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STABILIZATION OF UNSTABLE PROCEDURES:
THE RECURSIVE PROJECTION METHOD*

GAUTAM M. SHROFFf AND HERBERT B. KELLERt

Abstract. Fixed-point itcrative procedures for solving nonlinear parameter dependent problems can con-
verge for some interval of parameter values and diverge as the parameter changes. The Recursive Projection
Method (RPM), which stabilizes such procedures by computing a projection onto the unstable subspace is
presented. On this subspace a Newton or special Newton iteration is performed, and the fixed-point iteration
is used on the complement. As continuation in the parameter proceeds, the projection is efficiently updated,
possibly increasing or decreasing the dimension of the unstable subspace. The method is extremely effective
when the dimension of the unstable subspace is small compared to the dimension of the system. Convergence
proofs are given and pseudo-arclength continuation on the unstable subspace is introduced to allow continua-
tion past folds. Examples are presented for an important application of the RPM in which a "black-box" time
integration scheme is stabilized, enabling it to compute unstable steady states. The RPM can also be used to
accelerate iterative procedures when slow convergence is due to a few slowly decaying modes.
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1. Introduction. To approximate the solution of many nonlinear parameter depen-
dent problems we are often led to recursive "fixed-point" procedures of the form

(1.1) U(uq’l) F(u(), A).

Here, F RN x N is smooth and N >> 1 (since we are mainly concerned with the
discretization of some nonlinear functional equations on a fine grid). If this procedure
converges, say {u(v) (A) } u* (A), then

(1.2) u* (A) F(u* (), )

and the solution may exist on some interval Aa < A < Ab. However, the iterative proce-
dure (1.1) need not converge over the entire interval of existence. Indeed, as A varies,
the convergence rate may change, and the procedure may become unstable and diverge.
What can be done to recover convergence? In this paper, we consider an important
class of such problems and demonstrate an efficient stabilization procedure to correct
the situation.

Recall that the iteration (1.1) converges locally in a neighborhood of a solution as
long as all the eigenvalues of the Jacobian matrixF F(u* (A), A) lie within the unit
disk {Izl < 1}. Our main concern here will be with problems in which the convergence
of (1.1) fails along the solution path F {u* (A), A} as a few eigenvalues ofF leave the
unit disk. We first give some important examples of problems in which this occurs.

Steady states of nonlinear dynamical systems of the form:

(1.3) ut G(u, ),

are also equilibrium solutions of

(1.4) G(u* (A), A) =0.
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Here, G(u, A) is a partial differential operator, G x ], and solutions of (1.4)
represent steady-state solutions ofthe underlying physical problem. We often have avail-
able a code based on a discretization of the operator G on a suitable grid and a numer-
ical integration of the resulting system of ordinary differential equations. Steady-state
solutions are often computed simply by using the available code to integrate the time
dependent system (1.3) for large times. We can view the time integration code as a fixed
point procedure of the form (1.1), with u counting the time steps. Such a procedure will
fail to converge if the equilibrium states to be computed become unstable during con-
tinuation in A (see Appendix A for details). This usually occurs when only one or two
eigenvalues of the linearized stability problem for (1.3) have their real parts change sign.
Our stabilization procedure allows us to compute such unstable steady states and entire
unstable solution branches via continuation, using this time integration code as a "black
box." Such an approach has not been proposed before and should be of great practical
significance.

Alternatively, we consider directly computing solutions of the equilibrium equations
(1.4). Frequently employed iterative procedures are of the form:

(1.5) U(U+l)(,) u()(A) M(’)(A)G(u(’)(A),A), u 0,1,

Here, we assume that the operator G in (1.4) has been approximated by some appro-
priate discretization, so G v r. The M()(A) are N N matrices, cho-
sen to produce a convergent scheme in an efficient manner. For example M()(A)
G(u()(A), A) yields Newton’s method. Many other choices are possible, such as a
quasi-Newton method, where M()(A) is the inverse of some approximate Jacobian.
Alternatively, the iteration (1.5) may represent a relaxation procedure such as Gauss-
Seidel, SOR, or multigrid. Whatever the choice made forM() (A) the relation to (1.1)
is simply that

(1.6) F(u(’), ) =_ u(’) M(’) (A)C(u(’) (), A).

This may converge well for some A, but if during continuation u* (A) approaches a solu-
tion at which G,(u* (A), A) is singular then some eigenvalues of F,(u* (A), A) approach
unity. The generic singular case iswhen G, has a one-dimensional null space from which
it follows that F,(u*(A), A) has one eigenvalue unity. Continuation past such points is
usually possible using standard pseudo-arclength techniques [6]. However, we stress that
once again the difficulties encountered are due to a small number of eigenvalues leaving
the unit disk (for further details, see 7). Our stabilization procedure can dramatically
accelerate convergence of such iterations near singular points where the convergence
rate normally degrades. It can also extend the domain of convergence beyond the nor-
mal range.

Our stabilization procedure: the Recursive Projection Method or RPM exploits the
fact that, as in the above examples, slow convergence or even divergence of the fixed-
point iteration (1.1) is caused by a small number of eigenvalues leaving (or approaching)
the unit disk. The key idea is to find or approximate the eigenspace corresponding to the
unstable modes. This is done efficiently in a recursive manner, using the iterates of the
fixed-point iteration. The space’ is written as a direct sum of the span of the unstable
eigenspace (say, ’) and its orthogonal complement (say, Q). We modify the iteration
by performing Newton’s method on the subspace while continuing to use the iteration
(1.1) on Q, where it does converge. The extra work involved will be small as long as the
number of eigenvalues ofF near or outside the unit circle remains small.
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The basic idea of using a coupled iteration to force convergence of a fixed-point it-
eration was used by Jarausch and Mackens for solving nonlinear equations [5], as well
as in the context of continuation [3], [4]. However, they treat only systems in whichF
is symmetric. In this paper, we treat general fixed-point iterations, which include non-
symmetric F,. This requires more care in the computation of the unstable eigenvectors.
Further and more important, we show how these eigenvectors can be approximated and
maintained directly from the iterates of (1.1) as continuation proceeds; we do not com-
pute Jacobians and perform only minimal additional work in the stabilization procedure.

This paper is organized as follows. The stabilization procedure is developed in 2
followed by a local convergence analysis in 3. In 4, we show how to recursively estimate
and maintain a projection onto the unstable eigenspace directly from the iteration itself.
In 5, we describe the RPM algorithm, which numerically implements the stabilization
procedure using the projections computed by the recursive technique of 4. In 6 we
modify the convergence analysis of3 after considering the effects ofsome of the approx-
imations made in the numerical implementation. Incorporating pseudo-arclength meth-
ods in our algorithm to treat the case of singular F, is considered and briefly analyzed
in 7. In 8, we present numerical experiments in which the stabilization algorithm uses
a "black box" time integration code to compute steady-state solution branches, which
become unstable. Section 9 contains our conclusions and mentions some directions in
which the algorithm might be further generalized. AppendixA contains a more detailed
examination of the application of our methods to stabilizing unstable time integration
schemes.

2. The stabilization procedure. We assume that the problem we are attempting to
solve,
(2.1) u F(u,/), F" ]N )< ] ]N,
has a smooth arc of solutions F u u*() parameterized by [A, A]. To find or
approximate this branch of solutions, a predictor-solver continuation procedure is used.
Given two points on F, say u* u*(-i--1 E and u u* (A0) with A_ < Ao both in
[A, A], we predict a new solution by the secant method:

(a) A A0 + A,
6A(2.2)

(b) u()(A) u0 + -1)
’0 )--1 (U

U*

Here, 6A is the step size and the solver is the fixed-point scheme

(2.3) u(+) F(u(’), A).

As we show in 3, such an iteration converges if the eigenvalues {/z}N of the Jacobian
F, F,(u* (A), A) lie in the unit disk and the initial iterate u() (A) is sufficiently close
to u*(A).

However, the scheme generally fails if any of these eigenvalues lie outside the unit
disk; even if all eigenvalues are within the unit disk, the convergence may be slow if
any of them lie close to the boundary of the disk. Suppose a small number, m, of the
eigenvalues lie outside the disk

(2.4) K6 {Izl _< 1 6} for some 6 > 0,

that is:

(2.5) 1#11 _>"" _> I#ml > 1- 6 > I’-/xl->""-> I#NI"
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Define subspaces ? and Q of 1Rg by:

(2.6) (a)
(b)

the maximal invariant subspace of F, belonging to {#k},
RN I, the orthogonal complement of ?.

Note that the subspace Q is not in general an invariant subspace of F,. (If F, were
normal, then Q would also be an invariant subspace.) Denote the orthogonal projectors
ofRN onto these subspaces by P and Q, respectively. This induces an orthogonal direct
sum decomposition of the space RN:

(2.7) ]1N I D Q p]N QN,

Here, Q I P so that PQ 0 (since p2 p). Using (2.7) we have for each u E ]N
the unique decomposition:

(2.8) u p + q, p =_ Pu l, q =_ Qu Q.

Now a Lyapunov-Schmidt decomposition of the system u F(u, A) can be intro-
duced by applying P and Q to (2.1) and using (2.7) to get:

(2.9) (a)
(b)

p f(p, q, A) PF(p + q, A),
q 9(P, q, A) QF(p + q, A).

Clearly, each solution branch u*(A) of u F(u, A) corresponds to a solution branch
(p*, q*) (p* (A), q* (A)) of (2.9). We claim that 9(P, q, A) in (2.9b) is contracting in q for
(p, q) near (p*, q*). This is the motivation for our stabilization algorithm, and it follows
from the following.

LEMMA 2.10. All the eigenvalues of

)

lie in the disk K6.
The proof will be given in 3.
From this lemma we see that the recursion

(2.11) q(+l) g(p, q(,), A)

will be locally convergent on Q in some neighborhood of (p*, q*), even though the gen-
eral iteration (2.3) may not converge on/N. The idea of our stabilization procedure
is to use Newton’s method for p on the system p f(p, q, A) while continuing to use
fixed-point iteration for q. This leads to the new scheme:

(a)(2.12)
(b)

(I fp(u))(p(u+l) p(U)) f(p(U), q(U), A) p(U),
q(’+) g(p(’), q(’), A).

Here, we use u(’) p(U) q_ q(,) (not the u(’) in (2.3)) to define

(2.13) f(v’) =_ fp(p(’), q(’), A) PF(u(’), A)P.

Clearly, fv(u) is the restriction of the matrix F(u(),A) to the subspace I. Thus,
(I fp()) I I has an inverse if the spectrum of fv() does not contain unity. If
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this fails to hold during our continuation in A we introduce pseudo-arclength as done in

7. For the present, we assume that (I fp())- exists on I I. Then our stabilized
iteration scheme can be described as follows.

Stabilized Iteration.

1.

2.

(2.14)

p(O) pu(O) (A), q(O) Qu(O) (A);
Do until convergence

(a) p(+l) +p() + (I f(p))-i(f(p(), q(), A) p()),
(b) q(u+l) +9(p(),q(),A);
U*(/)-- p(UFin,) + q(UFin,) p*

__
q*.

3. Convergence analysis. We proceed to show that (2.14) will converge for u() (A)
in a neighborhood of the solution u*(A), even when the original fixed-point iteration
(2.3) diverges.

LEMMA 3.1. The orthogonalprojections P and Q onto the subspaces and Q defined
in (2.6) satisfy:

QF:P O.

Proof. Since is an invariant subspace of F,

FPv E 1 for all v E RN.
Therefore,FPv PFPv, and the result follows from QP O.

In the previous section, Lemma 2.10 was used to motivate the stabilization algo-
rithm. We now prove that result.

ProofofLemma 2.10. We are required to show that the eigenvalues ofg QFgQ
all lie within the disk K6. There exists a real block diagonal decomposition [2] of F,,

(3.2) F2 WJW-1,
where we partition the similarity matrix as

(3.3) W (Wl W2) Wl ][Nxm W2 ]1Nx(N-m)

and

0 J2
J1 J2 ][(N-m) x (N-m).

The block J1 contains all the blocks associated with the eigenvalues #1,..., #m, and
J2 contains the blocks for #,+1,..., #N. Also, the columns of W1 and W2 form bases
for the invariant subspaces associated with eigenvalues #1,...,/Am and #,+,...,
respectively. So by the definition of it follows that I (W1), the range space of W1.
Note also that this impliesQW 0. Now F,W2 W2J from (3.2), so

(3.5) QW2J2 QF:W2 QF:(PW2 + Qw2) QF:QW2.

Here we have used P + Q I and Lemma 3.1. Let V [W QW2], and use (3.5),
Q: Q andQW 0, to get

(3.6) QF:QV QF,Q([W1, QW2]) (Wl, QWe)
0 J:
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Suppose there exists w E R(N-’0, w 0, such that QW2w 0. Now Ww 0
since W is nonsingular, so we must have Ww 6 ? R(W1). But this too is impossible
since W is nonsingular. Thus, rank(QW) N m. It follows that V [W, QW] is
nonsingular, and (3.6) yields

(3.7) QF’Q=V( O0 Jg.0) V-l"

Since the eigenvalues of Jg. are #,+I,...,#N, which all lie within K6, the result
follows.

Notice that in our stabilization algorithmwe have not assumed any special properties
of F, such as symmetry. In the special case of symmetric (or even normal) F the
results ofLemma 2.10 hold for more general ]P, i.e., we require only that the eigenvectors
corresponding to #1,..., #, be contained in . However, in the general nonsymmetric
case, the assumption that lP is in fact an invariant subspace of F is crucial. This is
illustrated by the following simple example:

2 0 0 /F= 0 2 2

0 -2 -2

whose eigenvalues are (2, 0, 0), and el is the eigenvector corresponding to the eigenvalue
# 2. However, if we take span(e,e2), then QFTQ has the eigenvalue #
-2, which is still outside the unit disk. Because of this phenomenon, our stabilization
algorithm will have to exercise greater care in the computation of the projector P than
is the case in special algorithms, which assume thatF is symmetric [3], [5].

To complete the convergence analysis of the stabilized iteration (2.14) we write it as

(a)(3.8)
(b)

where we have introduced

p(v+l) h(p(’), q(V), A),
q(V+) g(p(,.,), q(,.,), A),

(3.9) h(p, q, ) =_ p + (I fp(p, q, A)) -1 (f(p, q, A) p).

Of course, we can use (3.9) onlywhen (I- fp(p, q, A)) is nonsingular and we assume this
to hold at the solution (p* (A), q* (A)). Then with smoothness of f(p, q, A) it also holds in
some neighborhood of (p* (A), q* (A)). If fp(p, q, ) is differentiable, we can evaluate the
Jacobian O(h, g)/O(p, q) at the solution to get, recalling that f(p*, q*, A) p*:

O(h,g)
(3.10) ( z + (z- Z! (Z z)

__--( 00

f:, )
Here, we have used g QF,P 0 by Lemma 3.1. But Lemma 2.10 ensures that the
spectrum ofg is in the disk K6. Thus, we have proven the following:

LEMMA 3.11. The Jacobian ofthe stabilized iteration (2.14), has a spectral radius sat-
isfying

(3.12) (O(h’g)] ) <1-6<1.P O(p, q) p. ,q.
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Using this resultwe demonstrate the convergence of the stabilized iteration as stated
in the following theorem.

THEOREM 3.13. For some el el() > 0 let F(u, )) satisfy on the ball Be1 (u*)
{u: flu- u*ll <

(a) F(u, A) is twice differentiable,
(b) 1 tig a{f; } a{PFu (u* ()Q,))P}.

Then the stabilized iteration (2.14) converges for all initial values u() E Be(u*)for some
(1.

Proof. Denote by v E ][2N the iterates of (3.8) in the form:

q(V) =- Qu(V)

Conditions (a) and (b) ensure that v(+) is well defined ifp() + q() u() Be1 (u*).
The initial values satisfy the condition for v 0. For an induction, we consider, with

v* =_
q*

v(’+) v*
g(p(,.,), q(,), )) g(P*, q*, ))

and a Taylor expansion about v* yields

v(’’+) v* O(h, g){ (v (’’) v*) + O(llv( ) v*{12).
O(p, q) p.,q.

For any square matrix A and any r/> 0 there exists a norm II.IIA,, such that IIAIIA,v <
p(A) / rl. Using such a norm, we get from the above and Lemma 3.11 that:

2Ilv(+l) *IIA,, < (1 6 + 0)ll() *IIA,, / O(llv() v*llA,,),
< (1 6 + r/+ O(llv (v) v*ll))llv() v*lla,o,
_< (1 6 + r/+ o(e))llv( ) v* A,r/"

Here we have employed the equivalence of norms in finite-dimensional spaces. By
choosing r/and e sufficiently small we can be assured that 1 5 + r/+ O(e) < 1, and thus
our induction is completed. Further, we have shown that the iteration (3.8) is a strict
contraction on Be(u*), and thus v()

4. Reeursive estimation of the projectors P and Q. The stabilized iteration (2.14)
requires the projectors P and Q onto the subspaces and Q. To obtain these we need
only find an orthonormal basis for the subspace . Suppose that Z Nm is an or-
thonormal basis for . Then the projectors P and Q are:

(4.1) P ZZT, Q= I- ZZT with zTZ Im Rmm.

In this section, we will show how an approximation to the basis Z may be computed
and maintained recursively as continuation proceeds. An important feature of our tech-
nique is thatwe estimate Z directly from the iterates q() of the algorithm (2.14), without
computing Jacobians.
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4.1. Increasing the size of the basis. We assume that initially the continuation pro-
cedure starts with A Aa say, for which the fixed point procedure (2.3) or (2.14.2b)
converges well. Then there is no unstable subspace l?, its dimension m 0, and so
Z 0. As continuation in A proceeds, we recursively determine a set of m, m + 1, or
m + 2 basis vectors. This is done by monitoring the rate of convergence of the iterates
q(V) E Q of (2.14.2b). If the rate degrades we know that some of the eigenvalues of
gq QFQ are approaching the unit circle. The generic case is that either an isolated
real eigenvalue, #,+1, or a complex conjugate pair (#,+1, #m+2) approach {Izl 1}.
We must decide which is the case and determine the one or two vectors to adjoin to Z
so that it now spans the larger invariant subspace ofF associated with the augmented
set of eigenvalues {#1,..., #re+l} or (#1,..., #re+l, #m+2}.

Let Y be an orthonormal basis for the invariant subspace associated with #,+1 or
the pair {#,+1, #m+). From (3.6) it easily follows that QY spans the invariant sub-
space of gq QFQ associated with these eigenvalues, which are the dominant ones of. Also, (Z, Y) and (Z, QY) span the same subspace, which is the desired augmented
invariant subspace of F. An orthonormal basis for this subspace can therefore be ob-
tained by adjoining to Z an orthonormal basis for the dominant invariant subspace of. An approximation to such a basis is computed directly from the stabilized iteration
(2.14) as described below.

Assume that for the current A value u(v) p() +q() E B(u* (A)) and thatF (u, A),
and hence, gp and gq are Lipschitz continuous on B(u* (A)). Then from (2.14.2b):

(4.2) /kq() =_ q(+l) q(V)
g(p(U), q(U), A) g(p(U-1), q(U-1), A)
g(p(U-1) +/p(U-1), q(U-1) +/q(U-1), A) g(p(U-1), q(U-1), A)
gi/p(-l)+ g/q(-l)+ O(2)
gAq(- 1) +

Here we have again used g QFP 0 from Lemma 2.10. Neglecting the O()
terms in this gives on recursion

(4.3) Aq() (g)VAq().

Thus, the vectors {Aq() } are, to a second-order approximation in e, a power itera-
tion with the matrixg QF,Q applied to the vector Aq(). Therefore, asymptotically
these vectors will tend to lie in the dominant eigenspace of g, provided the starting
vector Aq() has a nonzero component in this direction.

In practice, if the iteration fails to converge in say, nmax iterations, we use the two
difference vectors {Aq(),Aq(-1) } (i.e., the two most recent power iterates) to ap-
proximate the dominant eigenspace of g as follows: we compute the Gram-Schmidt
factorization (i.e., the "QR" factorization, computed by the "modified Gram-Schmidt"
procedure [2]):

(4.4) D- [Aq(), Aq(v-l)] T
with T E R2 upper triangular and Ruu orthogonal. We examine the computed
triangular matrix T, and if Tll >> T: (in practice we used the test IT11[ > 10alTg9l), we

1An example related to the exceptional case in which Aq() does not have a component in the dominant
unstable subspace occurs in the second experiment in 8.
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conclude that the dominant eigenspace of gq, is one dimensional and we add one new
vector, the first column of/), to the basis Z. Otherwise, we conclude that the iteration
is slowing down because a complex conjugate pair of eigenvalues is approaching the
unit circle, and we add two new vectors to Z, the first two columns of D. Note that in
our current implementation we exclude the possibility that more than one real or two
complex conjugate eigenvalues leave the unit disk simultaneously, but this could easily
be altered.

The above procedure can possibly be made more accurate by using a better ap-
proximation to the dominant eigenvectors of in span{Aq()} (which approximates
a Krylov subspace for [2])" to do this we accumulate a small window of r difference

vectors {Aq(")}_+1 while carrying out the iteration and compute an orthogonal basis
U for span{Aq(V)}_r+ by the modified Gram-Schmidt procedure. We then compute
UF,U, which represents the restriction ofF to span{/kq()}_+. Next we deter-
mine the dominant eigenspace r or x of this r x r matrix. Finally, we formU
as our approximation and adjoin it to Z. However, this procedure involves extra evalua-
tions ofF in forming the matrix UWF, U. Since the original procedure above was found
to produce a sufficiently accurate Z, we chose not to use this potentially more accurate
but more expensive procedure.

Note that whenever the convergence rate of the iteration (2.14) degrades due to
some large eigenvalues of9, the above procedure computes a basis for the correspond-
ing invariant eigenspace. It does not, however, guarantee capturing the invariant sub-
space corresponding to exactly those eigenvalues outside the disk K; in fact, 6 plays no
role in the above procedure. Nevertheless, approximating Z by this simple procedure
accelerates the convergence of the iteration as desired, since the most unstable eigen-
modes are either always captured or they are not yet present.

4.2. Maintaining accuracy of the basis. As the continuation progresses, the domi-
nant eigenspace ofF will change, rendering our estimate of the basis Z inaccurate. We
correct for this by performing one step of an orthogonal power iteration [2] (also known
as "simultaneous" or "subspace" iteration) on the columns of Z after each continuation
step,

Z +- orth(FZ).

Here "orth(F Z)" denotes computing an orthonormal basis for the columns of FZ
using Gram-Schmidt orthogonalization. We will see in 5 that this step requires min-
imal extra work; in particular, no additional function evaluations are needed because
an approximation to the quantityFZ is required for executing the stabilized iteration.
Further, we may easily monitor the accuracy of the eigenbasis by evaluating the matrix

$ =_ QFP,

which should vanish by Lemma .1 if 7(Z) is in fact an invafiant subspac of F. If $
becomes too large, we can perform a few additional steps of the power iteration. How-
ever, this is expensive since it will require more function evaluations. In practice, we did
not find it necessary; the one (free) power iteration per continuation step was sufficient
to maintain Z to reasonable accuracy.

4.3. I)eerasing th siz ofth basis. We must also consider decreasin the size of
Z, since as we have pointed out in 2, it is important that the (Z) be an invafiant
subspace of F*, not merely contain an invafiant subspac. After the dimension of Z
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is increased due to eigenvalues of F approaching the unit circle, the algorithm will
track the eigenspace via power iteration as long as these eigenvalues remain dominant.
However, if some of these eigenvalues subsequently decrease in magnitude and rejoin
the large cluster of small eigenvalues of F,, it is likely that the power iteration will fail
to separate the clustered eigenvalues. Consequently, the computed basis Z may then
cease to span an invariant subspace, even though it might still contain the dominant
eigenspace. Further, the procedure described in 4.1 can overestimate the dimension of
the basis Z. We therefore test to decrease the size ofZ by introducing the m x m matrix

(4.5) H ZTFZ zT f;, Z.

An approximation to H is computed by the numerical algorithm (see 5). The eigenval-
ues ofH are a subset of those of F,. We would like them to be only those outside the
disk Ke. After each continuation step we compute the eigenvalues and eigenvectors of
H (this is inexpensive since H is a smallm x m matrix). If only rh < re eigenvalues ofH
lie outside Ke, we compute a real basis V Rmx’ for the corresponding eigenvectors
ofH (i.e., if the eigenvalues are complex, we compute a real basis rather than a basis of
eigenvectors). Then span{ZV} will be a good approximation to the desired eigenbasis,
and we replace Z by

Z orth(ZV).

In this fashion, the size of the eigenbasis is reduced automatically when required.

5. The numerical algorithm: RPM. In this section, we describe the Recursive Pro-
jection Method or RPM, which is the numerical algorithm that implements the stabiliza-
tion procedure using the projections computed recursively by the techniques of 4.

The algorithm of 4 actually computes Z, an approximation to Z, and the corre-
sponding projectors:

(5.1) /5=T and O=I--T.
Thus, the numerical algorithm uses the orthogonal direct sum decomposition:

(5.2) ]N /]IN t) 0]N ] ) (,

instead of (2.7), where 1 =/]N is an approximation to the subspace I.
We find that in the stabilized iteration (2.14) it is sufficient to compute (I- fp)-

only once per continuation step, rather than update it after each iteration. In other
words, in our imElementation, we actually perform the special Newton or chord iteration
on the subspace ?, rather than exact Newton on ? as described in 2.

The numerical stabilized iteration follows.
Numerical Stabilized Iteration.

(5.3)

o) q(o)
Do until convergence:

(a) p(v+l) p(V) + (I ]p() )-l (](p(u), q(U), ) p(U)),
(b) q(+l) t)(p(,), q(), );
U*(,) p(tZFinal) .. q(UFina) p, + q,.

Here we have used

](p, q, A) PF(p + q, and O(P, q, A) _= QF(p + q, A).
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Note that this iteration requires us to invert (I- iv()) 1 1, which is the restriction of

(I-F()) to the subspace I. We shall assume that this inverse exists. It is easily verified
that

(5.4) (I- fp)-i 5(1- #TF,)--I#T.
In the actual computation, we introduce coordinate variables z for the representation of
p l in the basis Z:

(5.5) z =_ 2Tp 2Tu, zERm so p=2z and u=2z+q.

The iteration (5.3a) in the subspace 1 can be written in these variables using (5.4) and
2r2 I:

(5.6)

If the only code available to us for the problem (2.3) is one to evaluate F(u, A), we
can approximate 2TF2 by differencing. With 2 [2,..., 2m] E RNxm and e > 0
we form

1[(5.7) F=2i , F(u + e2i,) F(u, A) for 1,..., m.

In this way applying F= to each column of 2 requires only one additional function eval-
uation, since F(u, ) is required in the remainder of the algorithm.

The complete algorithm that performs continuation in using the recursive pro-
jection method is summarized below, and we will refer to it as the RPM Continuation
algorithm:

(5.8) RPM Continuation algorithm(u_, A-l, UO, AO, nmax, 6, 6A, tol)
2-[];
while ()

secant_step(u, A); O; F F(u, A);
ealuate_deriatie(F2);
while (ll(u- F)ll > tol)

z 2vu; q u- 2z; 2VF;
numecaltabilizedSteration

-1
+(-H) (-);
q F- 2;

u 2z + q; F F(u, A);.. + 1;
if( >n)
increaseasisize(2); 0;
evaluateMevative Fu

endif
endwhile
if(a() {[zl < 1- } for some k)
decreaseasisize();

endif
powerSterationtep 2
(-1,-, o, o) (o, o, , );

endwhile.
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The algorithm requires as input two points (u_, A_) and (u0, A0) on the solution
branch F, as well as parameters nmx, 6, a step size 6A and a tolerance tol. In the algo-
rithm, the procedure numedcal-stabilized-iteration in (5.3) has been implemented using
the coordinate variable z according to (5.6), and the definition ofO to write Qu u-z,
etc. We have abbreviated the procedures described above in this section and in sections
2 and 4 as follows: evaluate-derivative in (5.7), secant-step in (2.2), increase-basis-size in
4.1, decrease-basis-size in 4.3 and power-iteration-step in 4.2. The variables modified
by each procedure are included as its arguments, e.g., secant-step (, A) indicates that
u and A are updated by the procedure. Also a(/2/) is an eigenvalue of/2/. We note
that in the implementation given above, the step size 6A is kept constant as continuation
progresses; it may be of benefit to vary this, and some procedures for doing so are dis-
cussed in [7]. Finally, note that the algorithm requires solving linear systems only with
the rn x rn matrix (I -/2/) and avoids computing and inverting Jacobians of the system
F, which are N N. Also, evaluations of F are kept to a minimum, since F is assumed
to be a "black-box" code that is expensive to evaluate.

6. Analysis ofthe numerical algorithm. Recall that the numerical stabilization pro-
cedure used by the RPM algorithm as described in the previous section involves
two significant deviations from the theoretical description of the procedure as intro-
duced in 2:

A. The computed orthonormal basis does not span the dominant invariant sub-
space of F, but is an approximation to such a basis.

B. The "chord" (or "special" Newton) method is employed on the subspace I instead
of Newton’s method on I.

We now reexamine the convergence of the stabilization algorithm in the presence
Of the above approximations. Since the subspace 1 is not an invariant subspace of F,
the propertyQFP 0 proved in Lemma 3.1 for P and Q does not hold for P and Q:
However, since the basis Z is computed to approximate Z, the computed projector P
approximates P. We will use

(6.1) QFP gp

as a measure of how well ] approximates an invariant subspace ofF. Note that we can
multiply (6.1) by/5 from the right, by ( from the left and use P P and to
replace Lemma 3.1 by the next lemma.

LEMMA 6.2. The projections P and satisfy:

(6.3) Q F, ,f ).[:’ O.

It therefore follows that for any p I,
(F:, e

hence, I is an invariant subspace for the perturbed matrixF :.
Let {/2}N be the eigenvalues ofF t. We claim that the following assumptions

are reasonable"

(a) 1/21[ > [m+l[ "" [NI.
(6.4) (b) The columns of the computed basis span the invariant subspace

ofF : associated with {/2}, i.e., the dominant subspace.

The first assumption will hold provided 1[[[ is sufficiently small. The second assumption
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is reasonable since the basis is computed by a power iteration, which approximates a
basis for the dominant invariant subspace of F,.

Instead of Lemma 2.10 we shall use the following.
LEMMA 6.5. If

(a)
(b)

(c)

F has a complete set ofeigenvectors
the eigenvalues {#k}N ofF, satisfy
where/C IlSllllS-all,

X:ll < where satisfies (2.5),

then

(6.6) 1.

Proof. By the Bauer-Fike theorem [1], [2] we know that the eigenvalues of the per-
turbed matrixF,- differ from the eigenvalues of F, by at most :1111. Thus, by hypoth-
esis (b) above the dominant eigenvalues (fik}] of F, approximate the dominant
eigenvalues {#} of F,, and for all the eigenvalues we have:

(a)(6.7)
(b)

for each k E [1, ra], 1/2 #il < KZlIII for some i E [1, m]
for each k [m + 1, N], 1/2 #i[ < X:llll for some Ira + 1, N].

Therefore, since the eigenvalues {#} lie outside the disk K6 {Izl

_
1 6} and

{#k},+lN lie within K6, using (6.7b) we obtain

(6.8) 1 6 +  11 11 for k e [m + 1, N].

Further, using (6.7a) and the hypothesis (b) of the Lemma,

(6.9) Ikl > 1 6 + KZlIII for k e [1, m].

Since, by our assumption (6.4b) above, is a basis for the invariant subspace of
F- associated with eigenvalues {/}, the result (6.6)can now be proved in a manner
similar to the proof of Lemma 2.10. [3

As before, we can write the numerical stabilized iteration (5.3) as

(a)(6.10)
(b)

p(’+) h(p(’), q(), A),
q(,+) O(p(U), q(,), ),

with

(6.11) (p, q, A) p + (I .fp())- (.f(p, q, A) p).

Recall that we have assumed (I .fp(0)) to be nonsingular. Now we can evaluate the
Jacobian 0(h, [l)/O(p, q) at the solution (p*, q*) to get, using f(p*, q*, A) p*"

(6.12)
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An estimate of the spectral radius of this Jacobian is given in the next lemma.
LEMMA 6.13. Under the assumptions ofLemma 6.5, suppose Fu is Lipschitz contin-

uous, (I f(po)) is nonsingular, 0(h, t))/0(p, q)lp*,q* has a complete set ofeigenvectors ,
and

Then the Jacobian ofthe numerical stabilized iteration evaluated at the solution satisfies

(6.14) o(h,
P O(p, q)

< 1 (5 + 1111 +  11 11 < 1

for all ktitial values u() lyingb a ball B(u* {u Ilu u* II
Proof. The structure ofthe Jacobian is given by (6.12). Using the Lipschitz continuity

of F,, it is easily shown that t; O(11u() u* II). Thus, we can ensure p($) < 1 6 by
choosing the radius of the ballB sufficiently small. Now

using the definition (6.1) oft andPO 0. ByLemma 6.5 p(Q(F,-F_,)Q) < i-+X:llll
Using the Bauer-Fike theorem [1], [2] once more we arrive at the result (6.14). Vl

We can now easily prove the following convergence theorem in a manner similar to
the proof of Theorem 3.13.

THEOREM 6.15. For some gl gl() > 0 let F(u, ) satisfy on the ball Be1 (u*)
(u. Ilu u* < 1 }

(a)
(b)

F(u, A) is twice differentiable,
1 a{];}

Then the numerical stabilized iteration (5.3) converges for all initial values u() E Be(u*)
for some g < g.

7. Pseudo-arclengthRPM continuation. We have developed our stabilization algo-
rithm RPM assuming (I F) is nonsingular in a neighborhood of the solution u* (A).
However, if the iteration (2.3) becomes unstable due to a real eigenvalue crossing the
unit circle at the point z 1, then there will exist a A* where [I F,(u* (A*), A*)] is sin-
gular. We refer to such points as singular points, and they lead to folds and bifurcations.
The generic case is that of folds for which pseudo-arclength continuation [6] enables
continuation to proceed beyond the singular point. In this section, we demonstrate how
pseudo-arclength methods can be incorporated in theRPM continuation algorithm. Fol-
lowing Jarausch and Mackens [4] we need only implement the arclength procedure in
the subspace

To allow continuation past singular points we introduce a new parameter s, and
hence, can augment the decomposed system (2.9) with a new scalar constraint, resulting
in the reordered system:

(7.1)
(a) q g(p, q,

(b) p f(p, q, )),
(c) N(p, , s) O.
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Since the restriction of (I F,) to the subspace is singular and the restriction to Q is
not, we perform pseudo-arclength continuation only on this small dimensional subspace.
Therefore, the pseudo-arclength normalization N(p, A, s) 0 is chosen (see (7.4)) to be
independent of q. Now the solution branch parameterized by s is F(s) {u*(s), A*(s)}
with u* (8) p* (s) + q* (s) and A* (s) satisfying (7.1).

The pseudo-arclength RPM uses a predictor-solver scheme as before: given two
points on F, say (u_,A_)= (u*(s_),A*(s_))and (u0, A0)= (u*(so),A*(so)), we
predict a new solution by the secant method:

(8
(a) A()(s) /0 -I- (,)i0 ’--1),

80 8--1
6s(7.2) (b) u()(s) uo +(uo u-l),

80 8--1

(c) s so +
where 6s is the step size in the pseudo-arclength variable s. The solver step uses Newton’s
method on the variables (p, A) E x R in (7.1b), (7.1c). For q E Q we use the fixed point
iteration in (7.1a), with a first order correction term g()/A(v). This correction term
is introduced because A changes during the iteration. (This term also plays a role in
deriving (7.10) for the convergence analysis.) The resulting iteration is:

(a) q(U+) g(p(), q(), A()) g(.() /XA(),

(b)
Np N /A() -N(p(), (), s)

The initial iterates p(O) and q(O) are obtained from (7.2b) by the decomposition u() (s)
p(O) + q(O). Further/p() p(+l) p(), /A() =_ A(+) A(), f(p) =_ fp(p(,), q(,),
A()), g() g(p(V),q(),()), etc. In the actual computation (7.3b) is written using
the coordinate variables z Rm, as done before in (5.6).

We use the pseudo-arclength normalization

(7.4) N(p,A, s) T(p_ PO) + (A- AO) (s- SO),
where (6, ) (/i+O,) is the unit tangent vector along the solution path F(s). Note that
instead of the tangent vector 6 (as used in standard pseudo-arclength methods [6]), we
use/i, the projection of the tangent onto the subspace . In practice, the tangent vector
/ (and hence/i) is only approximately known and other pseudo-arclength conditions can
be used in place of the above (see [6] and 8).

Using (7.4) in (7.3), the iteration scheme can be written as

(a) q(+) g()/ g()/A(),

(7.5)

(b) A(u+l) A(u) N()

where

2We actually use weights 0 and (1 0), 0 < 0 < 1 on the first two terms in (7.4), but they play no role in
the convergence analysis, so we have dropped them here. In computations, however, they can be important.
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The crucial point is thatM can be nonsingularwhen (I-fp) is singular (under reasonable
conditions), and this is what enables the pseudo-arclength procedure to continue past
(singular) fold points. To demonstrate this, we first recall the conditions that hold at a
simple fold, say (u*, A*) on a solution path of u F(u, A). They are:

(a) dim Af(I F) 1,
(7.6)

(b) F> 7".(I- F).

Now it is easy to show, as in the proof in [6], that M*, the evaluation ofM at the
fold, is nonsingular if

(7.7) (a) dim Af(1 1,

(b)

Although (7.7a) follows from (7.6a) and the projection f PFP, since the spectrum
ofF and f coincide outside the disk K,, it is not always the case that (7.7b) follows
from (7.6b). However, it does follow if F, is normal; more precisely, we have the fol-
lowing.

LEMMA 7.8. Let (u*, A*) be a simple foldpoint of u F(u, A). Then (7.7b) holds if
F is normal.

Proof. Since F, is normal, it has an orthonormal set of eigenvectors, which span RN.
Thus, both subspaces ? and Q are invariant under F*, and hence,

(7.9) PFQ O and QFP O.

Now suppose f, E R(I f). Then for any - 0, there is a solution v E ]1) of

(I- f)v + f, 0.

But since (I g) Q Q is nonsingular (by Lemma 2.10), there is a always a unique
solution w Q of

(z + 0.

Using Pw 0 and Qv 0 we can combine the above two equations to get

[I (PFP + QF,Q)] (v + w) + (P + Q)F, O.

Further, we have from (7.9):

[I (P + Q)F, (P + Q)] (v + w) + (P + Q)F, O.

That is,

+ + o.

Since 0, this contradicts (7.6b) and our result follows. [3

It also follows that M* is nonsingularwhen (I f) is nonsingular andF is normal.
The proof of this again employs (7.9) and proceeds as in [6].

Even when F is not normal, which is the generic case, a small perturbation in N
can usually correct matters.

Convergence of the stabilized procedure using pseudo-arclength continuation can
be studied by examining the Jacobian of the scheme (7.5) evaluated at the solution
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(u*, A*) (p* / q*, A*). Since p* f(p*, q*, A*) and N* 0 at a solution, the
N + 1 x N + 1 Jacobian becomes, after a bit of calculation:

(9(q(v+l),p(v+l), /(v-I-1)) gq g,eN+ (M*)
(7.10) O(q(’)’ P(’I’() ("* (M*)-

0

Here, eN+l is the N + 1st unit vector in If(v+. Since cr(g) C K, we can easily write
conditions to ensure that the perturbation of g in (7.10) maintains the contractivity
of the Jacobian, and hence, the convergence of the scheme (7.5). We do not present
these details (i.e., another application of the Bauer-Fike theorem) as they are of no
practical value for our methods. Finally, note that whenF is normal we have by (7.9)
that f, PFQ 0 and the spectrum of the Jacobian (7.10) lies in K.

8. Numerical experiments. We present two numerical examples in which the
pseudo-arclength RPM continuation algorithm was used to enable a "black box" time in-
tegration code to compute stable and unstable steady-state solution branches with folds
and bifurcations. (This application of the RPM is examined in Appendix A.)

In both examples, the iteration F in (2.3) was constructed using second- and third-
order explicit Runge-Kutta formulas for integration and step size control, respectively,
with an error tolerance of 10-5. The time interval/t tv+l -tv was fixed to be 0.1, and
the variable Runge-Kutta steps integrated the dynamic system (1.3) over this interval
for each v. The parameters used in the implementation were 6s 0.15, nmax 13, ti
0.5, and tol 10-4. For com.puting the pseudo-arclength condition N(p, A, s) defined
by (7.4), the tangents ib and A were replaced by the secant approximations

(p-p)
and (A-A0)

The derivatives f(’) and g() in (7.3) were replaced by their values at v 0 (thus replac-
ing Newton’s method by the chord method) and computed using differences as described
in (5.7), with e 10-a. Recall that in our examples F arises from a time integration code
with error tolerance e0 10-5, so we used e O(/).

For our first example, we considered the Bratu problem in one dimension:

(8.1) G(u, A) uxx + Ae 0 with u(0) u(1) 0.

We discretized the operator on a spatial grid of 40 points to generate the system of ordi-
nary differential equations Ou/Ot G(u, A) used by the Runge-Kutta time integration
code. Note that the Jacobian F, of the resulting fixed-point iteration is not symmetric,
even though G, is. The solution diagram computed by the RPM algorithm is shown in
Fig. 1. Notice first that the code was able to continue past the fold point and compute the
unstable branch. The in the plot mark the pointswhere the code increased or decreased
the size of the eigenbasis and circles denote singular points detected by the algorithm,
i.e., points where eigenvalues of/:/= TF, cross the unit circle. The shading of the
line itself indicates the number of iterations required to converge at a particular point,
solid lines indicating fastest convergence (i.e., points where the iteration took less than
five iterations to converge) and dotted lines indicating slowest convergence (i.e., greater
than nine iterations).

3In the implementation weights, 0 and (1 0) were used on the first two terms of (7.4), with 0 0.1.
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FIG. 1. Problem 1.

For our second example, we considered a more complicated system in which the Ja-
cobian G, is unsymmetric and some of the bifurcations present on the solution curve are
Hopf bifurcations, where a pair of complex conjugate eigenvalues of G, cross the imag-
inary axis. The system is the one-dimensional coupled set of equations in two variables
u and u:

(8.2) (I(Ul,U2,,) {(Ul)xx -- /(Ul--U2) + {2eut =0,
,2eu2 O+ +

with boundary conditions ui(0) ui(1) 0, i 1, 2. The operator was discretized on
a spatial grid of 20 points to generate the coupled system of ordinary differential equa-
tions {Oux/Ot GI, Ou/Ot G} used by the time integration code. The computed
solution diagram is shown in Fig. 2, with the same interpretation of symbols as in the pre-
vious example. (Note: the second circle from the left is superimposed on a., indicating
that the dimension of the basis was also changed at that point.)

As expected, for small values ofA the unsymmetric part ofthe system dominates, and
the first two circles on the curve (from the left) denote Hopf bifurcation points detected
by the algorithm, corresponding to two successive pairs of eigenvalues of F, leaving
the unit circle. (Note that the solution branch to the right of the first Hopf bifurcation
is unstable, since the system has eigenvalues with positive real part.) The Ae’ terms
begin to dominate as A gets larger and because of this the system goes through a fold.
Note the behavior of the algorithm for this example. The dimension of the eigenbasis
2 is increased first to two, four, and then six, and subsequently decreased to five as an
eigenvalue retreats within the disk of radius I 8.
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FIG. 2. Problem 2.

As a check we computed the solution diagrams for both problems using arclength
continuation with a full Newton iteration on the steady-state equations G(u,) 0, and
confirmed the accuracy of the solution branches computed by the algorithm. For the
second, nonsymmetric example, we also computed the eigenvalues of the Jacobian G, at
points on the solution path to verify the bifurcation points detected by the algorithm. We
noted that the system G(u,) 0 does in fact display the series of bifurcations shown in
Fig. 2, two Hopfbifurcation points followed by a fold, and finally a transverse bifurcation
point. Each Hopf bifurcation involves a pair complex conjugate eigenvalues leaving the
unit disk; at the fold point a real eigenvalue leaves the unit disk. The final transverse
bifurcation, on the other hand, occurs as a real eigenvalue re-enters the unit disk. The
locations of the bifurcation points computed by the RPM algorithm were within one
step size (i.e., 0.15) of the actual locations, except for the second Hopf bifurcation at

6.3. This bifurcation actually occurs around/ 4.6. Closer investigation reveals
the reason for the large deviation and also provides deeper insight into the behavior of
the algorithm.

We found that in the neighborhood of the second Hopf bifurcation, the solution u
was orthogonal to the eigenspace corresponding to the pair of eigenvalues crossing the
imaginary axis. Sincewe used a secant predictor step, the initial vectors for the numerical
stabilized iteration had no component in this unstable subspace, and so the iteration
(2.14) did not diverge at this bifurcation. Consequently, the algorithm found no reason
to increase the dimension of the basis , and did not "see" the bifurcation occur; the
occurrence of the bifurcation was instead detected at a later point along the branch when
the orthogonality of u to the relevant eigenspace ceased to hold, causing the iteration to
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diverge. Although unusual, this behavior is understandable since the primary purpose
of the algorithm is to compute solution branches efficiently, and bifurcation points are
detected only through their effect on the convergence rate of the stabilized iteration. We
have not yet attempted to incorporate sharper bifurcation detection tests into the RPM
algorithm.

Finally, notice that in both examples the dimension of the eigenbasis , was usually
increased before the actual bifurcation point (except in the above case). Because of this,
not only is the convergence past the bifurcation point assured, but the iteration is accel-
erated as soon as the algorithm detects that the convergence rate is degrading, before
the bifurcation point itself is reached.

9. Discussion and conclusions. We have developed the RPM: a stabilization pro-
cedure that can extend the domain of convergence of fixed point iterations of the form
(2.3). The RPM determines subspaces in which the iteration diverges and corrects for
this by using Newton’s method in the unstable subspace. The unstable basis vectors
are computed efficiently from the iterates of the fixed point iteration. Further, the al-
gorithm does not assume any special property of the iteration (2.3) or structure of the
Jacobian F.

To enable continuation of solutions past singular points we have combined ourRPM
algorithm with pseudo-arclength continuation, which is used only on the unstable sub-
space.

As an application of our stabilization procedure we demonstrated the use of the
algorithm in enabling a black box time integration code to compute solution diagrams
of systems including folds, bifurcations, and unstable branches.

Certainly this approach has potential limitations. The algorithm is practical only
when the number of divergent modes is small compared to the dimension of the system;
nevertheless, this is the case in many applications.

Finally, we believe that the idea of stabilization of fixed-point iterations is more gen-
eral. By identifying and isolating the slowly converging subspace we are greatly acceler-
ating the iteration. So in a way we are adaptively constructing a quasi-Newton iteration,
with just enough of Newton’s method in it to give an acceptable convergence rate. Pos-
sible generalizations of this basic idea to the solution of stiff initial and boundary value
problems, as well as in constructing adaptive preconditioners for solving sparse linear
and nonlinear systems are subjects ripe for investigation.

Appendix A. Time integration to steady states. One standard way to find steady
states of some dynamical phenomenon is to solve the appropriate initial value problem:

Ou
G(u, ), (b) u(0, ) u() (),(A.1) (a) -and to take the limit as t ---, cx of the solution u(t, ). We assume here that the (in

general) nonlinear partial differential operators on the right-hand side of (A.la) have
been approximated by means of an appropriate discretization procedure (i.e., finite dif-
ferences, finite elements, spectral methods). Thus, we take G N N, where
N >> 1 and A is the parameter to be varied. The vector u ]1N determines the spatial
approximation to the original continuous quantities. So if finite differences with mesh h
are employed and the original problem is over a spatial domain in d, then N . rh-d,
where r is the number of continuous dependent variables. Note that N is not basically
dependent on the nature of the continuous problem, but rather, on the accuracy with
which we seek to determine the approximation. Of course if some sharp front develops
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as A varies we may wish to increase N, but this need not change its order of magnitude,
and such phenomena do not play an important role in our study.

The local (linear) stability of a steady state, say u* (A), of (A.la) is governed by the
eigenvalues {ak(A) } of the linearized eigenvalue problem:

Local stability occurs if and only if

Re ak(A) < 0 for all k E [1, N],

and u* (A) is unstable if

Reak>0 for somekE[1, N].

In general, the spectrum {a(A)} varies continuously with A, and at most, a small
number of eigenvalues will cross the imaginary axis when A changes by a small amount.
Indeed, when a steady-state u*(A) loses its stability as A varies it usually occurs due to a
single real or a complex conjugate pair of eigenvalues crossing the imaginary axis. Thus,
we will assume that only m eigenvalues of (A.2) have positive real parts after u* (A) has
become unstable and m << N. Further, the variation ofm with A is essentially indepen-
dent of the mesh for an accurate discretization of the original continuous problem.

The simplest time discretization of (A.1) is given by the forward Euler scheme with
uniform time grid tn n/t:

(A.3) un+l()0 ?n(/) __/XtG(u,A).

Here, u’(A) u’ is the approximation to u(tn, A), and we note that this is in the form
(2.3) with

(A.4) F(un, A) =- " -1-/kta(un,

We easily see that the numerical stability of (A.3) is equivalent to the convergence of the
iteration (2.3) using (A.4), provided the initial value and the initial iterate u(A) are the
same. Indeed, the linearized discretization about u* (A) and the JacobianF (u*, A) have
eigenvalues related by

/zk(A) 1 + Atak(A) for k 1,2,...,N.

So if ak Pk q- iTk it follows that

At
(A.6) (a) I(,)1 < 1 if and only if (b)pk(A)<--Ia()
Thus, we find that (A.3) is stable for u* (A), and (2.3) is converging in some neighborhood
of the steady-state u* (A) provided

(A.7) pk(A)<0 fork=l,2,...,N,

and the time step is restricted by:

(A.8) At 0 min 2
IPk(A)I for some 0 < 0 < 1.

l<k<N I  (A)I
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Note that precisely when the steady state u*(A) of (A.1) loses its stability the nu-
merical scheme (A.3) with initial value equal to the steady state, i.e., u(A) u*(A),
cannot be made stable by any choice of At. We recall that such exchanges of stability
occur at transcritical and supercritical bifurcations and in these cases usually only one
real eigenvalue changes sign. Further, at a typical Hopf bifurcation the real part of a
pair of complex conjugate eigenvalues changes sign. Thus, in general, m will change
from zero to a small integer when the time integration procedure switches from stable
to unstable as A varies. For more accurate time integration (e.g., Runge-Kutta methods)
the Courant condition as in (A.8) will be modified, but the stability loss still affects only
a few eigenvalues. (See [8] for such results concerning hyperbolic systems of partial dif-
ferential equations.) In 8 we have presented numerical experiments in which a realistic
time integration procedure (using Runge-Kutta instead of Euler) is used to compute
unstable steady states using the RPM continuation algorithm.

In practice it is often important to detect bifurcation points lying along the solution
branch F {u G(u, A) 0}. Using the stabilization algorithm this can often be done
efficiently as well. As mentioned above, most bifurcation points occurwhere one or more
eigenvalues of G, G,(u* (A), A) cross the imaginary axis. Recall that the eigenvalues
of G, and F are related by (A.5). Further, the eigenvalues ofF outside the circle
{Iz[ 1 6} are precisely the eigenvalues of the computedm m matrixH ZT"F,g
of (4.5).
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