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Stabilizing and Direction Control of Efficient 3-D Biped

Walking Based on PDAC

Tadayoshi Aoyama, Yasuhisa Hasegawa, Kosuke Sekiyama,

and Toshio Fukuda

Abstract—This paper proposes a 3-D biped dynamic walking algorithm
based on passive dynamic autonomous control (PDAC). The robot dynam-
ics is modeled as an autonomous system of a 3-D inverted pendulum by

applying the PDAC concept that is based on the assumption of point con-
tact of the robot foot and the virtual constraint as to robot joints. Due to
autonomy, there are two conservative quantities named “PDAC constant,”
which determine the velocity and direction of the biped walking. We also

propose the convergence algorithm to make PDAC constants converge to
arbitrary values, so that walking velocity and direction are controllable.
Finally, experimental results validate the performance and the energy effi-
ciency of the proposed algorithm.

Index Terms—Biped walking, legged robots, underactuate.

I. INTRODUCTION

By assuming a point contact between a robot foot and

the ground and using a robot inherent dynamics, a natural

and efficient bipedal walking has been realized. Grizzle and

Westervelt et al. built the controller by the use of virtual constraint

that realizes the stable dynamic walking by means of the planar biped

robot with a torso [1]–[3]. Also, it is reported to propose analytical 3-D

biped walking control method for a five-link bipedal robot based on the

point contact [4], [5]. A few works realized 3-D biped walking with an

experimental robot. Fukuda et al. realized 3-D dynamic walking with

the experimental robot based on the assumption that the sagittal and

lateral motions can be separated [6]. However, this control method has

a problem in dividing 3-D dynamics when the dynamics of each plane

is closely coupled. In order to solve this problem, we apply the passive

dynamic autonomous control (PDAC) [7], which is one of the point

contact methods, to a 3-D dynamics of the robot without dividing.

We model a biped robot as a 3-D inverted pendulum. By applying

the PDAC, a 3-D dynamics is expressed as a 2-D autonomous system.

This 2-D autonomous system has two conservative quantities named as

“PDAC constant.” Since two PDAC constants determine the walking

velocity and the walking direction of the robot, the velocity and the

direction of the walking are converged into the desired ones by control-

ling the two PDAC constants. This paper proposes the two controllers

for two PDAC constants and confirms the convergence of two constants

in numerical simulations. Finally, experimental results validate that the

proposed algorithm realizes the stable and energy efficient walk.
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Fig. 1. (a) 3-D inverted pendulum model. (b) Definition of coordinate system.
Note that this figure shows only a coordinate system definition and does not
mean that foot placement is in alignment.

Fig. 2. (a) Passive joints (point contact) and active pendulum length actuation.
(b) Polar coordinate system around contact point.

II. MODEL

A. 3-D Inverted Pendulum Model

In this paper, a robot is modeled as a 3-D inverted pendulum, as

shown in Fig. 1(a). We utilize the polar coordinate system, and the

state variables and parameters are shown in Fig. 2(b). By applying

PDAC, dynamic equations of 3-D inverted pendulum are expressed as

follows:

d

dt

(

ml2 sin2 θφ̇
)

= 0 (1)

and

d

dt

(

ml2 θ̇
)

= ml2 φ̇2 sin θ cos θ + mgl sin θ (2)

where θ and φ are the variables of the pendulum angle around the

contact point, and l is the variable of the pendulum length. The detailed

calculation process of (1) and (2) is given in [8]. By multiplying both

sides of (1) by ml2 sin2 θφ̇ and integrating with respect to time, the

following constraint equation is obtained:

φ̇ =

√
2C1

ml2 sin2 θ
(3)

:= F1 (θ) (4)

where C1 is the integral constant. Substituting (3) into (2) results in

θ̇ =
1

ml2

√

2

∫
(

2C1 cos θ

sin3 θ
+ m2gl3 sin θdθ

)

(5)

:=
1

M (θ)

√

2
(

D(θ) + C2

)

(6)

:= F2 (θ) (7)

Fig. 3. Parameters and variables of dynamic walking based on 3-D inverted
pendulum model.

where C2 is the integral constant. We call C1 and C2 “PDAC constant,”

which are determined by initial state immediately after a foot contact.

Next, in accordance to PDAC, the pendulum length is described as the

function of θ as

l := λ(θ). (8)

In this paper, for simplicity, λ is defined as a function of θ as follows:

λ(θ) =:
3
√

p1θ3 + p2θ2 + p3θ+ p4 (9)

=:
3
√

f (θ). (10)

By substituting this equation into (6), the converged dynamics are

derived as

M (θ) = mf (θ)2/3 (11)

D(θ) = − C1

sin2 θ
− m2g((f (θ) − f ′′(θ)

)

cos θ

− (f ′(θ) − f ′′′(θ)) sin θ). (12)

B. Design of Walking Cycle

In this section, the actual motion of the robot is designed. Fig. 3

shows the parameters and variables of the pendulum motion. S0 and

S2 denote moments right before and after a foot contact, and S1 is a

moment at θ̇ = 0. The variables θi , φi , and li denote the roll angle, yaw

angle, and pendulum length at Si (i = 0, 1, 2), respectively. During a

cycle of walking motion, φ is monotonically increasing. Meanwhile, θ
decreases at first, and then increases, after posing for a moment at θ1 .

Thus, we compartmentalize a walking cycle from a foot contact to the

next foot contact into two phases—phase (A): from S0 to S1 (θ̇ < 0);

phase (B): from S1 to S2 (θ̇ > 0). In phase (A), the pendulum length

is constant; thus, the coefficients p1 –p4 in (9) are

p1 = p2 = p3 = 0 (13)

pd = l30 . (14)
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In phase (B), the coefficients p1 –p4 are decided so that the following

four conditions are satisfied:

f (θ1 ) = l31 (15)

f (θ2 ) = l32 (16)

f ′(θ2 ) = 0 (17)

and

− f ′′(θ1 ) cos θ1+
(

− f ′(θ1 )+f ′′′(θ1 )
)

sin θ1 = 0. (18)

Equations (15) and (16) signify the condition of pendulum length con-

tinuity, and (17) is the condition that the velocity of the pendulum

along l is 0 at a foot contact. The objective of (18) is to match PDAC

constants of the phases (A) and (B).

From (15)–(18), the coefficients p1 –p4 are derived as follows:

p1 = − l32 − l30
(θ2 − θ1 )2

u3

u1u3 − u2

(19)

p2 = − l32 − l30
(θ2 − θ1 )2

u2

u1u3 − u2

(20)

p3 = −3p1θ
2
2 − 2p2θ2 (21)

and

p4 = l32 − p1θ
3
2 − p2θ

2
2 − p3θ2 (22)

where

u1 = 2θ2 + θ1 (23)

u2 = −6θ1 cos θ1− 3θ2
1 sin θ1+ 6 sin θ1+ 3θ2

2 sin θ1 (24)

and

u3 = −2 cos θ1 − 2θ1 sin θ1 + 2θ2 sin θ1 . (25)

C. Foot Contact Model

In this paper, it is assumed that perfectly inelastic collision between

the ground and a foot occurrs for a moment, similarly to previous

works [1], [3], [5]. Thus, the angular momentum around a new contact

point is conserved. Assuming that φ0 is the angle of φ right after a foot

contact, a vector of the pendulum after impact, L, is

L = [l0 sin φ0 sin θ0 , l0 cos φ0 sin θ0 , l0 cos θ0 ]
T (26)

where φ0 and θ0 are angles in the coordinate system of the next step.

The velocity vector right before a foot contact, V 1 , is calculated as

follows:

V 1 = [vx , vy , vz ]T (27)

where

vx = l2 (φ̇2 cos φ2 sin θ2 + θ̇2 sin φ2 cos θ2 )

+ l̇2 (sin φ2 sin θ2 )

vy = l2 (−φ̇2 sin φ2 sin θ2 + θ̇2 cos φ2 cos θ2 )

+ l̇2 (cos φ2 sin θ2 )

and

vz = −l2 θ̇2 sin θ2 + l̇2 (cos θ2 )

with φ2 being the angle of φ before the foot contact.

Fig. 4. Geometrical constraints at foot contact.

The velocity vector after a foot contact, V 0 , is derived by the fol-

lowing equation:

V 0 =
V 1 (L × (V 1 × L))

|L × (V 1 × L)| (L × (V 1 × L)) (28)

=
L × (V 1 × L)

l2
(29)

:= [v′
x , v′

y , v′
z ]T . (30)

Note that V 1 is [−vx , vy , vz ]T since left- and right-handed systems

are switched at a foot contact.

From (30), θ̇0 and φ̇0 are

θ̇0 = − v′
z

l0 sin θ0

(31)

and

φ̇0 = − sin φ0 cos θ0

cos φ0 sin θ0

θ̇0 − v′
x

l0 cos φ0 sin θ0

. (32)

III. STABILIZATION

A. Geometrical Constraints

In order to stabilize walking, some geometrical constraints are given.

At first, a displacement of a pendulum length is fixed to a constant value.

In this constraint, a supplied energy is almost constant. In addition, the

following two constraints about a foot contact are designed, as shown

in Fig. 4.

1) The height of center of gravity (COG) h at a foot contact is

constant, i.e., roll angles of stance and swing leg are constant at

a foot contact.

2) Yaw angle of a swing leg is shifted by ǫ from the

symmetrical position with a stance leg at a foot con-

tact, i.e., it is φ0 [k + 1] = −φ2 [k] + ǫ, where φ0 [k + 1] and

φ2 [k] denote φ0 and φ2 at the (k + 1)th and kth steps,

respectively.

B. Stabilization Based on PDAC Constant

In this section, we propose the novel stabilizing control by the use

of PDAC constants. The 2-D converged dynamics has two conserved

quantities, i.e., PDAC constants C1 and C2 , as can be seen in (4) and

(7). These two PDAC constants determine the trajectory in the 3-D

space composed of θ, θ̇, and φ̇, i.e., the robot dynamics. Note that φ,

which decides only the direction of the pendulum, is directly indepen-

dent of θ, θ̇, and φ̇ [see (4) and (7)]. Thus, in order to build the controller

that stabilizes bipedal walking in the 4-D space composed of θ, φ, θ̇,

and φ̇, it is necessary to design the following two controllers: 1) the

convergent controller of PDAC constant for stabilizing the dynamics

and 2) the walking direction controller for deciding the walking direc-

tion of the robot. Hereinafter, controller 1) is described first, and then
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Fig. 5. (Left) Manifolds of 3-D space composed of θ, θ̇, and φ̇. (Middle) Constant C2 manifold (C2 = 456). (Right) Constant C1 manifold (C1 = 0.02).

2) is explained. We show the process of convergence and stabilization

by means of return maps.

1) Convergent Controller of PDAC Constants: Two PDAC con-

stants that determine the robot dynamics keep certain values respec-

tively until a next foot contact. Values of the two PDAC constants are

derived from the condition immediately after a foot contact; also, two

PDAC constants are redetermined at every foot contact, respectively.

Therefore, stabilization can be realized if two PDAC constants con-

verge to the desired values at every step. In order to converge PDAC

constants to the desired values, it is necessary to find the condition

of l2 , h, and ǫ. Hence, the constraint condition satisfying the desired

PDAC constants is derived.

At first, convergent values of PDAC constants are obtained. Letting

PDAC constants at the kth step to be C1 [k] and C2 [k], C1 [k + 1] and

C2 [k + 1] are described as follows from (4), (7), (31) and (32):

C1 [k + 1] =
(

R11

√

C1 [k] + R12

√
A
)2

(33)

=: ξ1 (C1 [k], C2 [k], θ0 , θ2 , ǫ, l2 ) (34)

C2 [k + 1] =
(

R21

√

C1 [k] + R22

√
A
)2

+
1

sin2 θ0

(

R11

√

C1 [k] + R12

√
A
)2

+ m2gl30 cos θ0 (35)

=: ξ2 (C1 [k], C2 [k], θ0 , θ2 , ǫ, l2 ) (36)

where

R11 =
l0 sin θ0 cos ǫ

l2 sin θ2

(37)

R12 =
l0 sin θ0 cos θ2 sin ǫ

l2
(38)

R21 =
l0 cos θ0 sin ǫ

l2 sin θ2

(39)

R22 =
l0
l2

(

sin θ0θ2 − cos θ0 cos θ2 cos ǫ
)

(40)

and

A =
−C1 [k]

sin2 θ2

+ D(θ2 ) + C2 [k]. (41)

Note that l0 is a constant value.

Assuming that C1 [k] = C1 [k + 1] = C∗
1 and C2 [k] = C2 [k + 1] =

C∗
2 , (34) and (36) at stable points are described as follows:

C∗
1 =
(

R11

√

C∗
1 + R12

√
B
)2

(42)

=: ξ1 (C
∗
1 , C

∗
2 , θ0 , θ2 , ǫ, l2 ) (43)

C∗
2 =
(

R21

√

C1 [k] + R22

√
B
)2

+
1

sin2 θ0

(

R11

√

C1 [k] + R12

√
B
)2

+ m2gl30 cos θ0 (44)

=: ξ2 (C
∗
1 , C

∗
2 , θ0 , θ2 , ǫ, l2 ) (45)

where
B =

−C∗
1

sin2 θ2

+ D(θ2 ) + C∗
2 . (46)

Thus, the convergent PDAC constants C∗
1 and C∗

2 are derived as follows:

C∗
1=

− m2gl30 cos θ0 + D(θ2 )
(

R21+ R22

√

1/(sin2 θ0 ) − 1/(sin2 θ2 ) + (1 − R11 )2/R2
12

)2

(47)

+
(1 − R11 )

2

R2
12

=: η1 (θ0 , θ2 , ǫ, l2 ) (48)

C∗
2 = D(θ2 ) −

(

1

sin2 θ0

+
(1 − R11 )

2

R2
12

)

C∗
1 (49)

=: η2 (θ0 , θ2 , ǫ, l2 ). (50)

The geometrical constraint h represents the relationship of θ0 , θ2 , and

l2 , i.e.,

h = l0 cos θ0 (51)

= l2 cos θ2 . (52)

Hence, from (48), and (50)–(52), it is possible to decide θ0 , θ2 , ǫ, and

l2 by Newton–Raphson method.

By employing θ0 , θ2 , ǫ, and l2 satisfying (48) and (50), if C1 [k] =
C∗

1 and C2 [k] = C∗
2 , then C1 [k + 1] = C∗

1 and C2 [k + 1] = C∗
2 . Thus,

if C∗
1 and C∗

2 exist and are unique, and if | ∂ ξ 1
∂ C 1

| < 1 and | ∂ ξ 2
∂ C 2

| < 1
in the vicinity of (C∗

1 , C∗
2 ), PDAC constants are converged on a fixed

point. Fig. 5 shows the constant C2 manifold and the constant C1

manifold in a 3-D space composed of θ, θ̇, and φ̇. If C2 is converged

on C∗
2 = 456, the trajectory in the 3-D space composed of (θ, θ̇, φ̇) is

attracted to the manifold depicted in Fig. 5 (left). Similarly, if C1 has

converged on 0.02, the trajectory is attracted to the manifold shown

in Fig. 5 (middle). Consequently, if C1 and C2 are converged on (C∗
1 ,

C∗
2 ), the robot state is attracted to the trajectory composed of both

manifolds, as shown in Fig. 5 (right). Fig. 6 (top and bottom) shows,

respectively, the return maps of C1 and C2 under the condition of

(C∗
1 , C

∗
2 ) = (0.02, 456.0). As can be seen in this figure, C1 and C2

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on December 6, 2009 at 21:48 from IEEE Xplore.  Restrictions apply. 



716 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 14, NO. 6, DECEMBER 2009

Fig. 6. Return map of C1 and C2 (C ∗
1 = 0.02, C ∗

2 = 456.0, h = 0.428, and
l0 = 0.455).

Fig. 7. 3-D map of C ∗
1 , C ∗

2 , and φ2 − φ0 .

possess the stable fixed points at C∗
1 and C∗

2 . Therefore, C1 and C2

converge to C∗
1 and C∗

2 , respectively. That is, the trajectory in the 3-D

space composed of θ, θ̇, and φ̇ converge to a sole trajectory determined

by C∗
1 , C∗

2 , and h.

2) Walking Direction Controller: Next, we design the walking di-

rection controller. Since φ is independent of the robot dynamics, φ
determines only a walking direction. Thus, the walking direction is

determined by the phase portrait of φ. If two-cycle trajectory occurs in

the phase space of φ, the robot walks to the right or left direction. That

is to say, by adjusting the degree of the error from one-cycle trajectory,

i.e., the degree of two cycles, it is possible to control the walking di-

rection. The difference of two cycles in the phase space of φ should be

controlled arbitrary in order to walk in the desired direction.

Fig. 7 shows the relationship between PDAC constants, C∗
1 , C∗

2 ,

and the variation of φ for a step, φ2 − φ0 . As can be seen in this

figure, the variation of φ monotonically increases with respect to C∗
2

and monotonically decreases with respect to C∗
1 . Besides, it can be

Fig. 8. Return map of δφ1 with respect to C ∗
1 (C ∗

2 = 456.0, gφ = 0.3, h =
0.428, and l0 = 0.455).

Fig. 9. Phase portrait of θ and φ (C ∗
1 = 0.02, C ∗

2 = 456.0, h = 0.428, l0 =

0.455, gφ = 0.3, and σ = 1). (Left) φd
1 = 0 (in radians). (Middle) φd

1 = 0.17

(in radians) (Right) φd
1 = 0.35 (in radians).

Fig. 10. Gorilla robot III (multilocomotion robot) [9]. This robot is mul-
tilocomotive; it can perform biped locomotion, quadruped locomotion, and
brachiation.

seen from this figure that the effect of C∗
2 on the variation of φ is large,

whereas that of C∗
1 is quite small. Thus, to adjust the two cycles of the

trajectory in the phase space of φ, C∗
1 and C∗

2 are determined according

to the following equations:

C∗
1 = Cd

1 (53)

C∗
2 = Cd

2 + gφ

(

φ1 [k] − φ1 [k + 1] + (−1)k σφd
1

)

(54)

where

σ =

{

1, left direction

−1, right direction
(55)
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Fig. 11. Snapshots of the bipedal walking experiment. Each figure shows the snapshots at the (a) 1st, (b) 7th, (c) 13th, (d) 19th, and (e) 25th steps.

C∗
1 and C∗

2 are the desired PDAC constants, gφ is the feedback gain

of the direction, φ1 [k] and φ1 [k − 1] are φ1 values at present and

previous steps, and φd
1 is the desired angle, which is determined by the

desired walking direction, e.g., φd
1 = 0 if the desired walking direction

is straight. Note that φ1 is the yaw angle at θ̇ = 0 (see Fig. 3).

Fig. 8 shows the return map of δφ[k] with respect to C∗
1 under the

condition of gφ = 0.3 and C∗
2 = 456.0. From this figure, it can be

seen that δφ possesses the stable fixed point at 0. Hence, the walking

direction can be controlled stably by (53) and (54).

Fig. 9 depicts the phase portrait of θ and φ under the condition that

C∗
1 = 0.02, C∗

2 = 456.0, h = 0.428, l0 = 0.455, gφ = 0.3, and σ =
1. As can be seen from these portraits, the proposed walk direction

control achieves the desired two-cycle trajectory of the phase space

of φ. In a practical use, the robot updates φd
1 regularly according to

the information of a target direction given by a controller or a user.

As a result, it is conceivable that the robot gets close to the target

gradually, and reach the desired direction finally. The convergence of

the trajectory is confirmed by the phase portrait of θ in Fig. 9. Thus,

the trajectory in the 3-D space composed of θ, θ̇, and φ̇ also converges

to a sole trajectory.

IV. EXPERIMENT

A. Experimental Setup

Fig. 10 depicts the overview of our robot “Gorilla Robot III (Multi-

Locomotion Robot)” [9] and its link structure. The robot is about 1.0 m

tall, weighs about 24.0 kg, and consists of 25 links and 24 motors in-

cluding two grippers. The real-time operating system VxWorks (wind

river systems) runs on a Pentium III PC for processing sensory data

and generating its behaviors. Each joint is driven by an ac servo motor

through the harmonic drive gear, partially through a timing belt. Max-

imum output power of the motor is 30 W. The power supply and the

computer are installed outside of the robot for weight saving.

B. Experimental Result

We validated the proposed algorithm with the Gorilla Robot III.

The experiment was conducted on the level ground with maximum

±1.0 cm irregularity under the condition that the desired direction is

straight (φd
1 = 0). As a result of the experiment, 3-D dynamic walking

in 0.14 m step length and 0.26 m/s walking velocity was realized.

Although the ground has maximum ±1.0 cm irregularity in the exper-

imental environment and the information of the ground shape was not

given to the robot, the robot achieved the stable walking. Fig. 11. shows

snapshots of the experiment. Also, Figs. 12 and 13 show the joint

angles and joint torques of the experiment, respectively. It is confirmed

from Fig. 12 that the cyclic trajectories change to large ones gradually.

C. Energy Efficiency

The biped walk of the Gorilla Robot III is also evaluated based

on the dimensionless specific mechanical cost of transport, Cmt =

Fig. 12. Joint angle of the bipedal walking experiment. (a) Joint angles of the
left leg. (b) Joint angles of the right leg.

Fig. 13. Torque output of the bipedal walking experiment. (a) Joint torque of
the left leg. (b) Joint torque of the right leg.

(consumed mechanical energy)/(weight×distance traveled) [10]. The

Cmt affords to compare energy efficiency between robots with different

sizes and weights. The mechanical work in one cycle of a walking, E,
is calculated as follows:

E =

∫ T

0

N
∑

i=1

δ
(

τi θ̇i

)

dt

where δ (x) =

{

x, if x > 0

0, if x ≤ 0
(56)

T is the cycle time of a walk, N is the number of actuators, and τi

and θ̇i are the joint torque and the angular velocity of the ith joint

number. After convergence of the motion, the Cmt of the robot is

0.15, while the Cmt of Honda humanoid ASIMO [11], which realized

a stable 3-D dynamic walking by appling zero moment point (ZMP)

based control, is estimated to be about 1.6 in [10]. The efficiency of our

walk is therefore more than ten times as high as one of the ZMP-based

walk. In addition to this consideration, we conducted the experiment of

linear inverted pendulum model (LIPM) based walking [12] as another
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Fig. 14. Snapshots of the LIPM-based bipedal walking experiment. Each
figure shows the snapshots at the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, and (e) 6th
steps.

Fig. 15. Joint angle and torque output of the bipedal walking experiment.

TABLE I
COMPARISON OF THE Cmt

example of the comparing method. Figs. 14 and 15 show the snapshots

and data of the experiment, respectively. From the experimental data,

Cmt of the LIPM-based walking is estimated to be about 0.57. Table I

shows Cmt of each method. These results validate the efficiency of the

proposed method.

V. CONCLUSION

This paper proposed the 3-D biped dynamic walking algorithm based

on the PDAC. The robot dynamics are modeled as an autonomous sys-

tem of a 3-D inverted pendulum by applying the PDAC. We numerically

presented that two conservative quantities named PDAC constant de-

termine the velocity and the walking direction of the biped walk. We

also proposed the two controllers for two PDAC constants and con-

firmed a convergence of the two constants in numerical simulations.

Finally, experimental results validated the performance and the energy

efficiency of the proposed algorithm.
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Grip Control Using Biomimetic Tactile Sensing Systems

Nicholas Wettels, Avinash R. Parnandi, Ji-Hyun Moon,

Gerald E. Loeb, and Gaurav S. Sukhatme

Abstract—We present a proof-of-concept for controlling the grasp of
an anthropomorphic mechatronic prosthetic hand by using a biomimetic
tactile sensor, Bayesian inference, and simple algorithms for estimation and
control. The sensor takes advantage of its compliant mechanics to provide a

triaxial force sensing end-effector for grasp control. By calculating normal
and shear forces at the fingertip, the prosthetic hand is able to maintain
perturbed objects within the force cone to prevent slip. A Kalman filter is
used as a noise-robust method to calculate tangential forces. Biologically

inspired algorithms and heuristics are presented that can be implemented
online to support rapid, reflexive adjustments of grip.

Index Terms—Biomimetic, dexterous manipulators, grip control, tactile

sensor.
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