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ABSTRACT 

This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown 
system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for ap-
proximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear 
system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the ef-
fectiveness of the proposed control scheme. 
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1. Introduction 

Over the past few decades, time-delay systems have 
drawn much attention from researchers throughout the 
world. This is due to their important role in many practi- 
cal systems. A number of research results concerning 
time-delay systems exist in literature [1-6] and the refer- 
ences therein. As time-delay is a main source of instabil- 
ity and poor performance, considerable attention has 
been given for analysis and synthesis of such systems.  

Since most of the physical systems are in continuous 
time, a considerable amount of attention has been payed 
to stability and control of continuous-time linear systems 
with delay [7-11]. Delay independent and, less conserva- 
tive, delay dependent sufficient stability conditions in 
terms of Riccati or linear matrix inequalities (LMIs) have 
been derived by using Lyapunov-Krasovskii functional 
(LKF) or Lyapunov-Razumikhin functions. For continu- 
ous-time systems with uncertain, non-small delay a new 
construction of the LKF has been introduced in [12]. To 
a nominal LKF, which is appropriate to the nominal sys- 
tem (with nominal delays), terms are added which corre- 
spond to the perturbed system and which vanish when 
the delay perturbations approaches to zero [3]. Discrete- 
time delay systems have drawn less attention as com- 
pared to continuous-time delay systems. For linear dis- 
crete-time delay systems, the contribution in [13] is 
worth mentioning. In [13], the delay involved in the sys- 
tem is removed at the cost of increased order of the sys- 
tem. However, the systems involving large delays, the 
proposed scheme in [13] is invariably leads to large scale 
systems. Furthermore, for systems with unknown or 

time-varying delays the proposed technique in [13] can- 
not be applied. In [14], delay dependent and independent 
conditions have been derived for determining the as- 
ymptotic stability of discrete-time systems with uncertain 
delay, time varying delay and norm-bounded uncertain- 
ties. Robust stability and guaranteed cost control problem 
is solved in [3], for discrete-time delay systems. The 
work on delay-dependent robust stabilization of uncer- 
tain discrete-time state-delayed systems is proposed in 
[15]. 

For continuous-time delay nonlinear systems the work 
on adaptive neural network control with unknown time 
delays is reported in [16]. Adaptive neural control of 
nonlinear time-delay systems with unknown virtual con- 
trol coefficients is proposed in [17]. In [18] work is pre- 
sented on adaptive neural control for a class of nonline- 
arly parametric time-delay system. Backstepping control 
for a class of delayed nonlinear systems with input con- 
straints is reported in [19]. Fuzzy approximation based 
adaptive control of strict-feedback nonlinear systems 
with time delays is shown in [20]. 

In [21] problem of feedback stabilization of nonlinear 
discrete-time systems with delays is explained. In this by 
using the Lyapunov-Razumikhin approach, general con- 
ditions for stabilizing the closed-loop system is derived. 
The stability analysis of discrete-time systems with time 
varying state-delay is shown in [22]. By defining a new 
Lyapunov functions and by making use of novel tech- 
niques to achieve delay dependence, several new condi- 
tions are obtained for the asymptotic stability of these 
systems. The problem of designing nonlinear observers 

Copyright © 2012 SciRes.                                                                                  ICA 



V. K. DEOLIA  ET  AL. 338 

for dynamic discrete-time systems with both constant and 
time-varying delay nonlinearities is addressed in [23]. In 
[23] the nonlinear system is assumed to verify the usual 
Lipschitz condition that permits to transform the nonlin- 
ear system into a linear time-delay system with struc- 
tured uncertainties. An optimal control scheme for a class 
of discrete-time nonlinear systems with time delays in 
both state and control variables with respect to a quad- 
ratic performance index function using adaptive dynamic 
programming is presented in [24]. State feedback stabi- 
lization of discrete-time delay nonlinear system is re- 
ported in [25]. In [25] a simple LMI condition is obtained 
for asymptotic stabilization through an appropriate Lya- 
punov function and judicious mathematical manipula- 
tions. An explicit state feedback law is provided that may 
be seen as a generalization of the existing results. 

The main significance of this paper is to guarantee the 
stabilization of the unknown single-input-single-output 
(SISO) delayed systems. The unknown nonlinear func- 
tions of the system are approximated through Chebyshev 
neural networks (CNNs). Through a suitable Lyapunov- 
Krasovskii functional, conditions are derived to guaran- 
tee the stabilization of the nonlinear system in terms of 
simple LMIs. The organization of this paper is as follows: 
The CNN structure is presented in Section 2. Problem 
formulation is given in Section 3. The stability analysis is 
detailed in Section 4. To show the effectiveness of pro- 
posed scheme simulation results are reported in Section 5. 
The note ends with conclusion in Section 6. 

Notations: ·  denotes Euclidean norm, 
F
·

tr
 implies 

Frobenius norm. The  stands for trace of matrix. Up-
per subscript T is the transpose of matrix and the sym-
metric entries in a symmetric matrix are given by *. 

2. CNN Structure 

Artificial neural networks (ANNs) emerged as powerful 
learning technique to perform complex tasks in highly 
nonlinear dynamic environment. Some of the basic ad-
vantages of ANN models are: their ability to learn on the 
basis of optimization of an appropriate error function and 
their excellent performance for approximation of nonlin-
ear functions. As an alternative to multilayer perceptron 
(MLP), radial basis function (RBF) networks have been 
considered, primarily because of its simple structure. The 
RBF networks can learn functions with local variations 
and discontinuities effectively and also possess universal 
approximation capability [26]. This network represents a 
function of interest by using members of family of com- 
pactly or locally supported basis functions, out of which 
radially-symmetric Gaussian functions, are found to be 
quite popular. A RBF network has been proposed for 
effective identification of nonlinear dynamic systems [27, 
28]. In these networks, however, choosing an appropriate 
set of RBF centers for effective learning still remains a 

problem. 
The major drawback of feed forward neural network 

such as a MLP trained with back propagation (BP) algo- 
rithm is that it requires a large amount of computation for 
learning. A single-layer functional link artificial neural 
network (FLANN) in which the need of hidden layer is 
eliminated by expanding the input pattern using Cheby- 
shev polynomials. The main advantage of this network is 
that it requires much less computation as compared to a 
multilayer perceptron (MLP) [29]. 

The structure of Chebyshev neural network (CNN) is 
shown in Figure 1 CNN is a functional link network 
(FLN) based on Chebyshev polynomials. There are two 
main parts in the architecture of CNN, namely, numerical 
transformation part and learning part. Numerical trans- 
formation deals with input to hidden layer by approxi- 
mate transformable method. The transformation is a 
functional expansion (FE) of input pattern comprising of 
a finite set of Chebyshev polynomials. As a result the 
Chebyshev polynomials basis can be viewed as a new 
input vector. The learning part is a functional-link neural 
network based on Chebyshev polynomials [30-33]. The 
Chebyshev polynomials can be obtained by a recursive 
formula 

       1 1 02 , 1i i iT x xT x T x T x         (1) 

where, i  are Chebyshev polynomials, i is the order 
of polynomials chosen and here x is a scalar quantity. 
The different choices of 

T x

 1

The output of single layer neural network is given by 
T x

ˆ ˆ( ) T

 are x & 2x. 

g x w

w

                (2) 

where,  are the weights and   is the suitable basis 
function of neural network. Based on the approximation 
property of CNN [30-33], there exist ideal weights w, so 
that the function  g x

  Tg x w

 to be approximated can be rep-
resented as 

            (3) 

where,   is the CNN functional reconstruction error 
vector and   N  is bounded. 

Approximation of complex nonlinear systems becomes 
easier as CNN is a single layer neural network. 
 
 

F

x1

x2

w


 

   g
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Figure 1. Chebyshev neural network. 
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3. Problem Formulation 

Consider the discrete-time nonlinear system with a fixed 
known delay [25] 

          1 dx k Ax k A x k h    



g x k u k   (4) 

where,  nx k R ( ) mu k R and  denote the state and 
input vectors respectively at time instant . A and dk A  
are constant matrices of appropriate dimensions. 

  g x k  is a unknown nonlinear function of a given 
system in (4), and h is a positive known number repre-
senting delay. 

For the system (4) the stabilizing controller is chosen 
as 

 
    2 2

ˆ
u k Ax k

g x k
    1

dA x k h  

  ˆ

  (5) 

where g x k


 is the approximated value of unknown 
system function  ĝ x k . Let us assume   ˆ 0g x k 

w

.  
The objective of the current work is to ensure the sta-

bility and performance of the nonlinear system (4), using 
the controller (5) and appropriate Lyapunov-Krasovskii 
functional (11). 

4. Stability Analysis 

For the stability analysis, the following assumptions are 
needed to proceed. 

Assumption 1: (Bounded Ideal NN Weights): The ideal 
NN weights  are bounded so that F M , with w w

Mw  a known bound. The symbol 
F
·  denotes the Fro-

benius norm, i.e. given a matrix A, the Frobenius norm is 
given by [34], 

 2 T

F
tr AA A  

Assumption 2: Let      ˆg x k Gg x k
TG G

, where  
 is a  symmetric matrix, and n n   g x k


 
and  ĝ x k



 are the n-column vectors. 
Equation (4) can be rewritten as 

    

    

1

ˆ

d

    

x k Ax k A x k h

g x k u k  g x k u k

   

  

  (6) 

where 

     ˆg x k g x k g x k 

n n
 n n

       (7) 

The main results are as follows: 
Theorem 1:  
Suppose there exist an  positive-definite matrix 

P, an n  nonnegative-definite matrix Q, and n   
symmetric matrix G such that following LMIs holds, 

H1)     T

A PA A

A P

 


P Q
0

T T
d

d d

PA

A

 
 

  
Q

    (8) 

and 

H2)     0
T T T T

d d
T T
d d d d

A A A A A A A

A A A A

   
 

 A
 

  
  (9) 

where PG   and TG PG   then, the nonlinear 
d elay system (4) ensures the stability
the control law in (5) and weight tuning algorithm 

iscrete-time d  with 

        
1

2ˆ ˆ1 T Tw k w k x k A PA x k       
Q P

    
    
    

1

2

1

2

1

2

T T
d d

T T
d

T T
d

x k h A PA x k h

x k h A PA x k

x k A PA x k h



     

    

   




Q
.(10) 

Proof: 
Choose Lyapunov-Krasovskii functional, 

       1 2 3V k V k V k V k        (11) 

where, 

     1
TV k x k Px k       

     
1

2

k
T

i k h

V k x i Qx i


 

          (13) 

     (12) 

      3
TV k tr w k w k            (14) 

Substituting (12)-(14) in (11) 

     

 

1k
T T

i k h

V k x k Px k x

k



 

  
 (15) 

and 

         

    
+1

+1 +1 +1

+1 +1

k
T T

i k h

T

V k x k Px k x i Qx i

tr w k w k

 

 





 
  (16) 

Since P is a positive-definite and Q is a no
tive-definite, 

   i Qx i

  Ttr w k w  

nnega- 
 V k  is then positive-definite [25]. 

fore, 
There- 

     1V k V k V k            (17) 

Substitutin  (16) in (17), g (15) and

     

   

        
1

1 1
k

T T

h

T

k
T T

i k h

V k x k Px k x

x k Px k

x i Qx i tr w k w k


 

    

 



  
 

(18) 

   i Qx i

    
+1

1 1

i k

Ttr w k w k
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Substituting (6) in (18), 


  

 

Copyright © 2012 SciRes.    

 
        

       
    

        
       

ˆ

ˆ

1 1

h h

d

T

d

T T

T T

V k

Ax k A x k h g x k u k

g x k u k P Ax k A x k h

 
   



T

g x k u k g x k u k

x k Qx k tr w k w k

x k Qx k tr w k w k



   

 

  

   



 

 

x k Px k



 

 

 

(19) 

Using Assumption 1 in (19) and further solving (19), 

 
 

             
             
         
         
         

ˆ

ˆ

T T T T
d

T T T T
d

T T

T T

T T

Z k

x k A Pg x k u k x k h A Pg x k u k

u k g x k PAx k u k g x k PA x k h

u k g x k Pg x k u k

u k g x k Pg x k u k

u k g x k Pg x k u k

  

  







 

 

 





 

(21) 

In (20) collecting the terms together, substitute control 
law from (5), adding and subtracting some terms to make 
perfect square yields, 

 
     
        
   
      
      
      
         
         
       2 2

T
d

T T
d

T T

T T
d

T T

T T

T

V k

x k A PA x k x k A PA x k h

 
 

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

1

T T T T
d

T T T

T T
d d

x k A Pg x k u k x k h A PA x k

x k h A Pg x k u k

u k g x k PAx k

u k g x k PA x k h

u k g x k Pg x k u k

Z k x k Qx k x k Px k

x k h Qx k h w k w k

        
     

 



 



  

      

 

(20) 

where, 

x k h A PA x k h    
      

    

    

        

2

1

2

1

2

1

2

21

2

ˆ 1

ˆ T T

T T
d d

T T
d

T T
d

V k

w k

w k x k A PA Q P x k

x k h A PA Q x k h

x k h A PA x k

x k A PA x k h S k Z k



  

        
       

     


      

(22) 

where, S k

 

  

is given in (23). 
From (22) the weight tuning law is obtained as (24), 

         

         

                

   

1 1

2 2

1 1

2 2

1 1 1

2 2 2

ˆ2

T T
d d

T
d d

T T T T T T
d d d

T T

S k w k x k A PA Q P x k x k h A PA Q x k h

x k h A PA x k x k x k h

w k x k A PA Q P x k x k h A PA Q x k h x k h A PA x k

w k x k A PA

                   

        
                       

 





   

ˆ2

ˆ2

T T

T T TA PA

    

      

1 1

2 2

1

2ˆ2

T T
d d

T T

Q P x k x k h A PA Q x k h

w k x k A PA Q P x k

              

    

 

(23

    

) 

        

         

1 1

2 2

1 1

2 2

T T T T
d d

T T T T
d d

x k A PA Q P x k x k h A PA Q x k h

h A PA x k x k A PA x k h

ˆ ˆ1w k w k

x k

                   

           

     (24) 
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then (22) becomes, 

   S k Z k             (25) 

Substituting (5), (21) and (23) in (25), gives (26). 
Using Assumption 2, (26) is given by (27). 

 

        

 V k 

    

       

      

         

   

1 1

2 2

1 1

2

1

2

1 1

2 2

ˆ2

ˆ2

ˆ2

T T T T
d d

T T T
d d

T T

T T T T
d d d

T T

V k w k x k A PA Q P x k x k h A PA Q x k h

k h A PA x k x k A PA x

w k x k A PA Q P x k

x k h A PA Q x k h x k h A PA x k

w k x k A PA

                   
       

       
          

     

2k hTx


    

                  

           

         

1 1

2 2

1

2 1
ˆ2 2 2 2

ˆ

1
2 2 2

ˆ

1
2 2 2

ˆ

T T
d d

T T T T
d

T T
d d

T

T
d

Q P x k x k h A PA Q x k h

w k x k A PA Q P x k x k A Pg x k Ax k A x k h
g x k

x k h A Pg x k Ax k A x k h
g x k

Ax k A x k h g x k P
g x k

              
             
  

         
  

        
  





          

                   

1
ˆ 2 2

ˆ

1 1
2 2 2 2

ˆ ˆ

d

T

T
d d

g x k Ax k A x k h
g x k

Ax k A x k h g x k Pg x k Ax k A x k h
g x k g x k

       
  

                     
      

 

(26) 

               

             

         

         

 

1 1

2 2

1 1

2 2

2

2

2

T T T T
d

T T T T
d

T T
d d

x k A PA Q P x k x k A PA x k h

x k A PA Q P x k x k h A PA x k

x k h A PA Q x

         

         

       

1 1

2 2

1 1

2 2

ˆ ˆ2 2

ˆ ˆ2 2

T T T T
d d

T T T T
d d

V k w k x k A PA x k h w k x k h A PA x k

w k x k h A PA Q x k h w k x k A PA Q P x k

           

            

    

         

         

         
     

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

2

2

2

4 4 4 4

T T
d

T T T T
d d d

T T T T
d d

T T T T
d d

T T T T T T T T
d d

k h x k A PA x k h

x k h A PA Q x k h x k h A PA x k

x k h A PA x k x k A PA x k h

x k A PA Q P x k x k h A PA Q x k h

x k A PGA A G PGA x k x k A PGA A G PGA x

   

          

        

           

       

     4 4 4 4T T T T T T T
d d d d d

k  

 T
d

h

x k h A PGA A G PGA x k x k h A PGA A G P          GA x k h



     (27) 
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Let,  

         
         
         
         

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

T T T T
d

T T T T
d

T

T
d

a x k A PA Q P x k x k A PA x k h

PA x k

A x k

A x k h

         

  

  

 

 

Manipu
lowing in

d d

T T T
d d

T T T
d d

c

b x k h A PA Q x k h x k h A

x k A PA Q P x k x k h A P

d x k h A PA Q x k h x k A P

      

    

       



lating the nonquadratic terms using the fol-
equality  

2

a b
ab


  

(which turns into equality if and only if a = b) we get (28). 
In (28),  V k  is guaranteed to remain negative as 

long as 

0
T T

d
T
d d

A PA P Q A PA

A PA Q

  
 

 
 

and 

0
T T T T

d d
T T
d d d d

A A A A A A A A

A A A A

   
 

 



 

 
 



where PG   and TG P  .G  

Since in (28) the first four quadratic terms are negative, 
next four terms are satisfying LMI in (8), and remaining 
last four terms are satisfying LMI in (9). Therefore, we 
can conclude that the system (4) is stable with control 
law (5) and two LMIs in (8) and (9). 

5. Simulation Results 

A numerical example is presented to demonstrate the 
performance and the effectiveness of the proposed 
scheme. 

Consider the non-linear discrete-time delay sy
with the following parameters [25]: 

0.8 0.4 0.2 0

0.14 0.1 0.10d

stem (4) 

   
       

A A,  

and 

  
 

        

         

        

        

 

1 1

2 2

1
1 1 2
2 2

1

2

1 1

2 2

4

2

T T T T
d

T T T T
d d d

T T T

T T
d

A PA Q P x k x k A PA x k h

x k h A PA Q x k h x k h A PA x k

x k A PA Q P x k x

x k A PA x k h

x k h A PA


        


          


     



   

       

1

2

1

2

T
d

T T

k h A PA x k




   



4V k x k   


T Tx k h A PA Q x k h   d d  d  


   
        

         

         
     

1 1

2

1 1

2 2

1 1

2 2

1 1

2 2

2

ˆ2 ( )

4 4 4

T

T T T

T T
F d d

T T T T
d d

T T T T T T
d

x k x k A

x k A PA Q P x k x

w k x k A PA x k h

h A PA Q x k h A PA Q P x k

x k A PGA A G PGA x k x k A PGA



     

      

      









 

       
       

4

4 4 4 4

T T
d

T T T T T T T T
d d d d d d

A G PGA x k h

2T
d

T

PA x k h

k h A

 

 d d

T T

PA Q x k h

x k h A PA x k

  

 

x k x k   

x k h A PGA A G PGA x k x k h A PGA A G PGA x k h

   
            

  (28) 
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2
1

2
1

1

2 2
1 2

x k

x k

x k

1.4

1

1

g x k

x k x k

 
 
 
 
 
   

 

The delay time  to be 2h  . The initial con- 
di on of  1




 is assumed
ti states x  and 2x  are chosen 

are solved
 0.01 0.02

T
. 

e LMIs n H1)  by using Matlab 
LMI Toolbox and the values of P, Q & G are obtained, 

6 0.1492 0.6183
10

0.6183 2.6654

Th i and H2) 

 
  

 
P

 

25.7298 59.1751

59.1751 132.4626

 
  
 

Q  

0.1707 0.0546
,

0.0546 0.7737

 
  
 

G  

Figures 2 and 3 show the responses of state variables  
 

 

 
Figure 2. x  to sample time k (h = 2). 1(k) with respect

 

Figure 3. x2(k) with respect to sample time k (h = 2). 
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Figure 4. u(k) with respect to sample time k (h = 2). 
 

1x  and 2x . Figure 4 displays the control input signal. 
Clearly, simulation results verify our theoretical findings 
and show the effectiveness of proposed scheme. 

6. Conclusion 

In this paper the problem of stabilization in discrete-time 
delay nonlinear system is studied, where the system dy-
namics is assumed to be unknown. The unknown non- 
linear functions of the system are approximated through 
CNN. Two LMIs derived here are sufficient to charac- 
terize the controller, which ensures the stability for the 
resulting closed loop system. A numerical example, with 
fixed known delay, has been provided to demonstrate the 
effectiveness and the applicability of the proposed ap- 
proach. 
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