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Abstract

Consensus problems occur in many contexts and have therefore been intensively studied in
the past. In the standard consensus problem there are n processes with possibly different input
values and the goal is to eventually reach a point at which all processes commit to exactly one
of these values. We are studying a slight variant of the consensus problem called the stabilizing
consensus problem [1]. In this problem, we do not require that each process commits to a final
value at some point, but that eventually they arrive at a common value without necessarily
being aware of that. This should work irrespective of the states in which the processes are
starting. Coming up with a self-stabilizing rule is easy without adversarial involvement, but we
allow some T -bounded adversary to manipulate any T processes at any time. In this situation,
a perfect consensus is impossible to reach, so we only require that there is a time point t and
value v so that at any point after t, all but up to O(T ) processes agree on v, which we call
an almost stable consensus. As we will demonstrate, there is a surprisingly simple rule for the
standard message passing model that just needs O(log n log log n) time for any

√
n-bounded

adversary and just O(log n) time without adversarial involvement, with high probability, to
reach an (almost) stable consensus from any initial state. A stable consensus is reached, with
high probability, in the absence of adversarial involvement.

1 Introduction

Consensus problems occur in many contexts and have therefore been extensively studied in the past
(e.g., [7, 29]). Interesting applications are the consolidation of replicated states or information and
the synchronization of processes and devices. In the consensus problem, every process proposes
a value, and the goal is to agree on a single value from all those proposed. In the case that all
processes are working in a correct and timely manner, the consensus problem is easy to solve by
performing a leader election.

If there are faulty or adversarial processes, the consensus problem becomes much harder. In
fact, Fischer, Lynch and Paterson have shown that in an asynchronous message passing system,
where processes have no common clock and run at arbitrarily varying speeds, the problem is
impossible to solve if one process may crash at any time [23]. Also in a synchronous message
passing system, where all processes run at the same speed, consensus is impossible if at least a
third of the processes can experience Byzantine failures [22]. However, these two results only apply
to deterministic algorithms.
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Randomized algorithms are known that can solve the consensus problem in the asynchronous
setting with probability approaching one [2]. The first randomized consensus protocol was given
by Ben-Or [10]. Later papers extended Ben-Or’s work in two directions: the literature on message-
passing consensus protocols has largely concentrated on solving consensus using cryptographic
techniques or private channels with a linear bound on the number of faulty processes (including
Byzantine faults) while work on shared-memory systems has used the underlying reliability of the
shared memory system to solve consensus in the wait-free case, where there is no limit on how
many processes may fail but failures are limited to crash failures.

In the context of message-passing systems, Rabin [30] showed that Byzantine agreement can
be solved in constant expected time given a shared coin visible to all processes, and described an
implementation of such a coin based on digital signatures and a trusted dealer. Feldman and Micali
[21] gave a constant-round shared-coin protocol for a synchronous system that uses secret sharing
to avoid the need for a trusted dealer. A constant-time shared-coin protocol for an asynchronous
system was given later by Canetti and Rabin [12] based in part on further unpublished work by
Feldman. For the Canetti and Rabin protocol the cryptographic assumptions can be replaced by
the assumption of private channels. Their protocol works as long as fewer than n/3 processes
are adversarial. That was subsequently improved by Katz and Koo [28] to an expected constant-
round consensus protocol that works as long as fewer than n/2 processes are adversarial, which is
optimal. When assuming a computationally unbounded adversary, one also usually assumes that
the adversary knows the entire history as well as the current state of the protocol, so cryptographic
primitives and private channels do not exist in this case. For non-adaptive (in the selection of
adversarial processes) but otherwise computationally unbounded adversaries, Feige [20] has shown
that when broadcasting is allowed, consensus can be achieved in O(log∗ n) rounds for fewer than
n/(2+ǫ) Byzantine processes, for an arbitrary constant ǫ > 0. For the case that only point-to-point
communication is allowed, Ben-Or et al. [11] proved that consensus is possible with an expected
running time of O(log n) rounds for fewer than n/(4 + ǫ) Byzantine processes. The restriction
that the adversary be non-adaptive is essential. Ben-Or and Bar-Joseph [9] have shown that any
consensus protocol that tolerates Θ(n) adaptive fail-stop faults runs for Ω̃(

√
n) rounds. All protocols

above need Ω(n) expected individual work per process.
In the context of shared memory systems, the n processes communicate by reading and writing

to shared multi-writer multi-reader registers. Each step consists of some local computation and
one shared memory event, which is either a read or a write to some register. The interleaving of
the processes’ events is controlled by an adversary. In the strong adversarial model, the adversary
knows the entire history and observes the results of the local coin flips before scheduling the next
event (i.e., the order in which the processes proceed). The first randomized consensus protocol
to use shared memory was given by Chor, Israeli and Li [13]. Many other randomized consensus
algorithms have been proposed since then. Aspnes et al. [3, 4] recently showed that the consensus
problem can be solved in this case with O(n) expected individual work and O(n2) expected total
work. Attiya and Censor [6] proved that Ω(n2) is also a lower bound on the total work. Tight
upper and lower bounds for the number of (asynchronous) rounds under a much weaker adversary
have been shown by Kapron et al. [26] and Attiya and Censor [5].

1.1 Our approach

We are studying a slight variant of the original consensus problem called the stabilizing consensus
problem [1]. In this problem, we do not require that each process commits to a final value at some
point, but that eventually they arrive at a common value (without necessarily being aware of that)
and stay there. This should work irrespective of the states in which the processes are starting.
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Thus, we are aiming for a self-stabilizing consensus protocol.
In our model we have n processes that are completely interconnected in an anonymous network.

That is, no unique process IDs are known, but rather each process has its own, private numbering
of the other processes. For the presentation of our protocol and the analysis we assume, though,
that the processes are numbered from 1 to n. Each process i initially has some value vi ∈ N (which
is assumed to require only O(log n) bits for its storage so that values can be efficiently exchanged).
The goal is to eventually agree on a common, stable value v ∈ {v1, . . . , vn}, that is, afterwards the
processes will not deviate from v anymore. We assume that time proceeds in synchronized rounds.
In each round, every process can contact at most a logarithmic number of other processes, exchange
a logarithmic amount of information with each of them, and perform some local computation based
on the received information. A process with more than a logarithmic number of requests directed
to it will only receive a logarithmic number of them, possibly selected by an adversary, and the
others are dropped.

If no process is ever corrupted, the consensus problem would be easy to solve with the following
minimum rule: In each round, every process i contacts some random process j in the system and
updates its own value to vi := min{vi, vj}. In this way, all processes will have the same value within
O(log n) rounds w.h.p.. This bound is essentially best possible for any protocol within our model.

However, if some processes can be corrupted, finding and staying at a consensus is much more
tricky. We use the following strong adversarial model. A T -bounded adversary is allowed to know
the entire history of the protocol. At the beginning of each round, it may decide to change the
state of up to T many of the processes in an arbitrary way subject to the constraint that it can only
change the value of a process to one out of the initial set of values {v1, . . . , vn}. This is necessary
to stay within the original consensus problem (i.e., the processes agree on one of the initial values)
but also reasonable in applications where the values are signed by some outside authority so that
the adversary cannot just come up with a value by itself.

Of course, in our adversarial model we cannot enforce any more that eventually all processes
agree on a stable value. Hence we will only require that there is a round r and value v ∈ {v1, . . . , vn}
such that for any round later than r, all but up to O(T ) processes agree on v. We will call this
almost stable consensus. The goal is to come up with an efficient protocol so that for the number
of faulty processes T as high as possible, almost stable consensus can still be achieved (with high
probability).

Why is the stabilizing consensus problem so difficult in our model? As an example, consider the
minimum rule introduced above. Consider an initial setting with just two possible values, 1 and 2,
and let there be at most T processes initially having the value 1. Then the adversary can change
the values of all of these processes to 2. Consequently, no process will change its value afterwards.
However, if at any time in the future the adversary changes the value of one of the processes to 1,
all other processes will start adopting value 1, and finally consensus on the value 1 will be reached.
Since the adversary may delay this arbitrarily long, the minimum rule does not lead to a stable
consensus within any time bound. Note that the state in which all processes store the value 2 does
not represent an almost stable consensus since eventually none of the processes will stick to this
value.

Other basic approaches like leader election also do not work as the adversary can corrupt the
state of the leader (or leader group) once it has been elected thereby causing the leader election
to fail. Thus, it appears that more advanced protocols (using verifiable secret sharing or other
heavy-weight machinery) have to be used, though one would also have to keep in mind to make
them self-stabilizing, i.e., to work from any initial state. Is there an alternative, simple protocol
with a bounded running time, even for a large T and any initial state? Interestingly, we will show
that there is such a protocol. In fact, this protocol does not need any assumptions on cryptographic
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input with adversary without adversary
worst-case 2 bins O(log n) O(log n)
worst-case m bins O(log m log log n + log n) O(log n)

average-case m bins
O(log m + log log n) if m is odd,

Θ(log n) if m is even.
O(log m + log log n) if m is odd,

Θ(log n) if m is even.

Figure 1: Summary of our results on the time required to reach an almost stable consensus (with
adversary) or stable consensus (without adversary) w.h.p.

primitives or private channels to work.
None of the protocols discussed above can be directly applied to our setting as they assume to

start in a well-initialized state whereas we require stabilization from any state. There is a recent
construction for self-stabilizing consensus in the shared memory model [18], but it needs Ω(n)
expected individual work per process. In general, it would be easy to use a universal compiler
to turn non-stabilizing deterministic protocols into efficient self-stabilizing ones (e.g., [31]), but
finding efficient transformations for randomized protocols appears to be very tricky. This is due
to the problem that the standard transformations are based on checking the consistency of logging
information. However, besides the challenging problem of checking whether prior actions were
based on (sufficiently) random decisions (recall that the nodes may initially be in any state), it
may turn out that the random process j recorded by process i that i was supposed to communicate
with in some prior round is not the correct one. So checking whether a state is incorrect as
well as correcting it may involve global coordination and can therefore be quite expensive. Also,
transformations of non-stabilizing into stabilizing protocols usually result in protocols that are far
from being light-weight, intuitive and simple.

1.2 Our contributions

We propose a very simple protocol for our model called the median rule: In each round, every
process i picks two processes j and k uniformly and independently at random among all processes
(including itself). It then updates vi to the median of vi, vj and vk. For example, if vi = 10, vj = 12
and vk = 100, then the new value of vi is 12.

When taking the mean of the three values instead of the median, the convergence properties
towards a single number have already been formally analyzed [17]. However, with the mean rule
we are no longer guaranteed to solve the consensus problem (i.e., one of the initial values wins).
Unfortunately, the analysis for the mean rule cannot be adapted to the median rule (also, the model
is completely different — in the model of [17], all pairs of processors are allowed to exchange values
during every round), so we had to develop completely different proofs.

The median rule works surprisingly well. Classical counter strategies like switching values or
hiding values for an unbounded amount of time are ineffective and cannot prevent the median rule
from converging quickly. We prove the following results that are also summarized in Figure 1.2.

Theorem 1. For any initial state it holds that if no process is ever adversarial, then the median
rule reaches a stable consensus in O(log n) rounds w.h.p.

Hence, the median rule is as effective as the minimum rule in the non-adversarial case. This
still holds for the adversarial case and a constant initial number of different values.

Theorem 2. For any initial state with a constant number of different values and under any T -
bounded adversary with T ≤ √

n, the median rule reaches an almost stable consensus in O(log n)
rounds w.h.p.
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The bound on T is essentially tight as T = Ω̃(
√

n) would not allow the median rule to stabilize
any more w.h.p. because the adversary could keep two groups of processes with equal values in
perfect balance for at least a polynomially long time. More generally, we can show the following
result.

Theorem 3. For any initial state with m different values and under any T -bounded adversary with
T ≤ √

n, the median rule reaches an almost stable consensus in O(log m · log log n + log n) rounds
w.h.p.

A further improvement can be obtained in an average-case setting.

Theorem 4. Let m ≤ n1/2−ǫ. Assume that the initial state is chosen uniformly at random from
all states having m different values. Then against any T -bounded adversary with T ≤ √

n, the
median rule reaches an almost stable consensus within Θ(log n) rounds, w.h.p., if m is even, and
O(log m + log log n) rounds, w.h.p., if m is odd.

With these results, the median rule is yet another demonstration of the power of two choices
as a deterministic single choice rule would only allow us to implement the minimum or maximum
rule, which have an unbounded runtime. However, two other processes are contacted at random in
a round, the median rule can be implemented, resulting in a very small runtime as we have seen.
This power of two choices has also been demonstrated in many other contexts [27, 16, ?, 14, 15, 19]
(mostly in the balls into bins model, which is why we will use that notation later), but we are not
aware of any result using it in the context of consensus.

2 Notation and Preliminaries

2.1 Definitions

We have n balls (processes) numbered from 1 to n, and n bins (values) also numbered from 1 to
n. Write b0,1, . . . , b0,n for the initial assignment of each ball to its bin, where the bins are identified
with integers in N. So, the “all-one” assignment that assigns each ball to a different bin, can be
achieved by setting b0,i = i for 1 ≤ i ≤ n.

In the i-th iteration the algorithm does the following: Let Ii,1, . . . , Ii,n and Ji,1, . . . , Ji,n be 2n
independent random variables, chosen uniformly in [n] = {1, . . . , n}. Then the bin assignment of
the i-th iteration is

bi,j = median(bi−1,j , bi−1,Ii,j
, bi−1,Ji,j

)

for j = 1, . . . , n. The algorithm has reached a fixed point (has stabilized) in the i-th iteration if
and only if bi,1 = · · · = bi,n.

For each iteration t ∈ N, we denote by mt the bin that contains the median-ball, so,

|{j ∈ [n] : bt,j < mt}| ≤ n/2,

and
|{j ∈ [n] : bt,j > mt}| ≤ n/2.

2.2 Probabilistic Tools

We write w.h.p. to refer to an event that holds with probability at least 1−n−c for c > 1. We will
use the following three Chernoff bounds.
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Lemma 5 (Chernoff Bound for Bernoulli Variables). Let X1, . . . , Xn be independent binary random
variables, let X =

∑n
i=1 Xi and µ = E[X]. Then it holds for all δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

≤ e−min[δ2, δ]·µ/3 .

Furthermore, it holds for all 0 < δ < 1 that

Pr[X ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ

≤ e−δ2µ/2 .

Lemma 6 (Chernoff Bound for Geometric Variables). Consider some fixed 0 < δ < 1. Suppose
that X1, . . . , Xn are independent geometric random variables on N with Pr[Xi = k] = (1 − δ)k−1δ
for every k ∈ N. Let X =

∑n
i=1 Xi, µ = E[X]. Then it holds for all ǫ > 0 that

Pr[X ≥ (1 + ǫ)n/δ] ≤ e−ǫ2n/2(1+ǫ)

Lemma 7 (Chernoff Bound for Variables with Exponential Tails). Suppose that X1, . . . , Xn are
independent random variables on N , such that there is a constant γ > 0 with Pr[Xi = k] ≤
γ(1 − δ)k−1 for every k ∈ N. Let X =

∑n
i=1 Xi, µ = E[X]. Then it holds for all ǫ > 0 that

Pr[X ≥ (1 + ǫ)µ + O(n)] ≤ e−ǫ2n/2(1+ǫ).

2.3 Auxiliary Results for Absorbing Markov Chains

We now prove exponential tail bounds for reaching absorbing states in Markov Chains.

Lemma 8. Consider a Markov Chain (Xt)
∞
t=1 with state space {0, . . . ,m} that has the following

properties:

• there are constants c1 > 1 and c2 > 0, such that for any t ∈ N,

Pr[Xt+1 ≥ min{m, c1Xt}] ≥ 1 − e−c2Xt ,

• Xt = 0 ⇒ Xt+1 ≥ 1 with probability c3 that is greater than some constant > 0,

Then for every constant c4 > 0, there is a time step t = O(log m) such that

Pr[Xt ≥ c4 log m] ≥ 1 − m−2.

Lemma 9. Consider a Markov Chain (Xt)
∞
t=1 with state space {0, . . . ,m} that has the following

properties,

• there are constants c1 > 1 and c2 > 0, such that for any t ∈ N,

Pr[Xt+1 ≥ min{m, c1Xt}] ≥ 1 − e−c2Xt ,

• Xt = 0 ⇒ Xt+1 = 0 with probability 1,

• There is a number m ∈ N such that Xt = m ⇒ Xt+1 = m with probability 1.

Then it holds for t = O(log m) that

Pr[Xt ∈ {0} ∪ {m}] ≥ 1 − m−2.

The proof is almost the same as the proof of Lemma 8. The only difference is that we stop the
process if we have reached the state {0} and that we run the process until we have reached state
m (instead a state that is at least c4 log m).
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3 Two Bins with Adversary

In this section, we consider the case with only two bins. This special case is of more general interest,
as the later analysis with more than two bins will use some results of this section.

We also consider an adversary with the following abilities. In each round after all n balls have
made their random choices, the adversary is allowed to change the choices of at most

√
n balls. We

prove that despite the adversary, we reach a stable state where one bin contains at least n − √
n

balls w. h. p.
Note that for the two bin-case, the median rule coincides with the majority rule, where a balls

next bin is chosen to be the majoritary bin of itself and two random balls.

Theorem 10. For any initial distribution of the balls, O(log n) rounds of the majority rule suffice
to get n − O(

√
n) balls into the same bin, w.h.p. This holds even if an adversary is allowed to

manipulate the random choices of at most O(
√

n) balls.

In the following, let Lt be the number of balls in the left bin at step t and let Rt be the number
of balls in the right bin at step t. Let Xt = min(Lt, Rt) and let Yt = max(Lt, Rt). For simplicity,
we will assume that n is even. The proof for odd n follows along the same lines. The imbalance at a
step t is given by ∆t = (Yt −Xt)/2 (which is a positive integer if n is even). The labelled imbalance
is given by Ψt = (Rt − Lt)/2. Based on the imbalance ∆t we distinguish between three cases.

Case 1: ∆0 ≥ n/3

We will show the following lemma.

Lemma 11. If ∆0 ≥ cn, where c > 0 is any constant, then O(log log n) rounds of the majority
rule suffice to reach a stable consensus, w.h.p.

Case 2: c
√

n ln n ≤ ∆0 < n/3 for a sufficiently large c

Here, we will show the following lemma.

Lemma 12. If there is a step t with c
√

n lnn ≤ ∆t < n/3 for a sufficiently large constant c, then
O(log n) additional rounds of the majority rule suffice to arrive at case 1 w.h.p.

Case 3: ∆0 ≤ c
√

n ln n

We say that a random variable Y stochastically dominates a random variable Z, and write Y º Z,
if Pr[Y ≥ x] ≥ Pr[Z ≥ x] for any x.

Lemma 13. Assume no adversary is present and Lt ≤ Rt. For any two labelled imbalances Ψt

and Ψ′
t with Ψt > Ψ′

t it holds that Ψt+1 º Ψ′
t+1.

In the next lemma, we use the Central Limit Theorem to prove that with constant probability,
we have a sufficiently large imbalance regardless of the previous imbalance.

Lemma 14. Assume no adversary is present. Let ε > 0 be an arbitrary constant, and let c be the
constant from Lemma 12. For any Ψt ≥ 0, Pr[Ψt+1 ≥ c

√
n] ≥ 1√

2π(1+4c/
√

3)
e−8c2/3 − ε, provided n

is large enough.

Finally, we prove that there is a strong drift to increase the imbalance by a constant factor.
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Lemma 15. Assume no adversary is present. If ∆t ≥ c
√

n, where c is the constant from Lemma 12,
then

Pr[∆t+1 ≥ (4/3)∆t] ≥ 1 − exp
(
−Θ(∆2

t /n)
)
.

We are now ready to finish the case 3.

Lemma 16. If initially, we have ∆0 < c
√

n lnn for the value of c needed by Lemma 12, then after
O(log n) steps, we have t ≥ c

√
n lnn w. h. p.

4 More than Two Bins

In this section we consider the more challenging case when we have up to n different bins. We
analyze the models with and without adversary separately.

In order to be able to reduce our problem with n bins to the one with 2 bins, we first establish
a partial order of fineness on the distribution of balls into bins.

4.1 Partial Order on the Balls-and-Bins-Distribution

We say that an initial assignment with ki balls in bin i (i ∈ [n]) is finer than an assignment (k̃i)i∈[n],
if there is a monotonic function f : [n] → [n] mapping bins to bins such that

k̃i =
∑

j∈f−1(i)

kj

for each i ∈ [n]. Obviously, the “is finer”-relation induces a partial order on the set of all balls-and-
bins-distributions.

The all-one assignment k1 = · · · = kn = 1 is finer than every other assignment (k̃i)i∈[n]: The

corresponding mapping can be constructed by setting f(1) = · · · = f(k̃1) = 1, f(k̃1 + 1) = · · · =
f(k̃1 + k̃2) = 2, and so on. (Since n =

∑
ki =

∑
k̃i, this mapping is well defined.)

Lemma 17. If the assignment (ki)i∈[n] is finer than the assignment (k̃i)i∈[n], then the number of
iterations of the algorithm needed for convergence with the initial assignment (ki)i∈[n] upper bounds

the number of iterations needed with the initial assignment (k̃i)i∈[n]. This is true point wise in the
probability space and hence applies to both average and high probability running times.

4.2 More than Two Bins without Adversary

In this section, we prove Theorem 1. Our proof proceed as follows. We show that after O(log n)
rounds, we end up with at most 2 non-empty bins. Then we can directly use our result for two bins
to conclude that after additional O(log n) rounds, the process stabilizes.

Assume that the bins and balls are numbered from 1 to n such that all balls with higher
numbers are in higher bins and balls in the same bin form a consecutive interval. As an example,
(1, 2, 3 | 4, 5 | | 6 | 7, 8) describes a distribution of 8 balls into 5 bins, where the first bin holds 3 balls,
the second bin 2, the third bin zero and so on.

We associate with each ball i ∈ [n] a value g(i) called gravity, which is the expected number
of balls that choose i as their median for the next step (when considering the ball ordering). The
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gravity g(i) can be estimated as

g(i) = (n − i − 1) · 2(i − 1)

n2
+ (i − 1) · 2(n − i − 1)

n2
+ 1 · 2(n − i − 1)(i − 1)

n2
+ O

(
1

n

)

= 6
(n − i)i

n2
+ O

(
1

n

)

. (1)

Note that the gravity of a ball i is maximized for the median-ball, which has number ⌈n/2⌉
according to our ordering.

Fix a bin j. By linearity of the expectation, the expected load of j at a time t + 1 is equal to
the sum of gravities of the balls in bin j at time t.

For each bin j ∈ [n] at step t, we define a set of heavy balls Ht,j which is defined as the subset
of the Φ = C

√
n log n balls in bin j with largest gravity. C > 0 is a sufficiently large constant.

Note that by definition, 0 ≤ |Ht,j | ≤ Φ. We first prove the following:

Lemma 18. If there is a ball i ∈ Ht,j with g(i) < 4/3, then at step t + 1 either there is a ball
l ∈ Ht+1,j with g(l) < 4/3 or bin j is empty w. h. p.

Lemma 19. Consider an arbitrary bin j ∈ [n]. Then there is a round t1 = O(log n) such that at
least one of the following holds w.h.p.:

1. at least one ball i ∈ Ht,j satisfies g(i) < 4/3 (or Ht,j is empty), or

2. |Ht,j | = Φ.

We are now ready to prove the main result of this section.

Proof of Theorem 1. Since Lemma 19 holds w.h.p., there is a round t1 = O(log n) where Lemma 19
holds for every bin w.h.p. For this t1 let jmin, jmax be the leftmost and rightmost balls in bin mt,
respectively. Note that by Lemma 19, the load of bin mt is at least Φ. We proceed by a case
distinction on the position of mt.

1. n/2− jmin ≤ Φ/2. Let mt − 1 be the left bin from bin mt. Equation 1 implies that all heavy
balls in bin mt − 1 have gravity at least 4/3. So, Lemma 19 implies that the load of bin
mt − 1 is at least Φ. Consolidate all bins from 1, . . . , mt − 2 and all bins from mt + 1, . . . , n
into two superbins A and B, respectively. By our arguments above, both superbins have a
load of at most n/2−Φ/2. Therefore for C large enough, Lemmas 11 and 12 imply that both
superbins will die out within the next O(log n) steps w.h.p. After this has happened, we only
end up with two bins mt−1 and mt. A final application of our two bin-analysis (Theorem 10)
reduces the number of bins from 2 to 1 within additional O(log n) rounds, and our theorem
follows.

2. jmax − n/2 ≤ Φ/2. This case is handled exactly as before.

3. jmax − jmin > Φ. In this case, it follows as in the previous cases that by Lemmas 11 and 12
that all bins except bin mt will vanish after the next O(log n) rounds.

9



4.3 More than Two Bins with Adversary

The following theorem extends our two-bin result to the many-bin case in the presence of an
adversary.

Theorem 20. For any
√

n-bounded adversary and m bins, it will take at most O(log m log log n +
log n) rounds until the median rule reaches an almost stable consensus.

The proof considers O(log m) phases. The expected number of rounds taken by each phase is
O(log log n). In each phase, we show that there is a small set of non-empty bins such that bins
outside of this set have too few balls, and will therefore eventually become empty. The size of the
“small set” halves with each new phase. The analysis of each phase applies the two-bin analysis to
two “meta-bins”, one of which consists of the left half of the small set of bins, and all bins to the
left of that — the other meta-bin consists of the remaining bins. After O(log m) phases, at most
three actual bins remain non-empty so the two-bin analysis again applies, giving an almost stable
consensus in O(log n) more rounds.

5 Average Case Analysis

In this section, we investigate the case where all n balls are initially put independently and randomly
into m bins.

5.1 The Uniform Random Case without Adversary

Without the adversary, we get the following result.

Theorem 21. Assume that each of the n balls is initially assigned uniformly at random to one of
the m bins. Then the median rule reaches a stable consensus in the following number of rounds
w.h.p.:

O(log m + log log n) if m is odd,
Θ(log n) if m is even.

Proof. If m is even, we can use Lemma 17 to reduce the problem to that of two superbins with
m/2 bins each. The Central Limit Theorem implies that these superbins will initially have at most
n/2 +

√
n/8 balls with constant probability. Given that this bound is true in some round t, it will

also be true in round t + 1 with constant probability, so Ω(log n) rounds are needed to make sure
that the number of balls in a superbin is more than n/2 +

√
n/8 in at least one round w.h.p. This

implies the lower bound on the runtime for even m. The upper bound follows from Theorem 1.
We now study the case where m is odd, and we assume w. l. o. g. that m = O( 3

√
n) (otherwise

we can use Theorem 1). We merge the (m − 1)/2 leftmost bins into a single superbin, and we do
the same with the (m− 1)/2 rightmost bins. So we have three superbins (we simply call bins) left.
The left and the right ones contain n/2 − n/(2m) + O(

√
n log n) balls each w.h.p., and the middle

bin contains n/m + O(
√

n log n) balls w.h.p.
Consider now any round t in which the left bin has at most n/2 − ∆ balls, where n/(3m) ≤

∆ < n/3 (which is initially true in our case). Then it follows from the analysis of Lemma 12
that the expected number of balls in the left bin in round t + 1 is at most n/2 − (5/4)∆. Since
∆ ≥ n/(3m) = Ω(n2/3), the Chernoff bounds imply that this is also at most n/2 − (6/5)∆ w.h.p.
Hence, after k many rounds with (n/(3m))(6/5)k ≥ n/3, we reach a round with ∆ > n/3 w.h.p.
This is true for k = O(log m). But then Lemma 11 shows that from that point it takes only
O(log log n) further steps to make the left bin empty w.h.p. The same argument also applies to
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the right bin. Hence, after O(log m + log log n) many rounds, the middle bin will have all balls
w.h.p.

5.2 The Uniform Random Case with Adversary

Corollary 22. Consider any
√

n-bounded adversary and suppose that m ≤ n1/2−ǫ for some constant
ǫ > 0. Then the median rule reaches an almost stable consensus w.h.p. after the following number
of rounds:

O(log m + log log n) if m is odd and
Θ(log m) if m is even.

Proof. If m is odd, then the proof follows along the same lines as the previous proof as initially
∆ ≥ n/(3m) ≥ n1/2+ǫ/3, which is much larger than the adversarial influence on the balls. Hence,
w.h.p. the middle bin will keep drawing balls into it until there are only O(

√
n) outside balls left.

If m is even, we consider the two middle bins as a single bin to reduce this case to an odd m. In
this case, O(log m + log log n) rounds suffice w.h.p. to get all but O(

√
n) balls into the two middle

bins. Afterwards, we are left with the 2-bin case which leads to an almost stable consensus in at
most O(log n) further steps w.h.p.

6 Conclusions

In this paper we presented a surprisingly simply and effective synchronization mechanism. Unfor-
tunately, we were only able to rigorously analyze its performance for the one-dimensional case. It
would be very interesting though probably very challenging to prove a time bound of O(log n) also
for higher dimensions. Also, the robustness of the protocol deserves further studies.

Acknowledgments

We would like to thank Michael Bender for suggesting a related problem that initiated this research
and Goran Konjevod, Andrea Richa and Donglin Xia for helpful discussions on early versions of
the paper.

References

[1] D. Angluin, M. Fischer, and H. Jiang. Stabilizing consensus in mobile networks. In Proc. of
the Intl. Conference on Distributed Computing in Sensor Networks (DCOSS), pages 37–50,
2006.

[2] J. Aspnes. Randomized protocols for aynchronous consensus. Distributed Computing, 16(2-
3):165–176, 2003.

[3] J. Aspnes, H. Attiya, and K. Censor. Randomized consensus in expected o(n log n) individual
work. In Proc. of the 27th ACM Symp. on Principles of Distributed Computing (PODC), pages
325–333, 2008.

[4] J. Aspnes and K. Censor. Approximate shared-memory counting despite a strong adversary.
In Proc. of the 20th ACM Symp. on Discrete Algorithms (SODA), pages 441–450, 2009.

11



[5] H. Attiya and K. Censor. Lower bounds for randomized consensus under a weak adversary. In
Proc. of the 27th ACM Symp. on Principles of Distributed Computing (PODC), pages 315–324,
2008.

[6] H. Attiya and K. Censor. Tight bounds for asynchronous randomized consensus. Journal of
the ACM, 55(5), 2008.

[7] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics (2nd Edition). John Wiley and Sons, 2004.

[8] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocation. In Proc. of the 26th ACM
Symp. on Theory of Computing (STOC), pages 593–602, 1994.

[9] Z. Bar Joseph and M. Ben-Or. A tight lower bound for randomized synchronous consensus. In
Proc. of the 17th ACM Symp. on Principles of Distributed Computing (PODC), pages 193–199,
1998.

[10] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement protocols.
In Proc. of the 2ndpodc, pages 27–30, 1983.

[11] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantine agreement in the full-information
model in o(log n) rounds. In Proc. of the 38th ACM Symp. on Theory of Computing (STOC),
pages 179–186, 2006.

[12] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal resilience. In
Proc. of the 25thstoc, pages 42–51, 1993.

[13] B. Chor, A. Israeli, and M. Li. Wait-free consensus using asynchronous hardware.

[14] R. Cole, A. Frieze, B.M. Maggs, M. Mitzenmacher, A.W. Richa, R.K. Sitaraman, and E. Upfal.
On balls and bins with deletions. In Proc. of the 2nd Intl. Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM), 1998.

[15] R. Cole, B.M. Maggs, F. Meyer auf der Heide, M. Mitzenmacher, A.W. Richa, K. Schröder,
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Appendix

Proof of Lemma 6. Consider transforming every Xi = k into a binary string Bk = (000...01) with
(k−1) zeroes. Then the series of X1 = k1, X2 = k2, X3 = k3, ... can be represented by a string B of
the form of {Bk1Bk2Bk3 ...} = {00...100...100...100...1}. Note that B contains n many 1’s and the
total number of positions (0 or 1) in B is K =

∑

i ki.
Now, consider instead an infinite set of binary random variables Y1, Y2, Y3, . . . with Pr[Yi = 1] =

δ. Viewing Yi as representing the i-th position in B, it is not difficult to check that

Pr

[
n∑

i=1

Xi ≥ k

]

= Pr





k∑

j=1

Yj ≤ n





Let k = (1 + ǫ)µ with µ = E[X], Y =
∑(1+ǫ)µ

j=1 Yj , and µ′ = E[Y ]. It follows from the Chernoff
bounds that for any ǫ′ ∈ [0, 1),

Pr[Y ≤ (1 − ǫ′)µ′] ≤ e−(ǫ′)2µ′/2

Since E[Xi] = 1/δ and therefore µ = n/δ, it follows that µ′ = (1 + ǫ)µ · δ = (1 + ǫ)n. Hence, if we
set n = (1 − ǫ′)µ′, we get that (1 − ǫ′)(1 + ǫ) = 1 and therefore ǫ′ = ǫ/(1 + ǫ). Plugging this into
the equations above, we obtain

Pr

[
n∑

i=1

Xi ≥ (1 + ǫ)n/δ

]

≤ e−ǫ2n/2(1+ǫ)

which proves the lemma.

Proof of Lemma 7. By our assumption on Xi, we have for any integer k ∈ N that

Pr[Xi ≥ k] ≤ γ
∞∑

l=k

(1 − δ)l = γ ·
(

1

δ
−

k−1∑

l=1

(1 − δ)l

)

≤ γ ·
(

1

δ
− 1 − (1 − δ)k

δ

)

=
γ(1 − δ)

δ
· (1 − δ)k−1.

Note that if Y is a geometric random variable with parameter δ, we have for any integer k ∈ N,
Pr[Y ≥ k] = (1 − δ)k−1. Hence the tails of Xi and Y differ only by a factor of γ(1−δ)

δ and our
strategy is to relate Xi and Y by a domination argument.

Note first that if γ(1−δ)
δ < 1, then Xi is stochastically smaller than Y . Now if not, each Xi is

stochastically smaller than Y + ⌈log1−δ
δ

γ(1−δ)⌉, since for any integer k ∈ N,

Pr

[

Y +

⌈

log1−δ

δ

γ(1 − δ)

⌉

≥ k

]

= Pr

[

Y ≥ k −
⌈

log1−δ

δ

γ(1 − δ)

⌉]

≥ (1 − δ)
k−log1−δ

δ
γ(1−δ)

−1
=

γ(1 − δ)

δ
· (1 − δ)k−1.

Hence with Lemma 6 we have

Pr

[
n∑

i=1

Xi ≥ (1 + ǫ)µ + n

(⌈

log1−δ

δ

γ(1 − δ)

⌉)]

≤ Pr

[
n∑

i=1

Yi ≥ (1 + ǫ)µ

]

≤ e−ǫ2n/2(1+ǫ).

14



Proof of Lemma 8. A round t is called successful if

Xt+1 ≥
{

1 if Xt = 0
min{c1Xt,m} otherwise

.

Let the random variable Y ∈ N0 ∪{∞} denote the number of successful rounds when starting with
a round t0 with Xt0 = 0 until we reach a round in which we fail. Certainly, Pr[Y = 0] ≤ 1− c3 and
for any k ≥ 1,

Pr[Y = k] ≤ c3 ·
k−1∏

i=1

(

1 − e−c2ci
1

)

· e−c2ck
1 ≤ c5 · e−c2ck

1

for some constant 0 < c5 < 1. Hence, there are constants 0 < γ, δ < 1 with Pr[Y = k] ≤ γ · δk for
any k. Since Pr[Y < ∞] ≥ 1 − c3 + c3e

−c2 , which is at least some constant γ′ > 0, it holds that

Pr[Y = k | Y < ∞] =
Pr[Y = k ∧ Y < ∞]

Pr[Y < ∞]
≤ (γ/γ′)δk = γ′′δk

for some constant γ′′ > 0. Thus, E[Y | Y < ∞] = Θ(1).
So far, we only bounded Pr[Y = k | Xt0 = 0]. However, in a similar way it also follows that for

any x0 ≥ 0, Pr[Y = k | Xt0 = x0] ≤ γ · δk for some constants 0 < γ, δ < 1, so irrespective of Xt0 ,
Pr[Y = k] ≤ γ · δk for some constants 0 < γ, δ < 1. Now, suppose our process had f = Θ(log m)

failures. We can upper bound the time it consumes for that by the sum Z =
∑f

i=1 Zi of independent
random variables Zi with Pr[Zi = k] = γδk (so that they stochastically dominate Y for any Xt0).
Then Lemma 7 implies that Z is at most O(log m) w.h.p., so at most O(log m) rounds are needed
for f failures.

On the other hand, it holds that for any Xt0 that

Pr[Y ≥ logc1 c4 log m] ≥ c3 ·
c4 log m

∏

i=1

(
1 − exp(−c2c

i
1)

)
≥ c6,

where c6 > 0 is a constant that can be chosen independently of c4. Hence, the probability that we
have more than 2 log1/(1−c6) m attempts without achieving a value at least Xt ≥ c4 log m is smaller

than 1 − m−2. So with probability at least 1 − m−2 we need at most 2 log1/(1−c6) m = Θ(log m)
attempts and with high probability, from above, these Θ(logm) attemts take Θ(log m) rounds in
total.

Proof of Lemma 11. First we show that after a constant number t1 of steps, we will have Xt ≤ n/4
with high probability.

With high probability, the identity of the bin associated with Xt will not change during this
process. Assume without loss of generality that the left bin initially has fewer balls so L0 = X0

and R0 = Y0.
For any ball i let Lj,i be the random variables which equals 1 if ball i is in the left bin after j

rounds, and 0 otherwise. If the ball i was in the left bin in round j−1, then writing pj−1 = Lj−1/n,
we have E[Lj,i] = Pr(Lj,i = 1) = 1 − (1 − pj−1)

2. Similarly, if the ball i was in the right bin, we
have E[Lj,i] = p2

j−1. Then Lj =
∑

i Lj,i is the total number of balls in the left bin after j rounds.
Then we have

E[Lj ] = Lj−1pj−1(3 − 2pj−1) = n(pj−1)
2(3 − 2pj−1).

Let Ĉ be a constant greater than 1 such that

p2(3 − 2p) ≤ 1/2 − Ĉ(1/2 − p)
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for every p ∈ [1/4, 1/2). Such a constant exists since the function p 7→ p2(3 − 2p) is convex in this
interval. Then

E[L1] ≤ n

[

1 − Ĉ

2
+ Ĉp0

]

= L0

[

1 − (1 − 2p0)(Ĉ − 1)

2p0

]

︸ ︷︷ ︸

∗

provided p0 ≥ 1/4. Now, note that the gap ∗ is less than 1 for every fixed p0 < 1/2, and so
a Chernoff bound argument can be used to show that the probability of Lj , and hence pj , not
decreasing by a constant factor is exp(−Ω(n)). The gap ∗ increases with decreasing p0, and hence,
after a constant number of t1 iterations, we have pt1 ≤ 1/4 w. h. p. (Note that t1 depends on p0,
i.e., the constant c, but not on n.)

The number of steps for this first part remains the same if we allow for O(
√

n) balls being in
an adversarial matter, because the contraction of the smaller bin by a constant nontrivial factor is
still possible.

Next, we now show that if pt1 ≤ 1/4, in another t2 = O(log log n) rounds, we get

Lt1+t2 ≤
√

4n log n

with probability at least 1 −O(log log(n)/n). We have E[Lj ] ≤ 3L2
j−1/n. Hence, again by using a

Chernoff bound argument, we get

Pr

(

Lj ≥
9L2

j−1

2n

)

≤ exp

(

−
9L2

j−1

4n

)

,

which, if Lj−1 ≥
√

4n log(n), is bounded from above by O(n−1). To see that this needs O(log log n)
steps, note the successive squaring in the mapping x 7→ 9x2/(2n).

Again, the adversarial choice of O(
√

n) balls in each round works the same, since there is an
arbitrarily small ε > 0, for which E[Lj ]+O(

√
n) ≤ (3+ε)L2

j−1/n. This is true because L2
j−1 ∈ Ω(n)

at this stage.
Once we are at Lt1+t2 ≤ √

4n log n, we have, by yet another application of Chernoff’s inequality
Lt1+t2+1 = O(log(n)) with probability at least 1 −O(n−4), and hence

E[Lt1+t2+2] = O(log(n)2/n).

Therefore, we are done with high probability after t1 + t2 + 2 steps.
In the adversarial case, we terminate as follows instead: We know that using Chernoff’s in-

equality Lt1+t2+1 = O(
√

n) w. h. p, finishing the proof.

Proof of Lemma 12. Recall that Xt = n/2−∆t is the number of balls in the smaller bin at step t.
Furthermore, we define δt := ∆t/n. The probability that a ball that is in the smaller bin at step t
chooses its new median also in the same bin at step t + 1 is

1 − (1/2 + δt)
2 = 3/4 − δt − δ2

t .

Similarly, the probability that a ball in the larger bin at step t chooses its new median in the other
bin is

(1/2 − δt)
2 = 1/4 − δt + δ2

t .
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Now denote by X̃t+1 the number of balls that choose its new median in step t + 1 in the bin
corresponding to Xt, in the absence of an adversary (at step t + 1). Linearity of expectation gives

E[X̃t+1] = (1/2 − δt)n(3/4 − δt − δ2
t ) + (1/2 + δt)n(1/4 − δt + δ2

t )

= (1/2 − (3/2)δt + 2δ3
t )n

= n/2 − ∆t −
(
(1/2)δt − 2δ3

t

)
n

≤ n/2 − ∆t − (1/4)δtn (using δt < 1/3)

≤ Xt − (δt/2)Xt (using Xt ≤ n/2)

= (1 − δt/2)Xt.

Since the choices of the balls are independent, it follows from the Chernoff bounds that for
ǫ = δt/4,

Pr[X̃t+1 ≥ (1 − δt/4)Xt] ≤ Pr[X̃t+1 ≥ (1 + ǫ)E[X̃t+1]] ≤ e−ǫ2E[X̃t+1]/3

≤ e−(δt/4)2(1−δt/2)(n/2)/3 ≤ e−(c2 ln n/n)n/96 = n−c2/96.

This implies that X̃t+1 ≤ (1− δ/4)Xt w.h.p. If Xt is the left bin then Lt+1 ≤ X̃t+1 +O(
√

n), which
shows that w.h.p.

Lt+1 ≤ X̃t+1 + O(
√

n)

≤ (1 − δt/4)Xt + O(
√

n)

≤ (1 − δt/8)Xt (since ∆t = Ω(
√

n log n)),

which in turn implies that ∆t+1 ≥ (10/9)∆t. Hence taking the union bound over O(log n) rounds,
we reach a step with an imbalance of at least n/3 w. h. p.

Proof of Lemma 13. We show stochastic domination for any two labelled imbalances Ψt and Ψ′
t =

Ψt − 1. The rest follows by induction. Let z = n/2 − Ψ′
t. Without loss of generality, we assume

that balls 1 to z − 1 are in the left bin in both Ψt and Ψ′
2 and balls z + 1, . . . , n are in the right bin

in both Ψt and Ψ′
t. Ball z is in the right bin in Ψt and in the left bin in Ψ′

t.
Let Ω be the space of all possible outcomes of the random experiment in which every ball

chooses two balls independently and uniformly at random. Consider any such outcome w ∈ Ω.
Any ball b 6= z that does not choose ball z in w goes to the same bin in both scenarios.
If ball z goes to the right bin in the Ψ′

t scenario (in which it started in the left bin) then it will
also go the right bin in the Ψt scenario (in which it started in the right bin).

Finally, consider a ball b 6= z that chooses ball z as one (or both) of its choices in w. If it goes
to the right bin in the Ψ′

t scenario (in which the z ball is dragging it left) it will also go to the right
bin in the Ψt scenario.

So Rt+1 dominates R′
t+1 and L′

t+1 dominates Lt+1 and Rt+1 − Lt+1 dominates R′
t+1 − L′

t+1.

Proof of Lemma 14. We only need to prove the claim for Ψt = 0 because the general case follows
from stochastic domination (see Lemma 13).

Assume that at step t balls 1 to n/2 reside in the left bin and balls n/2 + 1 to n reside in the
right bin. Let X1, . . . , Xn/2 ∈ {0, 1} be random variables defined as follows:

Xi =

{

1 if ball i moves to the right bin,

0 otherwise.
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Then the Xi are independent Bernoulli variables with Pr(Xi = 1) = 1/4. Analogously, for balls
n/2 + 1 to n, we define the random variables Xn/2+1 to Xn which are equal to 1 if the balls move
from the left bin to the right bin. We again have Pr(Xi = 1) = 1/4 for these variables. Then Ψt+1

is

Y =

n/2
∑

i=1

Xi −
n∑

i=n/2+1

Xi.

Now by the Central Limit Theorem, as n → ∞, the random variable
√

2/n
∑n/2

i=1(Xi−1/4) converges
in distribution to a normal variable of mean 0 and variance 3/16. So, for large enough n, we have

Pr(Y ≥ c
√

n) = Pr

(√

2

n
Y ≥ c

√
2

)

= Pr
(√

2/n
(

n/2
∑

i=1

(
Xi −

1

4

)
−

n∑

i=n/2+1

(
Xi −

1

4

))

︸ ︷︷ ︸

asympt. normal with µ = 0, σ2 = 3/8

≥ c
√

2
)

≥ 1 − Φ(c
√

16/3) − ε,

where Φ denotes the cumulative distribution function of a standard-normal random variable.
For x ≥ 0, the value of Φ(x) can be bounded as follows (see e.g., [24] p. 17 and [25] p. 505):

1√
2π(1 + x)

· e−x2/2 ≤ 1 − Φ(x) ≤ 1√
π(1 + x)

· e−x2/2,

therefore we can lower bound the above probability by

1√
2π(1 + 4c/

√
3)

exp

(

−8c2

3

)

− ε,

finishing the proof.

Proof of Lemma 15. As in Lemma 12, a simple calculation reveals that E[∆t+1] ≥ (3/2)∆t. Using
Hoeffdings bound, we have w. h. p.

Pr[∆t+1 ≤ (4/3)∆t] ≤ exp(−Θ(∆t)
2/n).

Proof of Lemma 16. If there is no adversary, then Lemma 14 states that after O(1) steps, we are
in the hypothesis of Lemma 15. That is, ∆t ≤ c

√
n. Now let Υτ = ⌊∆t+τ−1/(c

√
n⌋ so Υ1 ∈ {0, 1}.

Let m = ⌊(n/2)/(c
√

n⌋ so the possible values of Υτ are {0, . . . , m}. By Lemma 8, O(log m) rounds
suffice to achieve Υτ ≥ c4 log m so ∆t+τ−1 ≥ c

√
nc4 log m which is sufficient.

If there is an adversary, he can reduce the drift by at most
√

n/2 per round. Hence, choosing
the constant c large enough, we can still arrange for a drift factor > 1 in Lemma 15.

Proof of Lemma 17. If b0,1, . . . , b0,n is a configuration corresponding to the initial assignment (ki)i∈[n],

then b̃0,i := f(b0,i) is a configuration corresponding to the assignment k̃i.
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Since f is monotonic, it commutes with the median function, i.e.,

median(f(a), f(b), f(c)) = f(median(a, b, c)).

Therefore we have by induction that b̃t,j = f(bt,j) for any t ∈ N and j ∈ [n], if we run both instances
with the same random values It,j and Jt,j .

Now if the (b0,j)j∈[n] instance has converged in the t-th iteration, we have bt,1 = · · · = bt,n, and
hence also

f(bt,1) = · · · = f(bt,n),

and so the (b̃0,j)j∈[n] instance has also converged in this iteration.

Proof of Lemma 18. Assume w.l.o.g. that j ≤ mt (the case j ≥ mt follows with identical argu-
ments). Let i be the number of a ball in Ht,j with gravity g(i) < 4/3. When plugging g(i) < 4/3
into Equation (1), we get

4

3
> 6

(n − i)i

n2
+ O

(
1

n

)

,

which readily implies that i ≤ n/3+O(1). Hence, there are at most n/3+Φ+O(1) balls in the bins
1 to j. Then consolidate all bins from 1 to j into a superbin A, and all other bins into a superbin
B. Let Lt,A be the load of superbin A in step t, so Lt,A ≤ n/3 + Φ + O(1). By Lemma 17, we can
using the arguments from the two-bin case (Lemmas 11 and 12) to conclude that w. h. p.

Lt+1,A ≤ n

3 + ǫ
,

for a constant ǫ > 0. Hence by (1), every ball l ∈ Ht+1,j in bin j satisfies g(l) < 4/3 w.h.p.
(provided that Ht+1,j 6= ∅).

Proof of Lemma 19. Consider an arbitrary round t. Our goal is to apply Lemma 9. We first identify
two absorbing states concerning Ht,j :

1. There is a ball i ∈ Ht,j with g(i) < 4/3. Then Lemma 18 implies that at step t + 1, Ht+1,j

contains at least one ball l with g(l) < 4/3, or Ht+1,j is empty.

2. |Ht,j | = Φ and all balls i ∈ Ht,j satisfy g(i) ≥ 4/3. Then it follows by a Chernoff bound that
|Ht+1,j | = Φ with probability at least 1 − n−2.

If Ht,j does not fulfill one of these conditions, all balls in Ht,j have a gravity of at least 4/3. In this
case, the expected number of balls in bin j at step t + 1 would be at least (4/3)|Ht,j |. Since the
median rule is applied independently at random to each ball, a Chernoff bound implies

Pr

[

|Ht+1,j | ≥ min{Φ,
5

4
|Ht,j |}

]

≥ 1 − exp(−Θ(|Ht,j |)).

Thus, applying Lemma 9, we conclude that one of the two absorbing states is reached within
t1 = O(log n) rounds w. h. p.

Proof of Theorem 20. Let the set of non-empty bins be {1, . . . , m} at the beginning. We divide the
time into log m + 1 phases, numbered from 1 to log m + 1. For each phase i with 1 ≤ i ≤ log m,
we shall prove by induction that at the end of the phase, there is a subset Si ⊆ {1, . . . , m} of size
|Si| ≤ m/2i + 1 that satisfies

min
{
R(Si), L(Si)

}
≥ n

2
+ C

√

n log n, (2)
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where R(Si) (L(Si)) denotes the total load of all bins that are in the set Si or located right (left)
from Si, respectively. The idea behind the definition is that at the end of each phase i, we know
that the bin that gets all balls (up to O(

√
n) balls) at the end is located in Si.

Let us now prove (2) by induction. For the induction base, cut the set of all bins into two

equally-sized, consecutive sets of bins Sleft
1 := {1, . . . , ⌊m/2⌋} and Sright

1 := {⌊m/2⌋ + 1, . . . , m}.
Now regard Sleft

1 and Sright
1 as two bins. Our aim is to prove that after O(log log n) steps, one of

the two bins will have at least n
2 + C

√
n log n balls. To show this, we apply the Lemma 14 and

Lemma 15 from the two bin-anlysis. Let t be the first time step of phase i and recall that ∆t is the
imbalance at time t.

First we apply Lemma 14 to get that with constant probability > 0, ∆t+1 ≥ 5
√

n holds (if there
is no adversary). Since the adversary can influence at most 4

√
n balls, we have ∆t+1 ≥ √

n with
constant probability. Then we apply Lemma 15 to get

Pr[∆t+O(log log n) ≥ C
√

n log n] ≥
O(log log n)

∏

k=1

(

1 − exp(−Θ((4/3)k)
)

,

which is at least a constant greater than zero. Hence the expected time to reach a step t0 with
∆t0 ≥ C

√
n log n is O(log log n), which completes the induction base.

Assume now more generally, that at the end of phase i, a set Si of size at most m/2i + 1 exists
with

min{R(Si), L(Si)} ≥ n

2
+ C

√

n log n.

Again, we divide Si into two consecutive sets of bins Sleft
i and Sright

i , each of size at most m/2i+1+1.

Now regard Sleft
i together with all bins left from it and Sright

i together will all bins right from it as

two separate bins, L(Sleft
i ) and R(Sright

i ). Applying the same arguments as from the induction base,

we obtain that after expected O(log log n) steps, the imbalance between L(Sleft
i ) and R(Sright

i ) is
at least C

√
n log n. Assume w.l.o.g. that L(Sleft

i ) ≥ n
2 + C

√
n log n. Then we set Si+1 := Sleft

i and
note that by assumption,

L(Si+1) = L(Sleft
i ) ≥ n

2
+ C

√

n log n.

Moreover, we know from the induction hypothesis, that at the end of the previous phase,

R(Si) ≥
n

2
+ C

√

n log n.

Moreover, the proof of Lemma 12 implies that if the load of any set of balls is above n/2+C
√

n log n,
it never decreases in any following round with high probability. Hence using that the leftmost bin
in Sleft

i is also the leftmost bin in Si,

R(Si+1) = R(Sleft
i ) ≥ R(Si) ≥

n

2
+ C

√

n log n.

This completes the induction and proves (2).
So we have shown that the time to reach the end of phase log m can be bounded by the sum

of log m independent geometric random variables, each with mean O(log log n). Hence Lemma 6
implies that after O(log m log log n + log n) steps, we have completed phase log m with high prob-
ability.
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Now at the end phase of log m, there is a set of two bins S = Slog m = {j, j + 1}

min{R(S), L(S)} ≥ n

2
+ C

√

n log n.

Applying Lemma 11 and Lemma 12 to R(S) and L(S), we obtain that R(S) and L(S) are both
larger than n − (C/2)

√
n log n after additional O(log n) rounds with high probability. Since the

intersection of bins in R(S) and L(S) is at most two, we conclude that there is a set of at most two
bins that contains n − C

√
n log n balls with high probability. Applying Theorem 10, we conclude

that after additional O(log n) rounds, we will have reached an almost stable consensus.
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