤ V1,0

K2 + J[ ] limsup
T⟶∞

1

T
( )[ ] � 0.

(26)
If T⟶∞, then ‖z̃2‖

2 � 0, and we comply with
equation (14).

Remark 5. From equations (1) and (2), it can be seen that the
angle speed behavior affects the angle position and current
behaviors in the electricity generators. *en, the angle speed
convergence of equation (14) is used to reach some chosen
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constant behaviors for the angle position and current in the
electricity generators.

Remark 6. *is research focused on electricity generators.
Nevertheless, our suggested regulator could be applied to
other plants with similar structure to equations (3) and (4),
such as are the motors, machines, robots, pendulums, or
cranes.

Remark 7. *ere are several stabilization results such as the
exponential stabilization [14, 17, 18, 20], the asymptotic
stabilization [5, 6, 16, 22, 23], the uniformly ultimately
boundedness [9–11], the feedback stabilization [15, 24], the
stochastic stabilization [12, 21], or the mean square stabi-
lization [13]. *is research focused on the asymptotic
stabilization.

4. Simulations

In this section, we compare the sliding mode regulator with
sine mapping of equations (13), (12), and (9) termed SMWS,
the proportional derivation regulator of equations (10), (12),
and (9), and [3–5] termed PD, and the sliding mode reg-
ulator of equations (11), (12), and (9), and [6–8] termed SM
for the stabilization of the two electricity generators of
equations (3) and (4). *e existence, similarities, and dif-
ferences between PD, SM, and SMWS are detailed in Fig-
ure 3. Our goal in the regulators is that the angle position,
angle speed, and current in electricity generators must reach
some chosen constant references for the angle position,
angle speed, and current as fast as possible in presence of the
magnet interaction nonlinearities and generator nonline-
arities. *e chosen constant references in the angle position
are higher or equal to zero, while the chosen constant
references in the angle speed and current are equal to zero.
We utilize the root mean square error (RMSE) for the
comparisons as

RMSE �
1

T
∫T
0
z̃2dt( )1/2

, (27)

with z̃2 � z̃21 + z̃
2
2 + z̃

2
3 for the states error or z̃2 � v2 for the

fictitious input error.
Electricity generator with two static magnets and two

dynamic magnets.
We express the electricity generator with two static

magnets and two dynamic magnets in equations (1)–(5).
PD of [3–5] is expressed by equations (10), (12), and (9),

with parameters K1 � 100 and K2 � 0.1.
SM of [6–8] is expressed by equations (11), (12), and (9),

with parameters K1 � 100, K2 � 0.1, and K � 0.5.
SMWS is expressed by equations (13), (12), and (9), with

parameters K1 � 100, K2 � 0.1, and K � 0.5.
We compare the fictitious input in Figure 4 and a zoom

in Figure 5, we compare the states in Figure 6 and a zoom in
Figure 7, and we show the RMSE of equation (27) in Figure 6

and Table 5 for the electricity generator with two static
magnets and two dynamic magnets.

In Figures 6 and 7, since the angle position, angle speed,
and current of SMWS reach better the constant references in
the angle position, angle speed, and current than the angle
position, angle speed, and current of PD and SM, we can see
that SMWS has the best performance. In Figures 4 and 5, the
fictitious input for SMWS is smaller than for PD and SM.
And in Figure 8 and Table 5, since the RMSE for the SMWS
is smaller than for PD and SM, we can show that SMWS has
the best performance.
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Figure 4: Fictitious input of the first electricity generator.
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Figure 5: A zoom in the fictitious input of the first electricity
generator.
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Electricity generator with four static magnets and four
dynamic magnets.

We express the electricity generator with four static
magnets and four dynamic magnets in equations (2)–(6).

PD of [3–5] is expressed by equations (10), (12), and (9),
with parameters K1 � 100 and K2 � 0.1.

SM of [6–8] is expressed by equations (11), (12), and (9),
with parameters K1 � 100, K2 � 0.1, and K � 0.5. SMWS is
expressed by equations (13), (12), and (9), with parameters
K1 � 100, K2 � 0.1, and K � 0.5.

We compare the fictitious inputs in Figure 9 and a zoom
in Figure 10, we compare the states in Figure 11 and a zoom
in Figure 12, and we show the RMSE of equation (27) in
Figure 13 and Table 6 for the electricity generator with four
static magnets and four dynamic magnets.

In Figures 11 and 12, since the angle position, angle
speed, and current of SMWS reach better the constant
references in the angle position, angle speed, and current
than the angle position, angle speed, and current of PD and

50

0

Z
2
 (

ra
d

 /
 s

)

–50

0 1 2 3 4 5 6 7 8 9

0.4

0.2

0

Z
1
 (

ra
d

)

0 1 2 3 4 5 6 7 8 9

Z
3
 (

am
p

) 0.2

0

–0.2

0 1 2 3 4

Time (s)

5 6 7 8 9

Reference

PD

SM

SMWS

Figure 6: States of the first electricity generator.
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Table 5: Comparisons for the first electricity generator.

RMSE for z̃ RMSE for v

PD 2.0154 0.7386
SM 1.8226 0.7463
SMWS 1.7835 0.6656
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Figure 8: RMSE of the first electricity generator.
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Figure 9: Fictitious input of the second electricity generator.
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SM, we can see that SMWS has the best performance. In
Figures 9 and 10, the fictitious input for SMWS is smaller
than for PD and SM. And in Figure 13 and Table 6, since the
RMSE for the SMWS is smaller than for PD and SM, we can
show that SMWS has the best performance.

Remark 8. *e course of RMSE is not monotonically in-
creasing in Figures 8 and 13 even that it is indirectly sug-
gested in equation (27) based on the following two reasons:
(a) the final timeT should increase formore simulation time,
which is the denominator of equation (27), and (b) our goal
is that the state error z̃2 � z̃21 + z̃

2
2 + z̃

2
3 or the fictitious input

error z̃2 � v2 should decrease for more simulation time,
which is the numerator of equation (27). *e mentioned
reasons result in the decreasing of RMSE.
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Figure 10: A zoom in the fictitious input of the second electricity
generator.
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Figure 11: States of the second electricity generator.
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Figure 12: A zoom in the states of the second electricity generator.
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Figure 13: RMSE of the second electricity generator.

Table 6: Comparisons for the second electricity generator.

RMSE for z̃ RMSE for v

PD 2.0108 0.6995
SM 1.8230 0.7098
SMWS 1.7821 0.6224
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Remark 9. Since Figures 4, 5, 9, and 10 describe the impulses
used as the excitation to start moving these electricity
generators and Figures 6, 7, 11, and 12 describe the angle
position, angle speed, and current used as the responses of
these electricity generators, the simulations could represent
the real experiments.

5. Conclusions

In this research, we suggest a sliding mode regulator with
sine mapping for the stabilization of two electricity gener-
ators being affected by unknown nonlinearities. In the
simulations, we show that since angle position, angle speed,
and current of our sliding mode regulator with sine mapping
reach better the constant references of angle position, angle
speed, and current than the angle position, angle speed, and
current of the proportional derivation and sliding mode
regulators, we can see that suggested regulator has the best
performance in presence of the magnets interaction non-
linearities and generator nonlinearities. Our regulator il-
lustrates the viability, efficiency, and potential of the
approach especially relevant in electricity generators. Our
suggested technique could also be applied to other
mechatronic systems such as the electricity motors, ma-
chines, robots, pendulums, or cranes. *e drawback of our
regulator is that it is designed for models with structure of
electricity generators, for models with other structures, the
design should require modifications. In the future, we will
apply our suggested regulator for the stabilization of robots
or pendulums being affected by unknown nonlinearities.

Appendix

In this section, we express the tables used in this research.
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