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1 Introduction

The numerical solution of first-order hyperbolic problems by finite element methods has
become increasingly popular in recent years. Two major families of methods have emerged:
the streamline diffusion method (SDFEM) and the discontinuous Galerkin method (DGFEM).
While the SDFEM uses continuous approximations, the DGFEM allows for discontinuities
at element interfaces and is, in spirit, close to the well-established finite volume schemes
with some particular differences, however.

For classical finite element and finite volume methods improvement in accuracy relies
on mesh refinement while keeping the approximation order within the elements (or cells)
at a fixed, low value, leading to the so-called h-version convergence. In the late seventies
and early eighties, however, the so-called p-version or spectral methods emerged which
achieve convergence by increasing the polynomial order of the approximation rather than
by mesh refinement. Naturally, this is very advantageous in situations where a smooth or
even analytic solution is to be approximated. Unfortunately, the solution to most problems
of practical interest is only piecewise analytic: in elliptic problems (such as stationary
viscous incompressible flow), corner and edge singularities arise in the vicinity of which
the solution regularity is very low. Good performance of high order methods and, in
particular, spectral or exponential convergence for such problems mandates the combination
of increasing polynomial degree in regions where the solution is smooth and mesh refinement
with low order polynomial approximations close to singularities. This strategy gives rise to
the hp-version of the finite element method introduced by Babuska and his co-workers in
the mid-eighties for elliptic problems.

The DGFEM has been proposed and first analyzed in [9] for a linear hyperbolic problem.
There, the method was formulated and its h-version convergence was established in L?((2),
albeit with a suboptimal rate. Later, in [7], [8], the optimal rate of O(h?*'/2) in a mesh-
dependent norm (stronger than L?(2)) was proved, assuming that the finite element space
consisted of piecewise polynomials of degree p. In the meantime, the DGFEM has also
been successfully applied to nonlinear hyperbolic conservation laws (see, e.g., [4]).

The hp-version of the DGFEM has been introduced by K. Bey and J.T. Oden, who
gave a-priori and a-posteriori error bounds in [1]. Their analysis produced error estimates
which, for a fixed p and as h — 0, reduced to the optimal order estimates of [7], [8], but
also indicated convergence as p — oo for fixed h > 0. These results were derived under the
assumption that the stabilization parameter in element K is of size hg/p%; however, the
rate of this spectral convergence was suboptimal.

In the present paper, we generalize the results of [1] in several directions. We establish
a unified framework for the hp-error analysis of the SDFEM and the stabilized DGFEM,;
on quadrilateral meshes we derive error estimates which are sharp both as h — 0 and as
p — o0o. These optimal error bounds are derived assuming that the stabilization parameter
for both the DGFEM and the SDFEM, and for the h-, p- and the hp-version is O(hg /pK),
independent of the solution regularity. For the DGFEM we admit very general, irregular
meshes and for the SDFEM we allow meshes which contain hanging nodes. Most impor-
tantly, our error estimates depend explicitly on the elemental solution regularity and indeed
allow us to deduce exponential convergence rates for piecewise analytic solutions. The the-
oretical findings are in full agreement with the numerical experiments which complete the



paper.

We note in closing that Bey and Oden [1] also considered the a-posteriori error analysis
of the hp-DGFEM. Using the sharp error estimates obtained here, new a-posteriori error
estimates can be derived for hp-DGFEM and hp-SDFEM. However, this subject is beyond
the scope of the present paper and will be considered elsewhere.

2 The model problem

Let 2 be a bounded curved polyhedral domain in R, d > 2. Given that a = (a1, ..., aq)
is a d-component vector function defined on Q with a; € C*(Q), 1 =1,...,d, we define the
following subsets of I' = 9€2:

I = {zel: a(z) -n(z) <0},

Iy = {zel: a(x)-n(z) >0},
where n(x) denotes the unit outward normal vector to I' at € T'. It is assumed here
implicitly that in these definitions = ranges only through those points of I' at which n(z) is

defined; consequently, I'_ and I'y are not necessarily connected subsets of I'. For the sake
of simplicity, we shall suppose that I' is non-characteristic in the sense that ' _ U’y =T.

Let b € C(Q), f € Ly(Q), g € Ly(T'"_) and consider the hyperbolic boundary value
problem

{Euza-Vu+bu = f inQ, 2.1)

u = g onl_.

This problem has a unique weak solution u € Ly(Q) with a-Vu € Ly(£2) and the boundary
condition is satisfied as an equality in Ly(I'_).

In the next two subsections we shall formulate the hp-streamline diffusion and hAp-
discontinuous finite element approximation of (2.1).

2.1 hp-Finite Element Spaces
2.1.1 Meshes

Let P denote a partition of {2 into open patches P which are images of a reference domain
P under smooth, bijective maps Flp:

A

VP eP: P=Fp(P).

We assume that P is either the canonical cube

or the unit simplex
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Patch P and Mesh Tp Patch P and Mesh Tp
Figure 1: Construction of the mesh patch 7p in the case when P is the canonical cube Q

At this stage, we consider meshes which result from either Q or S ; in Section 3 and onwards,
for the sake of simplicity, we shall restrict ourselves to the case of d = 2 and quadrilateral
meshes.

The meshes 7 are constructed by subdividing the patches. For each P, a mesh Tp
is obtained by first subdividing P into elements (e.g. triangles resp. quadrilaterals When
d = 2) labelled K which are affine equivalent to either Q or S we call this mesh Tp.
mesh 7p for P € P is then obtained by simply mapping 7p to P using Fp:

VPeP: Tp={K|K=FpK), K €Tp}, (2.2)
cf. Figure 1. As usual, the mesh 7 in € is the collection of all elements, i.e.

T=U 7.

pPeP

Note that each K € T is an image of the reference domain P via the element map Fy: if
K € P for some P € P,

K = Fg(P), Fgx:=FpoAyg (2.3)
andAf(:]a—>f(€7A}isafﬁne.

Remark 2.1 The maps Fp, P € P, are assumed to only deform the canonical patch P
without any significant rescaling, thereby ensuring that the measure of the set P is compa-
rable to the measure of set P; thus we may infer that the elements K in the mesh Tp are of



comparable size to the elements K in the mesh Tp. More explicitly, we assume there exist
positive constants ¢; and ¢y such that for all K in the mesh T

C1 S h}(/hf( S Co (24)

with hix = diam(K), hy = diam(K) and K is associated with K via K = Fp(K), as in
(2.2). This will be important as our error estimates will be expressed in terms of Sobolev
norms over the element domains R’, in order to ensure that only the scaling introduced by
the affine element maps Ay is present in the analysis.

We emphasize that we could choose A and Fp in (2.3) so as to obtain the usual para-
metric elements. However, it is also possible to use patches P with structured patch-meshes
Tp, as e.g. geometric corner refinement, anisotropic boundary layer and edge refinement
etc. In what follows, the partition P shall be fixed, i.e. mesh refinement is performed in P.

We call the mesh 7 regular, if for any two K, K’ € T the intersection KNK is either
empty or an entire boundary segment of dimension 0 < d’ < d (e.g. a vertex (d' = 0), an
entire edge (d' = 1), an entire side (d' = 2) etc.). If the mesh T is regular, the maps Fp
are assumed compatible between patches in the sense that

if Fﬂﬁ%@ Fp|ﬁﬁﬁ:Fpl|ﬁmﬁ, i.e. Fp(.%') :Fpl(fL') VZL'EFQW (25)

The Tp are 1-irregular, if they consist of quadratics resp. hexagonal elements with at
most one irregular (“hanging”) node per side. 7T is l-irregular, if the 7p C T are either
regular or 1-irregular and compatible between patches.

2.1.2 Polynomial spaces
On the reference element we define spaces of polynomials of degree p > 0 as follows:

Q, = span{z*: 0 < q; <p, 1 <i<d},

A (2.6)
P, = span{z®*: 0 <|a| <p}.

2.1.3 Polynomial subspaces on P

Let 7 be any mesh as in 2.1.1 and let

p={pxk:KeT}

be a polynomial degree vector on 7. The definition of a discontinuous hp-FE space
is now straightforward: if Fp = {Fp : P € P) denotes the patch-map vector, we set
SPO(Q,T,Fp) = {u€ Ly(Q)] u|xoFx € Qp, if K €T is quadrilateral

2.7
resp. u|g o Fx € P, if K is triangular} . (27)

No inter-element continuity is imposed here. If the polynomial degree is uniform, px = p
for all K € T, we write SP°(Q, T, Fp). If the choice of Q, T and Fp is clear from the
context, we omit them and write SP°.



Let us now turn to continuous hp-FE spaces. Here we assume 7 to be either regular
or l-irregular. If the polynomial degrees px are uniform, namely pgx = p for all K, we
define, for p > 1,

SPHQ, T, Fp) = SPY(Q, T, Fp) N H'(Q) (2.8)

i.e. inter-element continuity is now enforced and the compatibility condition (2.5) between
patches is required. If the polynomial degrees are nonuniform, there are several ways to
enforce inter-element continuity - assume that K, K’ € 7 share a d — 1 dimensional set,
and that px < pgr. One can now either enrich the polynomials on K or constrain the
polynomials on K’. We adopt here the latter approach and set

SPL(Q, T, Fp) = SPO(Q, T, Fp) N HY(Q) . (2.9)

Note that one could even allow anisotropic/nonuniform polynomial degrees within an
element K € T - this becomes important when adaptivity is considered (see [5] and the
references therein). Definition (2.9) implies that the degrees of freedom from K’ that are
unmatched by those from K are constrained to zero on interfaces K N K'.

2.2 The hp-SDFEM

The hp-SDFEM approximation of (2.1) is defined as follows: find usp € SP! such that

(Lusp, v+ 0Lv) + (usp, v)r_ = (f,v +0Lv) + (g,v)r_ Vv € SP!, (2.10)

where ¢ is a positive piecewise constant function defined on the partition 7~ (namely, § is
constant on each K € T). In (2.10), (-, -) denotes the inner product of L,(2), and

(w,v)r_ :/|a-n|wvds,
r_

with analogous definition of (-,-)r, and associated norms || - ||pr_ and || - ||r,.

Our first result concerns the stability of the Ap-SDFEM and is expressed in the next
lemma.

Lemma 2.2 Suppose that there exists a positive constant ¢y such that

b(z) — % V-a(z) > ¢, v€Q. (2.11)

Then usp obeys the bound

1 1
V6 Lusp |® + collusnll* + lusoll?, + 3 llusollz_ < IVEFI* + p 1A% +2llgllF_ - (2.12)



Proof: Select v = ugp in (2.10) and note that

(Lusp, usp) + (usp, Usp)r_

1 1 1 (2.13)
= ((b -5V a) USDaUSD) + 5 llusoll?, + 5 [luspllp_ -

Applying (2.11) here and using the Cauchy-Schwarz inequality on the right-hand side in
(2.10) with v = ugp, the result follows. O

Now we embark on the error analysis of (2.10). We begin by decomposing
u—usp = (u—TIu)+ (llu — ugp)

2.14
n+¢, (214)

where ITu is a suitable projection of u into SP''; for the time being the choice of the projector
IT is of no significance and will be deferred until later. First we shall derive a bound on £ in
terms of n; the final error bound on v — ugp will then follow from bounds on the projection
error 7.

Lemma 2.3 Assuming that (2.11) holds, and u € H'(Q), we have that

IVBLE + gl + 2 el + €l < IVGLn — L nll + allnl + 20l (2.5
where ¢ € C(Q) is defined by
(z) = b(x) — % V-a(z), z€Q. (2.16)
Proof: Define the bilinear form
B(w,v) = (Lw,v+ 6Lv) + (w,v)p_ (2.17)
for w,v € H'(Q) and the linear form
l(v) = (f,v+dLv)+ (g,v)r_, (2.18)

for v € H'(Q). Then, from (2.14),

B(gag) = B(U_USD_nag)

(2.19)

= B(u,§) — B(usp, §) — B(n,€) -

Since u and ugp solve (2.1) and (2.10) respectively, it follows that
B(u,§) — B(usp,§) = B(u,§) = ((§) =0. (2.20)

From (2.19) and (2.20) we have,



B(&,€) = =B®,¢) - (2.21)

Applying (2.13) from the proof of Lemma 2.2 with ugp replaced by &,
1 1
IVOLE|? + llcgl® + 5 Eli?, + 5 IElR = =B, . (2.22)
The rest of the proof is devoted to bounding B(n,&). By partial integration,

~Bn.€) = (= n = VoLn. VALE) —2(*n. ) — (O

Hence )
1 1 1
~Bn.€) <3 |- vacn| +3 Ivacel? -
1 1 '
+ 5 le€ll® +2lenl® + 5 llelip, +Iinli3, -

Substituting (2.23) into (2.22) and multiplying the resulting inequality by 2 gives (2.15).
O

2.3 The hp-DGFEM

Given that K is an element in the partition 7, we denote by 0K the union of open faces
of K. This is non-standard notation in that 0K is a subset of the boundary of K. Let
r € 0K and suppose that n(x) denotes the unit outward normal vector to 0K at x. With
these conventions, we define the inflow and outflow parts of 0K, respectively, by

0K = {2€dK: a(x) n(x) <0},
0.K = {zx€dK: a(x) -n(x) >0}.

For each K € T and any v € H'(K) we denote by v™ the interior trace of v on 9K (the
trace taken from within K). Now consider an element K such that the set 0_K\I'_ is
nonempty; then for each z € 9 K\I'_ (with the exception of a set of (d — 1) dimensional
measure zero) there exists a unique element K', depending on the choice of x, such that
xr € 0. K'. This is illustrated in Figure 2.

Now suppose that v € H'(K) for each K € 7. If 9_K\I'_ is nonempty for some K € T,
then we can also define the outer trace v~ of v on d_K\I'_ relative to K as the inner trace
v relative to those elements K’ for which 0, K’ has intersection with 9 K\I'_ of positive
(d — 1)-dimensional measure. We also introduce the jump of v across 0_ K\I'_:

Let § € H'(K) for each K € T, and suppose that ¢ is positive on each K € T. Typically,
0 is chosen to be constant on each K € 7T, although we shall not require this for now.
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Figure 2: A point z such that x € 0 K and z € 0, K.
Suppose that v,w € H'(K) for each K € T. We define
Bpg(w,v) = Z/ﬁw (v+dLv) dx
— (a-n)w]vtds — / a-n)w vt ds
S/ )3

K 5 Kknar_

(2.24)

and put

lpa(v /f (v+ L) dx—z / a-n)gvt (2.25)
K

K o Knr_
The hp-DGFEM approximation of (2.1) is defined as follows: find upg € SP° such that
BD(;,(UD(;,U) = KD(;(U) Yv € Sp,O . (226)
Next we study the stability of the discrete problem (2.26).

Lemma 2.4 Suppose that there erists a positive constant ¢y such that (2.11) holds. Then
upg obeys the bound

Y IV Luna|i + collunallic + Y llupe — upell3_wyr
K K

1
+ Z ||U$G||129+KDF+ +5 Z ludell3 xnr (2.27)
K K

1
<D IVorl+ o DR +2 D llalls ke -
K K K
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Remark: This bound is analogous to the estimate (2.12) for the hp-SDFEM.

Proof: Take v = upg in (2.26); this gives
Bna(una, una) = fna(unc)- (2.28)

We begin by bounding the left hand side in (2.28) from below. Upon partial integration,
(2.24) gives

Bpc(upg, upc) = Z /5|EuDG|2dx

K K
1
+Z/<b——v a>|uDg| dx
K K
1
+3 Z /(a-n)|u$G|2ds (2.29)
K oK
- [ @l ubeds
K o r\r_
—Z / (a-n)|upal®ds .
K o Knr_

Now decomposing 0K into the union of four disjoint sets
OK = (0_K\I'_)U (0-KNT_)U (0:K\I'1)U (0K NTy)
and writing

_ 1 1 _ 1 _
[upc] UBG = (UBG — Upg) UBG =3 |U’BG|2 + 5 (UBG - UDG)2 ~ 3 |UDG|2 )

the last three terms in (2.29) can be rewritten as

2 [ e mras

& Knr_
1 _
+5 / —(a-n)|ufq — upg|*ds (2.30)
K o K\r_
1
+5 Z / (a-n)|ubsl*ds .
K 8+KﬁF+

Here we made use of the fact that

Z / (a'”)|“$c|2d8+z / (a-n)|upal®ds =0.

8L K\T'y O_K\T'_
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Using (2.30) in (2.29) yields
Bpg(upc, ung) > ZH\/(_;EUDGH%(
K

1
+eo ) llunalli +5 D lludallb_rar_
K K

) 2 (2.31)
+5 Z lube — upello_ -
K
1
+5 Z luba I, war, -
K
Now we bound the right-hand side in (2.28) using (2.25):
tpa(unc)| < D[l llupcllx
K
+ Y IV3 fllkllVoLunc] x
K
+ > llgllo_xar_llugllo-xer_
K
. - 2 (2.32)
< b Z lunc |l + By Z £
K “ K
1 1
23 IVoLualk + 1 ST IVESI
K K
1
1 Z el war + Z l9ll3 xnr -
K K
Inserting (2.31) and (2.32) into (2.28) gives (2.27). O
We now discuss the error analysis of hp-DGFEM. We write
u—upg = (u—Tu)+ (Hu—upg) (2.33)
= n+¢ '

where ITu is a suitable projection of u into SP*, to be chosen below.

Lemma 2.5 Assuming that (2.11) holds and u € H'(K) for each K € T. We have that
Y IVLEN + D lle€llic+ D NET NG ke
K K K
1 1 -
3 Z 1E4 113, kr, + 2 Z 1Y — €715 e
K K

1
<> IVoLn - 7 ik +4)  llenllx
K K

+2 Z ||77+||129+Kﬂ1“+ + Z ||77_||¢29,K\F, :
K K

(2.34)
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Proof As in Lemma 2.3,
BDG(&J&) = _BDG(naé) '

Applying (2.31) with upg replaced by & gives

; IVoLe|% + ; legll + 5 ; 1E¥113 e

2.35)

1 1 _ (

+§ E :||§+||z29+KﬂF+ + 3 E ||§+ S ||§,K\F, < [Boa(n,€)| -
K K

Next we transform Bpg(n,§):

Boa(n,€) = ) /Mﬁ'ﬁfdfv
K Kk

(2.36)

Now

84 K\I'y K o Kk\r_
< Z I Nlo_mr_[1€7 — € Nlo_m\r_ (2.37)
K

1 _ _
<3 2 €l + Xl B

Substituting (2.37) into (2.36), we get
1 1 1
Bo(n.€) < 3 ) IVOLEll+35 > IIVoctn— = nli
K K
1
+ Sleclf + 23 lenl

1
+Z ; ||§+||%+KOF++;||n+||§+KﬁF+

1 - -
+Z Z [ 3 ||¢29,K\F, + Z In ||¢29,K\F, :
K K

(2.38)

Now inserting (2.38) into (2.35) gives (2.34). O
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3 hp-Error Estimates

In this section, we shall construct the hAp-approximation projector II in the error estimates
(2.14), (2.33) and derive hp-error bounds for the hp-SDFEM as well as for the hp-DGFEM
introduced in the previous section. The bounds are explicit in A and p and in the regularities
of the solution and allow us to deduce in particular exponential convergence estimates for
piecewise analytic solutions. For simplicity, we restrict ourselves to d = 2 space dimensions
and to meshes consisting of quadrilateral elements.

3.1 One-dimensional hp-approximation

We cite some approximation results from [10]. To this end, we set I=(-1,1) and denote
by |lull; resp. |ul,; the H*(I) norm resp. seminorm on I. Denote further SP(I) the

polynomials of degree p on I. Then we have

Theorem 3.6 Let u € Hk+1(f) for some k > 0. Then, for every p > 1, there exists
mpyu € SP(I) such that

(p = 5)!
||ul - (ﬂ-pu),”% < (p_|_ S)’ |u|§+1,f (31)
for any 0 < s < min(p, k) and such that
1 t)!
Ju = il < 0l 32)

for any 0 <t < min(p, k). Moreover, we have
mu(£1) =u(£1). (3.3)

For the proof, we refer e.g. to [10].

Corollary 3.6 A The projector m, whose existence is asserted in Theorem 5.6 is bounded
as follows:

1)l < 2[u'll 5 (3-4)

1
mpull; < |ull; + —— ||']|; 3.5
lmpull; < lull; OEE) [[w/ll (3:5)

for allp>1 and every u € H'(I).
Proof: The inequality (3.1) with s = 0 implies

1(mpw)ll; < N(mpu)” — 'l + [Jull; < 2l -
Similarly, (3.2) with ¢ = 0 implies

lmpull; < [lmpu — ull; + fJul;

N

1
< lull; + —m—=——== Ilu||; -
p(p+1) 0
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~

71

Figure 3: () and the notation for the sides.

3.2 Approximation on quadrilaterals

Higher dimensional approximation results will be obtained from Theorem 3.6 by tensor
product construction. We denote by W;;u the one-dimensional projector in Theorem 3.6
applied to u as function of the ith coordinate alone and perform the error analysis for
d=2.

Let Q = (—1,1)? and denote by #;, i = 1,2, 3, 4, the sides of @ as shown in Figure 3.

Theorem 3.7 (Reference Element Approzimation)

Let Q = ( 1,1)%, as in Figure 3, p > 1 and assume that u € H**1(Q) for some k > 1. Let
II, = 7T1 7r denote the tensor product projector. Then there holds:

Il,u = u at the vertices of Q (3.6)

(3.7)

I, uls, = )

mo(uls,) if i is even.

{ my(uls,) if i is odd,
5 =

The following error estimates hold:

2 (p—s)! s+1, 112 s+1, 112
IV =Tl < 20— (I ull3 + 1105+ ul3 }
8 (p—s+1)!

p(p+1) (p+s—1)!

{10 02 wlly, + 21 D5 ull3 ), (38)

=T} < ——— =) {||af“u||%+2||a;+lu||%}
¢ 7 plp+l) (p+s) N N
4 ( s+1)
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for any 0 < s < min(p, k).

Proof: We prove (3.9). Clearly,

lu = Tyully < 2fu — myullg + 2/, (u — mu) I -

For the first term we use the bound (3.2), resulting in

1 (p—s)!
pp+1) (p+s)!

= mhull?, < 15+ ul

For the second term, (3.5) and (3.2) give

w)llg < 2lju —mpullf + 101 (u —

2 2 2
Jep (e~ 2 s lon(u— w3l
2 (= 2 (p—1)!
< oL ul|% + 0105 |4,
Wt 108l + iy Gy 1008l

Selecting t = s and r = s — 1 gives (3.9). The proof of (3.8) is analogous. a

3.3 Approximation on quadrilateral meshes with hanging nodes

Consider now a mesh patch P € P with mesh Tp and corresponding reference mesh Tp in
P. We assume that all K € Tp are quadrilateral, possibly with hanging nodes. With K we
associate the edge-lengths of the sides of K = F'(K) denoted by higri=1,2.

Theorem 3.8 (Discontinuous Approximation)

Let P € P with quadrilateral, possibly 1-irregular mesh Tp of shape-reqular elements and
polynomial degree distribution p. For all K € Tp let u|x € H*TYK) for some kg > 1
and define Tlu € SPO(P, Tp) element-wise by

(Tlu) |k © Fp := 11, (u|g o Fp) VYK € Tp,

with 11, as in Theorem 3.7.
Then, for px > 1 and for 0 < sg < min(pg, kg) the following estimate holds:

B\ 255 +2 1
u—Tu||% < C ( ) . ®prslaf L ., 3.10
I ||P KEGF;P pr(px + 1) (P, 5K)| |5K+1,K ( )

where it = u o Fp, K = Fp(K) and

(p— s)! 1 s+ 1) 0<s<p. (3.11)

2prs) = (p+8)!+p(p+1) (p+s—-1)!7 "=~
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Furthermore,

28}( 12
(o, sl e

IV(u-Tu)|} <C > (%)

KeTp

(3.12)

The constant C' > 0 in these estimates depends only on Fp, but is independent of hi, pr

and Sk .

Proof: The L%-estimate (3.10) follows immediately by a change of variables and a scaling

argument from Theorem 3.7.

For the gradient estimate, we observe that

IV (u =) [|p < C(Fp) |V ((u — TTu) © Fp)| .

For the right-hand side we use (3.8), after scaling to the reference element:

IV ((u — u) o Fp)|%

= > 13 ((w = TTu) o Fp)|[% + [|05((u — Tu) o Fp)|[%

I%E'?—p

=5 > Tl bl =Ty )ue Fpo Ax|}

IA(E7A—P

i=1,2

(h)? Y-
IA(E%P
4

pr(px + 1)

o

(3.8) K — SK)! N , _— ,
= (px + 550)! (llor UO,K”Q+ 105 uO,KHQ)

N[

—~

pr — sk + 1) aca ) A Ask )
o o)1 (10 Geocllg + 1210 uoxcl%)},

|

where
w, g :=uolFpoAx =u0Ag, KEeTp.

Affine scaling from Q to K € Tp and noting (2.4) gives the assertion.
The error bounds in Theorem 3.8 simplify for uniform p.

Corollary 3.8A (Uniform order estimate)
Assume that i := uo Fp € H**Y(P) and that for all K € Tp

pk=p>1, sg=s, 0<s<min(p,k).

Then, for Tlu € SPY(P, Tp) and i := u o Fp, the following estimates hold:

1 hK 2542 9
|u —Tull; < C——— ®(p, s) Z (_) (e
p(p+ 1) KeTp 2 ’

(3.13)
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and

h 28 .
IV (u — Tu)|[% < Co(p,s) 3 (7K> al?,, - (3.14)
KeTp

Here C > 0 is a constant that depends only on the patch mapping Fp but not on s,p, hi.

Remark (Anisotropic error estimates)

We note in passing that the above error estimate assumed the shape regularity of the K
merely for convenience - in fact the explicit error bounds in Theorem 3.7 and 3.8 above
could be easily generalized to anisotropic element shapes (with edge-lengths hyg and hog)
and even to anisotropic polynomial degrees p;x, p2x, say. Error bounds explicit in these
parameters can be deduced by inspecting the proofs of the above theorems.

Theorem 3.8 addressed only discontinuous approximations; it turns out, however, that
also continuous, piecewise polynomial approximations can be obtained.

Theorem 3.9 (Continuous approzimations)

Let Q C R? and let P € P with a 1-irreqular mesh consisting of shape reqular quadrilaterals
K of diameter hx. Let the polynomial degree be uniform, pgx =p > 1. Let u|x € HF*T1(K)
for some kx > 1 and let u € H*(P).

Then there exists a projector Tlu € SP'(P, Tp) such that the error bounds (3.13), (3.14)
hold, with a possibly different value of C.

Proof If 7p does not contain hanging nodes, 7p is regular and we take I1 = II in Theorem
3.8. Since IT was constructed element-wise, the properties (3.10), (3.12) together with the
assumption that u € H?(P) give the continuity of ITu in P.

Suppose now that Tp contains hanging nodes. A typical situation in the reference mesh
Tp is shown in Figure 4 where the elements have been scaled to unit size for convenience.

Since u € H%(P), also u € C°(P). By (3.6), u — [Tu vanishes at the points x in Figure
4. Denote by [u — Ilu};; the jump of u — ITu across v;;. By (3.6), the jump of [Tu across 73
is zero. Since u € C°(P), [u — Mul;; = —[Mul;;. Further, [TTul;; € By(7i;)-

We now construct a trace-lifting of [[Tu] across y12 U 713 as follows: we set

[HU]12(§1) on kg,

V(€)= —(&+1 .
(&) =—(&+ ){ Tulu(e) on K .

Since [[Tu]ys = 0, V' is continuous on K, U K3 and

NVl o, < €l [Tl ] (3.15)

1
H2 (y12Um3s)’
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(—1,1) (1,1)

Y12 Y13
(—1,0) (1,0)

Y23

(—1,-1) (0,—1) (1,-1)

Figure 4: Hanging node e and adjacent elements.

~

3
where C'is independent of p. By the trace theorem and since u € C°(|J K;), we have
1

|| [TTu]| = |[u—Tu] |

H? (v12Um13) Hb (v12Ur13)
< [ (u—Tu) + |(uw — Tu) |

+
||H%(’712U713)

) H (112Um3) (3.16)
C Z Ju— HUHH%&-) )
i=1

IN

where (-)* denote traces from & > 0 and & < 0, respectively. We define

~ My on kl,
[Ty := . N
V 4+1Ilu on KQUK3 .

Now Ilu is continuous on and across ;o and ~3. Therefore, on K := Ky U Ky U K3, we

have that 5

IV (=Tl & < IVVlgyor, + D IV (0 = Tu)l4, -
i=1
Using (3.15), (3.16) we get

3
IV (u =T |2 < C Y flu— T} (3.17)

1,K;’
i=1

where C' > 0 is independent of p.
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Now suppose that the Ki, 1 = 1,2,3, are not, of unit size but that their diameters are
proportional to h;, where hj in the diameter of K. Performing a scaling of the independent
variable by a factor of h ;. in the estimate (3.17) (noting that diam(K,) = diam(K3) = hy /2,
diam(K,) € [hz/2,hz]), recalling (2.4) and inserting (3.13) and (3.14) into the resulting
right-hand side, we deduce that a bound analogous to (3.14) holds with II replaced by II.

Concerning the analogue of the bound (3.13) with IT replaced by II and II defined as
above, again, we consider the configuration shown in Figure 4 with the elements scaled to
unit size, for convenience. Observe that

CH [Hu - ’LL] ||L2(712U713)
C (H (’LL - Hu)+||L2(712U713) + ||(’LL - Hu)7||L2(712U713))

IVll&om, <
<

IN

3
1/2 1/2
¢ 3 (Il = Tullg, + [l = Tl 29 (u = TT)|1}7)
i=1

where in the transition to the last line we made use of the multiplicative trace inequality.
Consequently, also

3
=Tl < €Y (llu = Ml g, + = Tl 2]V (0 = 1) }/2) (3.18)

i=1

Now suppose the Ki, i =1,2,3, are of size proportional to hy; then, we may scale the
independent variable by hz in estimate (3.18) and insert (3.13) and (3.14) into the resulting
right-hand side to deduce that a bound analogous to (3.13) holds with IT replaced by 1.

Finally, we note that since

Hu|af( = Hu,g ,

further liftings in the presence of additional hanging nodes on OK can be performed in the

adjacent element patches, resulting in the error bounds (3.13), (3.14) with a larger C.

3.4 hp-Error Analysis of the DG- and the SDFEM

We are now in a position to present error estimates for both the SD- and the DGFEM. We
shall use the following norm defined by

lulllpe = > {||\/5£U||§( + lleullk + o™ 15 nr_
KeT (3.19)

1 1 _
o et 1B ke, + g et = B )

Notice that for the SDFEM, the last term vanishes. Here is our main error estimate for
the hp-DGFEM.
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Theorem 3.10 (Convergence rate of the hp-DGFEM)

Let Q C R? and T, P be as in Section 2 with (possibly irregular) mesh patches Tp, P € P,
consisting of shape-reqular quadrilateral elements of degree px > 1. Select

Ol =0k = hi/px for all K € T . (3.20)

Then

(hK)2sK+1 @(pK,SK) a?

llw = upcllpe < C Z (3.21)

sk+1, K

where C' > 0 depends only on elemental shape reqularity, and the coefficients a,b, but s
independent of pi, sk, hi and where ®(p, s) is as in (3.11).

Proof Using (2.33) and Lemma 2.5 gives

llu = ungllibe < lnllve + IEllog

. 1 1 %

2 lnllo + (3 I6ben - bl
Y : :
2 (S llenlB )™+ V2 (I Bweer,) + (Xl Woser) ™

K K K
Therefore,
Ilu = ungllipe < (Zna%ﬁnn%() (X lenli)?
K
(Znn I3 ker-) " + o5 (Znn Boxer, )’
1
+ﬁ(;||n ) +(§K:||52£77||K) +(§K:||5577||§(>2
1 1 1
+2 (S llenllk) " +v2 (Z 7 13xcer, )+ (Z I 1ser. )
K

¢ {3 (15 nlli + okl + i + 3 n||K)
K

IN

1
2

+ Z (||77+||129+Kﬂ1“+ + ||77+||¢29er, + ||77_||¢29,K\F, + ||77+||§,K\11) }
K
= C(A+B)2,

where C' depends on (a,b).
We select n = u — [Tu with IT as in Theorem 3.8. This gives the bound

h 28[{
A<C’Z ( K) O (pr,sk)(0kx + 05 thK)|u|§K+17f(.
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To bound B, we must estimate ||n]|35. We use the inequality

Inll5x < CUIVallxlinllx + he'lInllk) VK €T

and obtain the bound

B o< 0% (5) 0 (5) " 0w st RNl
()

h 2sk+1 _
- oY (7’() PR @, si) (1L +pR)al g -
K

O(pr, k) LY 4y

Selecting dx as in (3.20) concludes the proof. O
An analogous error estimate holds true for the hp-SDFEM.
Theorem 3.11 (Convergence rate of the hp-SDFEM)

Let Q C R? and T, P be as in Section 2 with a 1-irregular mesh consisting of shape-reqular
quadrilateral elements of degree px > 1. Select the stabilization parameter dx as in (3.20).

Then there holds the error estimate

hi\ 2o+l @(pk, SK)
= wsollp < 3 (5) il (3.22)
where .
llulllgn = IVSLul® + lleul® + 5 lull?, + llullz_
and

OSSKSPK VKET, QZUOFP if KE%,
and ®(p, s) is as in (3.11).

The proof of Theorem 3.11 is completely analogous to that of Theorem 3.10, using Lemma
2.3 instead of Lemma 2.5.

Let us now discuss some special cases of the above, general error bounds.
Remark 3.12
1) If px = p is fixed, and hxg = h — 0, the bound (3.21) is optimal in h.

2) As s is fixed and pyx = p — oo, Stirling’s formula implies
®(p,s) < C(s)p™™
and (3.21) gives

h/K 28K+1
Il = unallbe < €30 (0F) " 1ol k-
K

The bound (3.21) is therefore optimal also in p.
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3) Suppose that u is patch-wise analytic. Then,

VK €T 3dg>1,C>0 VYs>0: ||,z < C(dg)’s! (3.23)

In this case, (3.21) gives exponential convergence, since picking s = ap, with 0 < a < 1 to
be selected below, and applying Stirling’s formula gives

®(p, S)|@|§+Lk < O(dw)**2((s + 1)1)2 - %

_ (1—a)p o—(1—a)p
2ap+2 2ap+3  —2ap—2 ((1 a)p) €
C(dx) (ap +1) ¢ (1 + a)p) (e e~(I+ap

IN

IN

Cp*(F(a, di))”

where

Since, for d > 1,

min F(d, ) = F(d, opmin) <1,  Oumin

0<a<l - Vi+d2’

it follows, setting 2bx = |log F'(dk, oumin)|, that

(I)(pKa apK) |ﬂ|sz+1’f( S Cp?}(e—QprK )

and we get from (3.21) the exponential convergence estimate

h/K 28K+1
e = wmcllbs < € 3 (5)

%{ e*ZbKPK )

By Theorem 3.11 an analogous bound holds also for the Ap-SDFEM on quadrilateral,
possibly 1-irregular meshes.

Finally, we note that exponential convergence estimates analogous to the ones presented
here on quadrilaterals can also be proved on triangular meshes, using the approximation
results of Braess and Schwab [2]. Further aspects of the local discontinuous Galerkin
method will be considered in [3].

4 Numerical experiments

In this section we present a number of numerical experiments to verify the a priori error
estimates derived in Section 3.4 for both the Ap-DGFEM and the hp-SDFEM.
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() (b)

Figure 5: Example 1. (a) Uniform 5 x 5 square mesh; (b) Quadrilateral mesh based on a
10% random perturbation of mesh (a).

4.1 Example 1

In this example we let Q = (—1,1)2, a = (8/10,6/10), b= 1, g = 1 and f is chosen so that
the analytical solution to (2.1) is given by

u(z,y) =1+ sin(7 (1 +z)(1 + y)?/8), (4.1)

cf. [1].

We first investigate the asymptotic behaviour of the hp-DGFEM on a sequence of succes-
sively finer square and quadrilateral meshes for different p. In each case, the quadrilateral
mesh is constructed from a uniform N x N square mesh by randomly perturbing each of
the interior nodes by up to 10% of the local mesh size: Figure 5 shows an example of a
5 x 5 square mesh together with the corresponding quadrilateral mesh.

In Figure 6 we first present a comparison of the DG-norm of the error with the mesh
function h for p ranging between 1 and 5. Here, we clearly see that |||u — upg|||pc converges
like O(hP*1/2) as h tends to zero for each (fixed) p. Secondly, we investigate the convergence
of the DGFEM with p—enrichment for fixed h. Since the true solution (4.1) is a real analytic
function, we expect to observe exponential rates of convergence, cf. Remark 3.12. Indeed,
Figure 7 clearly illustrates this behaviour: on the linear-log scale, the convergence plots for
each p become straight lines as the degree of the approximating polynomial is increased.
Furthermore, we observe from Figures 6 & 7 that the h— and p—convergence, respectively,
of the DGFEM is robust with respect to mesh distortion.

Finally, we verify the a priori error bound (3.22) for the hp-SDFEM. In Figures 8 & 9 we
show the convergence of the scheme with respect to both h— and p—refinement, respectively.
As with the DGFEM, we again observe optimal rates of convergence as h tends to zero for
fixed p (Figure 8) and exponential rates of convergence for fixed h as p is increased (Figure
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10 +

10 +

lllu — upcll|pa

10 b
—— Square elements

---- Quad. elements

10— : : ——

10" 10°

Figure 6: Example 1. Convergence of the DGFEM with h-refinement.

10°

g 10 .
:LQD * 5 x 5 mesh
S 6
| 10 " b
3 9 x 9 mesh
107 17 x 17 mesh
— Square elements
10’ - --Quad. elements 33 x 33 mesh
1 2 3 4 5 6 7

Figure 7: Example 1. Convergence of the DGFEM with p-refinement.
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Figure 8: Example 1. Convergence of the SDFEM with A-refinement.

10°

2 10" :
:g " 5 x 5 mesh
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| 10°F :
S 9 x 9 mesh
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— Square elements
10"+ - --Quad. elements 33 x 33 mesh
1 2 3 4 5 6 7

Figure 9: Example 1. Convergence of the SDFEM with p-refinement.
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Figure 10: Example 2. 9 x 9 quadrilateral mesh aligned with the discontinuity.

9) on both uniform square meshes and quasi-uniform quadrilateral meshes. We remark
that in all the computations performed here, the DGFEM was marginally more accurate
than the SDFEM for each h and p; though, of course, the number of degrees of freedom in
the DGFEM is greater than in the SDFEM for a given h and p.

4.2 Example 2

In this example we let Q = (=1,1)?, a = (1,9/10), b = 1 and f is chosen so that the
analytical solution to (2.1) is given by

(2.1) = sin(m(z 4+ 1)?/4) sin(n(y — 92/10)/2) for —1 <z <1, 92/10 <y < 1,
By = e~5(@* +(y=92/10)%) for —1<z<1, —1<y<9x/10;

thus, u is discontinuous along the line y = 92/10.

To demonstrate the advantage of using discontinuous elements, we now only consider
N x N quadrilateral meshes which are aligned with the discontinuity; choosing N to be
odd ensures that the discontinuity lies on element interfaces, cf. Figure 10. In this case the
DGFEM does not ‘see’ the lack of regularity in the problem and behaves as if the analytical
solution u were smooth; i.e. optimal algebraic rates of convergence are observed with h—
refinement and exponential rates of convergence are observed with p-refinement. These
results are summarized in Figure 11, where we show |||u — upg/|||pg in terms of the number
of degrees of freedom. Thus, in practice, if an adaptive refinement strategy is implemented
which is capable of aligning the mesh with localised structures in the solution such as
shocks, cf. [6] for example, then optimal, and indeed exponential, rates of convergence will
be attained with the DGFEM. In contrast, from Figure 12 we observe that the convergence
rate of the SDFEM is limited by the regularity of u; we remark that by aligning the mesh
with the discontinuity improves the accuracy of the SDFEM, though the rate of convergence
of the scheme with A— and p—refinement is not enhanced.
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10° ‘ ‘
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10°+ —— h-refinement p=95 |
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--- p-refinement
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Figure 11: Example 2. Convergence of the DGFEM with hp-refinement on quadrilateral
meshes aligned with the discontinuity.
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Figure 12: Example 2. Convergence of the SDFEM with hp-refinement on quadrilateral
meshes aligned with the discontinuity.
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Finally, we note that if the mesh is not aligned with the discontinuity, then the DGFEM
convergences at the same (slow) rate as the SDFEM; though, in all the numerical compu-
tations performed here, the DGFEM was marginally more accurate than the SDFEM for
each h and p, cf. Example 1.
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