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Stabilization Over Power-Constrained
Parallel Gaussian Channels

Zhan Shu and Richard H. Middleton

Abstract—This technical note is concerned with state-feedback stabiliza-
tion of multi-input systems over parallel Gaussian channels subject to a
total power constraint. Both continuous-time and discrete-time systems are
treated under the framework of control, and necessary/sufficient con-
ditions for stabilizability are established in terms of inequalities involving
unstable plant poles, transmitted power, and noise variances. These results
are further used to clarify the relationship between channel capacity and
stabilizability. Compared to single-input systems, a range of technical is-
sues arise. In particular, in the multi-input case, the optimal controller has
a separation structure, and the lower bound on channel capacity for some
discrete-time systems is unachievable by linear time-invariant (LTI) en-
coders/decoders.

Index Terms—Channel capacity, control, networked control systems,
parallel Gaussian channels, stabilization, transmitted power.

I. INTRODUCTION

With the rapid development of communication technology, an
increasing number of control systems have integrated communication
channels or networks to transmit signals. While simplifying instal-
lation, facilitating maintenance, and reducing building costs, the use
of communication has also raised several issues and challenges. e.g.,
transmission delay, packet loss, data rate limit, and quantization.
These issues are rarely treated in traditional control system analysis
and synthesis, and spurs new developments of control theory [1], [2].

As one of the most important communication constraints, data rate
has received much attention recently. By employing information the-
oretic arguments, Nair and Evans have established a series of results
on the relationship between stabilizability and data rate [3]–[5]. LQG
type control has been considered in [6], [7]. State estimation and related
observability/detectability have been investigated in [8]. A comprehen-
sive survey on control with data rate limit is available in [9]. Although
these results are nice, they rely heavily on various information theoretic
techniques, which are unfamiliar to most researchers in control society,
and the resulting complex encoding/decoding schemes are difficult to
analyze in traditional control terms such as performances and robust-
ness. In [10] and subsequent work [11], [12], an alternative framework
for control system analysis and synthesis with data rate constraints
has been established for single-input and single-output LTI systems
with Gaussian communication channels. A highlight of this frame-
work lies in its simplicity and intimate relationship with modern control
theory. Naturally, one may wonder whether the proposed framework
can cope with multi-input and multi-output systems, and this motivates
the present study. As for networked control with other constraints such
as quantization, packet dropout, communication delay, we refer readers
to [13], [14] and references therein

In this technical note, we study the problem of state-feedback stabi-
lization for multi-input systems over parallel Gaussian channels subject
to a total power constraint, and establish necessary/sufficient condi-
tions for stabilizability in terms of inequalities involving unstable plant
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poles, transmitted power, and channel noise variances for both con-
tinuous-time and discrete-time systems. It is revealed that there exists
an inherent lower bound on the required transmitted power if an un-
stable plant needs to be stabilized. We further obtain lower bounds on
required channel capacity for stabilization. The lower bound for the
continuous-time case can always be achieved by a pair of memoryless
LTI encoder and decoder, while for the discrete-time case its achiev-
ability via LTI encoders/decoders is not guaranteed generally. The dis-
crepancy between continuous-time and discrete-time systems may be
explained by the different power allocations for Shannon limits.

Notation

Throughout this technical note, �, �, , and �� represent the
open-left halfof thecomplexplane,open-righthalfof thecomplexplane,
open unit disk, and complement of the closed unit disk, respectively;
� ��� denotes the expectation operator with respect to some probability
measure; �� ���, ��� ���, �	�
 ��� represent the trace, determinant, and
spectrum of a matrix, respectively; A square matrix� is said to be Hur-
witz (anti-Hurwitz, respectively) if �	�
 ��� � � (�	�
 ��� � �,
respectively), and Schur (anti-Schur, respectively) if �	�
 ��� �
(�	�
 ��� � ��, respectively);�� ��� and� ��� stand for the �th smallest
eigenvalue and spectral radius of a matrix, respectively;���

�
denotes the

�� norm of an underlying linear system; ���
�

represents the �th column
of a matrix; �� denotes the unique Moore–Penrose inverse of �.

II. PRELIMINARIES

The general feedback configuration considered in this technical note
is depicted in Fig. 1. The plant, encoder, and decoder are all linear, and
have the following realizations:

� �
�� ��� � �� ��� �	 ���


 ��� � � ���
(1)

�� �
��� ��� � ����� ��� ���� ���

� ��� � ����� ��� ���� ���
(2)

�� �
��� ��� � ����� ��� ��� ���

	 ��� � ����� ��� ��� ���
(3)

where � 	 	, 	 	 
, � 	 
, and  	 
 are the system state, the
control input, the channel input, and the channel output, respectively;
� represents the differential operator �� ��� �� ������, � 	 for
the continuous-time case, and the shift operator �� ��� � �� ��,

� 	 for the discrete-time case, respectively; ��

��� ���

��� ���

and��

��� ���

��� ���

are matrices to be determined. The channel

input and output have the relation  ��� � � ���  �� ���, where �� is
a Gaussian white noise with power spectral density ��, where � �
���� ���� ��� � � � � �
� � �1. We therefore rewrite the channel equa-
tion as

 ��� � � ���  �� ��� (4)

where � is a zero mean, circularly symmetric, unit variance additive
white Gaussian noise process. Similar to the single input case [10], all
signals are required to converge to a stationary distribution, and the
channel input has to satisfy the total power constraint

������ � �� ����� � 
 (5)

for some prescribed 
 . From (4) and the theory of �� control,
� �� ����� � ���	�

�

�
, where ��	 represents the resulting

1Without loss of generality, any additive white Gaussian noise, with non-de-
generate covariance matrix can be transformed to this diagonal case

Fig. 1. Feedback configuration over a parallel Gaussian channel.

closed-loop system, and therefore the constraint imposed on the
channel input can be reformulated as ���	�

�

�
� 
 .

For technical simplicity, we take the following assumptions on �,
�, and �.

Assumption 1: The system matrix � 	 	�	 and the input matrix
� 	 	�
 have the structure

� � ���� ��� ��� � � � ���

 ��

� �� (6)

where �� 	
	 �	 is Hurwitz (continuous-time systems) or Schur

(discrete-time systems), and � 	 	 �	 is anti-Hurwitz (contin-
uous-time systems) or anti-Schur (discrete-time systems). Note that �
has no eigenvalues on the stability boundary2.

Assumption 2: � satisfies

�� � �� � � � � � �
� (7)

Assumption 3: ��� �� is controllable (continuous-time) or reach-
able (discrete-time).

Note that if � has no eigenvalues on the stability boundary, one can
always use appropriate coordination transformation and renumber the
control input such that (6) and (7) hold. The controllability or reacha-
bility of ��� �� is essential for the stabilization problem considered
in this technical note. We end this section by giving a lemma which
will be used frequently in the sequel.

Lemma 1 ([15]): For any positive semidefinite matrices
��� 	 	�	, 	

���
�� ����	���� ��� � �� ���� �

	

���
�� ����� ���.

III. CONTINUOUS-TIME CASE

A. Single Encoder and Inequalities for Stabilizability

In this subsection, we consider the case without decoder, i.e., �� �
� , and derive necessary/sufficient conditions for stabilizability. Direct
manipulations give the closed-loop system

��	 � ���� ��� � ������ ��� ����� ��� � � ��� � ������ ��� (8)

where ��� ��� � � �� ��� ��� ��� �� and

��� �
� ���� ����

��� ���

� ��� �
�

�
�

��� � ���� ��� � � (9)

Thus, the �� norm from � to �, provided that ��� is Hurwitz, can be
evaluated as ���	�

�

�
� �� ���

������� , where � satisfies

���� ��

��� ��

����� � �� (10)

2“Stability boundary” stands for the imaginary axis for continuous-time sys-
tems and the unit circle for discrete-time systems.
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The following theorem establishes a relationship between stabiliz-
ability and transmitted power.

Theorem 1: The system in (1), subject to Assumptions 1–3 and
power constraint (5), is stabilizable via an encoder in (2) only if

�

�

���

�� ���� �
�

���
(11)

where ���� ���� 	 ��� 
 � 	 �� �� � � � � ���. Conversely, suppose that

�

�

���

�� ���� �
�

���
(12)

then the system in (1) is stabilizable, and the static encoder �� 	
� 	�

� 
� � � is optimal3.
Proof: First, lower and upper bounds on the infimum of �����

�

�

achieved by a stabilizing encoder will be derived. Since the Hamil-

tonian matrix
�� �	�	

�
�

� ���
�

has no eigenvalues on the ��-axis, and

����	�	
�
� is controllable (by the controllability of ���� 	��), the

Riccati equation
�����
�
�
��
�	�	

�
� 
� 	 � has a unique sym-

metric solution 
� such that �� �	�	
�
� 
� is Hurwitz. The fact that

��� ��� has no stable unobservable mode further implies that 
�  �
[16, Theorem 13.7]. Now, define �
 �����
�� ��, where the partition
is compatible with (6). It is easy to show that

�
� ��� �
 � � �
		� �
 	 �� (13)

Furthermore, define
 ����� �
 � ��, where the partition is compatible
with (9). Then, simple algebraic manipulations together with (10) and
(13) give that

���
 ���	��
�
�	 ���
 �� ��	�	

�
�	


�

��	�	
�
�	
 	��

Since ��	 is Hurwitz, one has that � � 
 � �, which implies that
�����

�

� � �� �	�
�	
	�	� . The equality can be achieved by setting

��	 	 �	�
�	
 , for which the corresponding encoder becomes � ��� 	

� 	�
� 
� � � � ���, and ��	 remains Hurwitz due to the stability of

�� � 	�	
�
� 
�. With this relationship, one has that

���� �� �����	�
��� �����
�

�
	�� �	�

�	
	�	�

	�� �	�
� 
�	�� �

Noting that 
� satisfies the Riccati equation mentioned above, one ob-
tains

�� 	�
� 
�	� 	�� 
 �
�

� 	�	
�
� 


�
�
�

	��� 
��
�
� ��

�

�
�
� 	 �

�

���

�� ���� �

Therefore, applying Lemma 1 to matrix 	�
� 
�	� �� yields that

����

�

���

�� ����� ���� �� �����	�
��� �����
�

������

�

���

�� ���� �

(14)
If the system in (1) is stabilizable, then from this inequality it follows
that (11) holds. If (12) holds, then, from this inequality, there must exist
an encoder such that the closed-loop system is stable and ������ �
� .

Corollary 1: If the system in (1), subject to Assumptions 1–3 and
power constraint (5), is stabilizable for � 	 �� , it is stabilizable for
any � � �� as well. If the system is not stabilizable for � 	 �� , then
it is not stabilizable for any � � �� as well.

3The “optimality” considered here means that the required transmitted power
is minimal.

Proof: Stabilizability for � 	 �� is equivalent to
��� �

���
�� ���� 	 ���� �� �����	�
��� �����

�

�
� � . This implies

that, for � � �� , � �
���

�� ���� � �����, which by (12) implies
the stabilizability. The proof of instabilizability is similar.

The lower bound in (14) is closely related to the Shannon limit of par-
allel Gaussian channels, as will be clear later, but generally unachiev-
able. It is natural to ask whether it is possible to make the bound always
achievable. In the next subsection, we shall give a positive answer to
this question, and show that adding a static decoder after receiving sig-
nals from the channels is sufficient for this.

B. Achievability of Optimal Transmitted Power via Encoder Plus
Decoder

We first restrict attention to static decoders. Generally speaking, si-
multaneous design of�� and�� may be complex, since it is equivalent
to an 	� problem subject to a structural constraint. However, the weak
separation property that the optimal encoder is uniquely determined if
a decoder is given enables one to split the design into two steps: ��

first and �� later. In the remaining part of this subsection, two achiev-
ability lemmas will be given first, and then a theorem showing that the
lower bound in (14) is always achievable will be established. Before
proceeding, define

���� � 
 ��� 	 ��� � � 	 �� �� � � � � � �

Lemma 2 (Sufficient Condition for Achievability): If there exists a
�� such that �	����� 	 � for � ������, and ���� 	���� is control-
lable, then the lower bound in (14) is achievable.

Proof: The controllability of ���� 	���� ensures the existence
of the optimal encoder � ��� 	 � 	�

� 
� � � � ���, and the corre-
sponding transmitted power is �� ��

� 	
�
� 
�	����

� . Noting that
the �th diagonal position, � �� ����, of ��

� 	
�
� 
�	��� is zero, one

has that

�� ��
� 	

�
� 
�	����

� 	����� ��
� 	

�
� 
�	���

	����

�

���

�� ���� �

Lemma 3 (Necessary Condition for Achievability): If the lower
bound in (14) is achievable by some �� and corresponding ��, then
���� 	���� is controllable and �	����� 	 � for � ������.

Proof: Represent ��
� 	

�
� 
�	��� as

��
� 	

�
� 
�	��� 	

�� �    �

� ��    �
...

...
. . . �

� � � ��

� (15)

Obviously, � � �, � 	 �� �� � � � ��, and �� ���
� 	

�
� 
�	���� 	

�
���

���
�
� . If there exists � ������ �	 ��� �� � � � � �� such that �� �	 �,

then � �	 �� for some �, and thus �
��� ���

�
�  ���

�
��� �� 	

����
�
���

�� ����, which contradicts with the fact that �
���

���
�
� 	

����
�
���

�� ����. Hence �� 	 � for � �� ����. On the other hand,
�� 	 �	����

�
� 
� �	�����. Therefore, �	����� 	 � for � �� ����

due to 
�  �. If ���� 	 ��� �� � � � ���, then � 	 �� for some �,
and there is no � ������. The result is obvious. In addition, the stability
of �� � 	����� implies that ���� 	���� is stabilizable, and thus
���� 	���� is controllable due to �� ����  �.

These two achievability lemmas establish a necessary and sufficient
condition for stabilizability with optimal transmitted power, and show
that optimal stabilization can be achieved only when all subchannels
with noise variance strictly larger than ��� are abandoned. As will be
shown later, this transmission scheme also maximizes the mutual infor-
mation between channel input and output, and therefore achieves the
Shannon limit of (continuous-time) parallel Gaussian channels.
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Theorem 2: For the system in (1), subject to Assumptions 1–3 and
power constraint (5), the lower bound in (14) is always achievable by
some static �� and ��.

Proof: Since ���� ��� is controllable, for any left eigenvector ��
of �� such that ����� � ��� ��, � � �� �� � � � � �, ����� �� �. Thus, it
suffices to prove that there exists a �� such that ������� �� � for any
left eigenvector ��. Choose an arbitrary nonzero vector 	�, and write
� �� �� � � � �� 	

���	� � �
� 
� � � � 
� 	
�. If 
� � � for

some �, then perturb 	� to 	� such that 
� �� � and other nonzero 
�

remains nonzero. This is always possible, since ����� �� �. Repeat this
process until an 	� is obtained such that all 
� are nonzero. Construct
�� such that ����� � �, � �� ����, and ����� � 	� , � � ����. From
the property of 	� , it follows that ������� �� �, and thus ���� �����
is controllable. Applying Lemma 2 yields the desired result.

It is noted that the lower bound in (14) is solely related to the poles
in � and the minimal noise variance. If one connects a decoder in (3)
to a plant in (1), one could obtain an equivalent plant with the realiza-

tion
� ����

� ���
�
���	

��

�  . The fact that���� includes all

unstable poles of� together with Theorem 2 indicates that dynamic de-
coders are unnecessary for the stabilization problem considered here.

C. Channel Capacity and Stabilizability

The information capacity of the power constrained parallel Gaussian
channel [17] is

� 
��
����	��

�� �� � 
��
����	��

�

�
�

��
����

�����

where �� �� is the mutual information of � and �, �� � � is trans-
mitted power of the �th subchannel, and �

�
� �� � � . Noting that
�
�
�������

�
� �������

�
�
�������

�
��������������������� where

the first equality is achieved when �� � �, � ������, one has that

� �
�

����
�����

����

������
�

This together with Theorems 1 and 2 yields the following result.
Theorem 3: The system in (1), subject to Assumptions 1–3 and

power constraint (5), is stabilizable via a pair of encoder �� and de-
coder �� if and only if the channel capacity satisfies

� �

�

�
�

�� ���	 ������

All the results mentioned above manifest clearly that memoryless
LTI encoders/decoders are sufficient for stabilizing a continuous-time
linear systems while achieving the lower bound on required channel ca-
pacity. The proof of Theorem 2 has suggested an approach to finding
a desired ��, and, once �� is fixed, the optimal �� can be obtained
readily by solving corresponding Riccati equation. It should be empha-
sized here that, unlike the single-input case, both�� and�� in general
must be utilized in order to achieve the optimal transmitted power.

IV. DISCRETE-TIME CASE

A. Single Encoder and Inequalities for Stabilizability

Similar to the continuous-time case, the closed-loop system
with a single encoder is described by (8), and the 
� norm
from � to �, provided that ��� is Schur, can be evaluated as
����

�
� � �� ���

������� , where � satisfies ��
������ 

� � ��
����� � �. Before presenting the main result of this

subsection, define � ��� 
�
� �

�
�

�
�
� ����

�, where

���� ���� � ��� � � � �� �� � � � � ��	, and � � � � � is a
natural number.

Lemma 4: Regarding � ���, one has that
a) If ��� � � ��� for some � � , then, for any � � , � � �:

�� � � ���.
b) � ��� � ���

�
�
� ����

�, �� � such that �� � � ���.
Proof:

a) ��� � � ��� implies that ���
�
� �

�
� �
�
�

�
�
� ����

�, and thus
�����

���
� ���

���
� ���

�
� �
�
�

�
�
� ����

�, which means
that ����� � � ��  ��. Repeating this argument gives the result.

b) According to a), there must exist an � such that �� � � ���,
�� � �, and �� � � ���, �� � �. From this observation, it
suffices to prove b) for � � � � �. When � � �, this is obvious.
Assume that this holds for � � �, i.e., � ��� � ���

�
�
� ����

�.
Then, for � � � � � � �

� ��� �� � � � ��� �����

� ���

�

�
�

����
�

�

�����

� ���

�

�
�

����
�

�

� ��� ��

where the second inequality is due to a) and � � � � �. Mul-
tiplying both sides of the above inequality by � ��� ���������	

yields that b) holds for � � � � �. The result follows by induc-
tion.

Theorem 4: The system in (1), subject to Assumptions 1–3 and
power constraint (5), is stabilizable via an encoder in (2) only if

�

�
�

����
� �

��
�

�
�

���

� �
�
� �

�
�

(16)

where � � � is the largest integer such that ��� � � ���. Conversely,
suppose that

�

�
�

����
� �

�

���
� � (17)

then the system in (1) is stabilizable, and the static encoder �� �
 �  ���

� ����
��

��
� ���� � 	 is optimal.

Proof: Since the Simplectic matrix
�� ���

�
� ��

�
� �
��

� ���
� �
��

has no eigenvalues on the unit circle, and ������
�
� is reachable

(by the reachability of ���� ���), the Riccati equation ��
����� 

��  ��
�����  ���

� ����
��

��
� ���� � � has a unique

symmetric solution such that ��  ��  ���
� ����

��
��
� ����

is Schur. In addition, the fact that ��� ��� has no stable unobserv-
able mode implies that �� � � [16, Theorem 21.11]. Now, define
�� ���� ���� �� and � ���� �� � � , where the partition is
compatible with (6) and (9), respectively. By following a similar line
as used in the proof of Theorem 1, one obtains that

��
�� �� � ����  �� � �

� ���� � � ��  ���
������ ���� � � � � �

where � � � � ��� ������ �� ��� � 	 . Since ���

is Schur, one obtains that �  � � �, which results in
����

�
� � �� ���

������� . The equality can be achieved
by setting ��	 �  �  ���

� ����
��

��
� ���� � 	,

��� � �, for which ��� remains Schur due to the stability of
��  ��  ���

� ����
��

��
� ����. Noting that �� satisfies the

Riccati equation mentioned above, the spectrum of the closed-loop
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system can be decomposed as

���� ��� � ��� ���
��

�� ���

����� ���
� ���� �� � ���� ���	

� ���� ���
� � ���� ���	 � (18)

According to the Matrix Inverse Lemma [18], � �

� � ��� ���
��

�� ��� � � ���� ��
��

�. This to-
gether with (18) implies that


�� � ���
� ����

��


�� ���	 
�� ���	

� 
�� ���
� 
�� ���	

and thus 
�� � ���
� ���� � �

��� ����
�. With this and Lemma 1,

one obtains that
�

���

��� ������ ��
� ���� � ��

� �� ���	�
����
�����

�
�

�

�

���

��� �� ��
� ���� (19)

where �� ��
� ���� � � and �

��� � � �� ��
� ���� �

�

��� ����
�. Let us now evaluate both sides of (19).

1) By using the arithmetic and geometric mean inequality, one has
that
�

���

��� ������ ��
� ����

�	
�

���
���� ������� ���

� ����	 � ��	 �

�

���

���

�	
 �		�

�

���

���

where the equality is achieved when

��� � � �� ��
� ����

���� � � ���� ��
� ����

� � � � � ��� ��� �� ��
� ���� � 
 �		 �

However, since �� ��
� ���� cannot be negative, the lower

bound may not be achieved if ��� is too large. More specifically,
if ��� � 
 �		, then the optimal �� ��

� ���� is 0. Repeat this
process until ��� � 
 ��	 for some �. Then, the possibly achieved
bound is

�

���

��� ������ ��
� ���� � �
 ��	�

�

���

��� � (20)

One may worry about that whether �� ��
� ���� would have

to exceed its maximum �

��� ����
� � � if ��� is very small. Ap-

plying Lemma 4 yields that 
 � �, ��� � 
 �	 and 
 �	���� �
���

�

��� ����
� ���� � �

��� ����
�, and thus this situation would

never occur.
2) It can be shown by using the Lagrangian multiplier method that

�

��� �
�
� �� ��

� ���� has only one minimum point, and thus
�

��� �
�
� �� ��

� ���� takes its maximum at boundary points.
Simple calculations give that

�

���

��� �� ��
� ���� � ���

�

���

����
� � � (21)

where the equality holds when �� � �� � � � � � ���� � �.
The results follows immediately from the two bounds.

Corollary 2: If the system in (1), subject to Assumptions 1–3 and
power constraint (5), is stabilizable for � � �� , it is stabilizable for
any � � �� as well. If the system is not stabilizable for � � �� , then
it is not stabilizable for any � � �� as well.

Proof: Stabilizability for � � �� is equivalent to
�� �

��� �� ��
� ���� � ��

� �� ���	�
����
�����

�
� � � . This implies

that, for � � ��

��
� �� ���	�
����

�����
�
� ��� ���

� �����

� ��
�

���

�� ��
� ���� � �

which implies the stabilizability. The proof of instabilizability is sim-
ilar.

The lower bound in (20), similar to the continuous-time case, is
closely associated with Shannon limit, but is generally unachievable
by a static encoder. One may speculate from the results for contin-
uous-time systems that the bound can always be achieved by adding
a decoder. Unfortunately, this conjecture is not true, as will be revealed
in the next subsection.

B. Achievability of Optimal Transmitted Power via Encoder Plus
Decoder

We first restrict attention to static decoders. Before proceeding, de-
fine

��� �
	���



� �  � �

�  � �
(22)

where � is defined as in Theorem 4. In fact, ��� is the optimal signal-to-
noise ratio for the th subchannel when the lower bound on channel
capacity is achieved. This will be clear along with the development. In
the subsequent derivations, unless stated particularly, �� denotes the
solution of

��
����� � �� ���

�������

 � ���
� �

�
� ������

��

��
� �

�
� ���� � ��

Lemma 5 (Sufficient Condition for Achievability): If there exists a
�� such that ���� ����	 is reachable and

�����	
�

�
�� �����	� � ���

then the lower bound in (20) is achievable.
Proof: The reachability of ���� ����	 ensures the existence

of optimal encoder, and thus the corresponding transmitted power is
�� ��

� �
�
� �������

� � �

��� �
�
� �
�

� . The proof is completed by
employing (22).

Lemma 6 (Necessary Condition for Achievability): If the lower
bound in (20) is achievable by some �� and corresponding ��, then
���� ����	 is reachable and ��

� �
�
� ������ � 
��� ���� 	.

Proof: The reachability of ���� ����	 follows from the stability
of the closed-loop system. Write ��

� �
�
� ������ as (15). Obviously,

� � �, � � �� �� � � � �	, and

�� ���
� �

�
� ������� �

�

���

���
�
�

� �

�

���

���

�

���

����
� �

�

���

��� �

From this

�
 ��	 �

�

�����

��� �

�

���

��� � �	��� � (23)
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Let us now evaluate the minimum of the right hand side of (23)

�

���

��� � ����� ��

�

���

��� ��� � ��

��

�

���

��� ��� �� ���
� �

�
� �������

��� ���

where the first and the second inequalities come from the arithmetic
and geometric means inequality and Hadamard’s inequality, respec-
tively. The equality holds if and only if ��

� �
�
� ������ is diagonal

(Hadamard’s inequality) and ��� � ����� � ��� � ����� � � � � �
��� � ����� � � ��� (arithmetic and geometric means inequality).
However, it has been pointed out in the proof of Theorem 4 that ��� �

�
��� �

�
�

�
��� �	��

�. Hence, �� cannot achieve its globally op-
timal value, and the optimal �� is �� � 	. Repeating this argu-
ment gives that �

��� ��� � ����� � 
� �
� � �
����� �

�
� where the

equality holds only if ��
� �

�
� ������ is diagonal and ��� � ����� �

��� � ����� � � � � � ��� � ����� � � �
� . From this and (23), it
follows that �� � � �
����� � � � ��� ,  � �� 
� � � � � 
 and �� � 	,
 � 
 � �� 
 � 
� � � � ��. This completes the proof.

The following theorem and its corollary indicate that the lower
bound in (20) is not always achievable by LTI encoders/decoders.

Theorem 5: The lower bound in (20) is achievable by some �� and
corresponding�	 if and only if�� � 
 and there exist unitary matrices
� and � such that the following constrained Sylvester equation has a
nonsingular solution � :

��� �� ����� (24a)

���
�
� � � � � �	 (24b)

where � � � � ��� �
�
and � � � ���� ��� 	 �� ��� � ��

or ���� ��� ��� � ��.
Proof: From Lemmas 5, 6, and 	 � �� � � �� , the lower

bound in (20) is achievable if and only if �� � 
 and there exists a
�� � 	 such that

��
����� � ��

���
������� � ���

� �
�
� ������

��

��
� �

�
� ���� � 	

and ��
� �

�
� ������ � ���� ���� �. By letting �� � ���� , and ap-

plying the Matrix Inverse Lemma [18], one obtains an equivalent con-
dition that

�����
�
� ��� ������

�
� �

�
� (25a)

��
� �

�
��

��
� ���� ����� ���� � � (25b)

Noting that �� � 	 if and only if there exists a nonsingular matrix
� such that �� � ��� . With this decomposition, (25) is equivalent
to ������ ������

�
� �� ������� �������

�
and

�������
�

������� � ���� ���� �, which, by using singular
value decomposition, implies that

������ ������
�
� ��� �� (26a)

������� � � �� (26b)

for some unitary matrices � and � . Using singular value decomposi-
tion again yields that (26) is equivalent to

�������� � ���� (27a)

�� ��
� � � � � � (27b)

for some unitary matrices � and � . By re-defining � and ��

as � � 	 � and ��
� � 	 ��, and noting that the equation

�� ��
� � � � � � has a solution ��

� � if and only if

���
�
� � � � � � � � [18], (27) is further equivalent to (24).

Corollary 3: The lower bound in (20) is achievable only if

� ���� 

� �
�

��
(28)

�

���

	� 
 � �
�

�

���

�

��
� �� � 
 (29)

and there exists a matrix � such that

� � ���
�
� � �

�
���

�
� � � � ��� � 	� (30)

Proof: Equation (28) follows immediately from the fact
that �� and ��� have the same spectrum and � ����� �
� ����� 
 ����� � � �
����. Equation (29) can be
proved by noting �

��� 	� � �� ������ � �� ����� and
��� ��� 
 �� ����� 
 �� ���, which follows from the diagonal
positivity of � and the orthogonality of �� . To prove (30), noting
that ���� � �� � 	 in Theorem 5 can be decomposed as �� � ��,
� � 	 without loss of generality, and � satisfying (24b) can be

parameterized as � � ���
�
� � �

�
���

�
� � � � ���, where �

is arbitrary, one has the result immediately.
Example 1: Consider a feedback control system with 	� � 
,

	� � �, and 	� � �. The channel noise variances are ��� � 	�� and
��� � 	��. Simple calculations give that � ���� � �, �

��� 	� �

��, � �
���� � ����
�, and � �
� �
��� ������� �� � 
 � �	.

Obviously, (28) and (29) are not satisfied, and hence (24) has no non-
singular solution.

As for dynamic decoders, it is not difficult to show that, through
some algebraic manipulations, they are not helpful in reducing the
lower bound on transmitted power, and thus unnecessary for stabiliza-
tion if the lower bound can be achieved by static encoders/decoders.
However, dynamic decoders may reduce actual transmitted power if
the lower bound cannot be achieved by static ones.

C. Channel Capacity and Stabilizability

The information capacity of the discrete-time power constrained par-
allel Gaussian channel [17] is

� � ���
���	�
��

���� �� � ���
���	�
��

�



����

�

���

� �
�

���

where � � 	 is the transmitted power of the th subchannel, and
�
��� � 
  . Noting that, when �

��� � � 

�

���

� �
�

���



�

���

�

���

�

���

��� � �

�

�

�

�

���

�

���

�

���

��� � 

�

�

where the first equality holds when ��� � � � ��� � � � � � � �
��� �� � � �

��� �
�
� � ���. If ��� � � �

��� �
�
� � ���, then,

to maximize mutual information, � should be set to zero. Likewise,
if ����� � � ���

��� ��� � ����� ��, ��� should be set to zero.
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Repeat this process until ��� � � �

���
��� � ����. Then, the optimal

power allocation is

��� �
� ��

�
� ��� � � �

� � � �

(31)

and, therefore, the information capacity can be evaluated as

� �
�

�
�	
�

� �
�

���

���

�

�

���
���

���

���������	�
�

The power allocation process for discrete-time parallel Gaussian chan-
nels is usually referred to as water filling [17] due to its similarity to
distribution of water in a vessel, and is regarded as a major difference
from continuous-time channels. Based on this, we have the following
result.

Theorem 6: The system in (1), subject to Assumptions 1–3 and
power constraint (5), is stabilizable via a pair of encoder �� and de-
coder �� only if the channel capacity satisfies

� �

�

���

�	
� �	���



�
�	
�
 ���	 � (32)

Proof: When the lower bound in (20) is achieved, it is
easy to verify that ��
 � � 


���
��� � ���	��
 and ��
�� �

� 
��

���
��� � ���	���
 � ��, where 
 is defined as in Theorem 4

and ���	 � 
� �
� � 


���
��� . Hence, � in (31) is equal to 
, and

corresponding capacity is ���	 . From this, the result follows imme-
diately. If the lower bound is unachievable, it can be shown readily
that corresponding capacity � is greater than ���	 . This completes the
proof.

If the lower bound in (20) is unachievable for certain discrete-time
systems, ���	 is no longer sufficient for stabilizability, and extra
channel capacity would be required. As for the computation of optimal
or suboptimal encoders/decoders, one may transform it into a bilinear
matrix inequality (BMI) optimization problem by using some tech-
niques developed in �� control, and we do not intend to include this
here due to page length consideration. Further study on computation
will be reported elsewhere. The following example shows that, for
some systems, the lower bound in (20) is achievable by static LTI
encoders/decoders.

Example 2: Consider a system with

� � �� �

� � �

�� � ��

� ��� �

 � � �� �

���� ���

���� �

� ��

�

The channel noise is characterized by � � ���
 ���� ����. Simple
calculations give 
 � �, � ��� � ��������, ��� � �������, and
��� � �������. By solving the corresponding BMI, a desired pair of
encoder/decoder can be obtained as

�� �
�������� �������� ��������

�������� �������� ��������

�� �
������ �������

������� ������
�

The actual transmitted power is thus computed as ������ �
��������, which is exactly the same as 
� �
� � 


���
��� �

��������. Furthermore, computing transmitted power of each channel

gives ������� � �������� and ������� � ��������, which are
also consistent with the water filling in (31).

V. CONCLUSION

We have investigated the state-feedback stabilization problem of
multi-input LTI systems over parallel Gaussian channels subject
to a total power constraint. It has been shown that to stabilize an
LTI plant transmitted power must be greater than a bound related
to unstable plant poles and channel noises. In terms of this, lower
bounds on required channel capacity for feedback stabilization have
been obtained for both continuous-time and discrete-time systems.
For continuous-time systems with LTI encoders/decoders, the derived
capacity bound is always tight, while, for discrete-time systems with
LTI encoders/decoders, the tightness of the capacity bound is not
guaranteed. In addition, to achieve the optimal transmitted power, both
encoder and decoder in general must be utilized.
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