
Stabilizing Execution Time of User Processes by Bottom Half
Scheduling in Linux

Kyong Jo Jung, Seok Gan Jung, Chanik Park
System Software Laboratory

Pohang University of Science and Technology
Kyungbuk, Republic of Korea

�braiden,javamaze,cipark�@postech.ac.kr

Abstract

The CPU time allocated to user processes is
rendered inaccurate by an unexpectedly and fre-
quently occurring interrupt and a bottom half that
consumes most interrupt processing time. Addi-
tionally, when the time consumed in the kernel
mode greatly fluctuates with interrupt processing,
the scheduler cannot distribute CPU time to user
processes normally. This problem can dramati-
cally distort the stable execution time of user pro-
cesses. In addition, such time-sensitive applica-
tions as multimedia players cannot provide consis-
tent quality. To overcome this stolen-time problem,
we propose a bottom half scheduling approach
that dynamically restricts the maximum time con-
sumed by bottom halves. In this paper, we imple-
ment our proposed scheme in Linux 2.4. In ad-
dition, we show that the fluctuation of CPU time
allocated to user processes by stolen-time can be
shrunk with our proposed scheme by means of ex-
periments using a multimedia application.

1. Introduction

With the rapid growth of hardware technolo-
gies, it is now commonplace that real-time appli-
cations such as packet routing and voice recog-
nition software run on general purpose operating
systems. For these reasons, a number of studies
have been investigated to support the time con-
straints essential to soft real-time applications on
commodity operating systems, such as Linux.

On a general operating system, the stolen-time
caused by the interrupt processing time is one
of the biggest problems to be addressed to sup-
port time-sensitive applications. This problem can

dramatically distort the stable execution time of
user processes. Consequently, a time-sensitive ap-
plication such as a multimedia player cannot
provide consistent quality. Specifically, the inter-
rupt handling that is mainly managed in the bot-
tom halves can steal the execution time from a
currently executing process. The Linux 2.4 di-
vides interrupt processing into two phases. One
is the “Top Half,” which executes critical op-
erations such as acknowledging an interrupt to
the PIC(Programmable Interrupt Controller) im-
mediately, and the other is the “Bottom Half,”
which executes the remaining routine with all in-
terrupts enabled. As an interrupt signal oc-
curs, its corresponding Interrupt Service Routine
(ISR) handles it. An interrupt signal invokes its as-
sociated Interrupt Service Routine. Since an ISR
disables all hardware interrupts during its ex-
ecution, it should include only the essential
part of its entire service routine, thereby keep-
ing the interrupt-disabled period as short as possi-
ble. After processing a critical operation, the ISR
activates the bottom half. The bottom halves acti-
vated by ISR are immediately executed by the dis-
patcher before switching to the user mode. For ex-
ample, in heavy network traffic, the number of
incoming interrupt signals is frequent and the ex-
ecution time of bottom halves is highly variable.
This unpredictable variation of bottom halves in-
fluences the execution time of a currently execut-
ing user process. Thus, the execution time of the
user processes should fluctuate. In addition, it can
lead to scheduling anomalies where the sched-
uler does not allocate the available CPU time to
user processes. In extreme cases, if the in-coming
interrupt rate is high enough to cause the sys-
tem to spend all of its time handling interrupts,
nothing else will occur, and the system through-

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

put will drop to zero. We call this condition the
receive livelock problem: the sys-
tem is not deadlocked, but it makes no progress in
any of its tasks.[4][8]

To show the impact of stolen-time by the bot-
tom halves, we performed some experiments us-
ing mplayer[12]. Our experiments employ a sam-
ple movie file that is encoded in MPEG-4 at the
rate of 25 frames per second and performed under
heavy network traffic. The inter-frame delay is re-
ferred to as the time difference required to decode
two adjacent frames in the movie file. An inter-
frame delay of 40 msec is expected within a suffi-
cient CPU resource. However, in our experiment,
since the execution time of mplayer was stolen by
the bottom halves, the average inter-frame delay is
about 100 msec and the variation range is high. In
order to test how bottom half scheduling can solve
this problem, the experiment was repeated by re-
stricting the maximum processing time of the bot-
tom half in the average time of the first experiment.
As shown by the second plot in Figure 1, the aver-
age of inter-frame delay is approximately 40 msec.
In this experiment, it is important that the aver-
age delay as well as the fluctuation of the inter-
frame shrinks by restricting the maximum process-
ing time of the bottom halves, although the av-
erage time consumed by the bottom halves is al-
most identical in the two experiments. This exper-
imental result shows that a scheduler cannot dis-
tribute CPU time to user processes normally when
the time consumed in kernel mode is highly vari-
able. We define the scheduling anomaly as
this state and describe it experimentally in section
4.

In this paper, to overcome the above-mentioned
problem, we propose a bottom half scheduling
method that keeps the threshold value obtained
from the previous processing time for the bottom
halves and schedules the handling time of the bot-
tom halves based on the estimated threshold time.
In addition, the experimental result performed on
Linux 2.4 shows that our scheme can shrink ex-
tensive variation of the execution time of bottom
halves and prevent process scheduling anomalies
with the proposed bottom half scheduling method
that mitigates the wide difference between the al-
located CPU time and the available CPU time for
a process.

Much research has been done on the stolen
time problem caused by unpredictably occur-
ring interrupts and the processing time for the
bottom half. In [1][2][5] and [6], previous au-
thors proposed approaches that compensate

�

�����

�����

�����

�����

������

������

������

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�
	

�
�
�
�
�

�����������	
����	
 ������	���������

�����������	
����	
 ���	���������

Figure 1. Impact of the stolen-time by
bottom halves

for stolen time to user process on schedul-
ing scheme based on CPU reservation. In
[4][7], a method that controls the bottom halves
with user processes by modifying network subsys-
tem were proposed. These approaches can be ap-
plied to a reservation based scheduler
or a modified network subsystem. In this pa-
per, we propose an enhanced approach without
modifying the scheduling mechanism or the net-
work subsystem architecture.

The remainder of this paper is organized as
follows. In section 2, we describe our proposed
scheme and algorithm for bottom half scheduling.
In section 3, we show the impact of the bottom half
scheduler using the proposed algorithm through
the experimental results. Finally, we conclude this
paper in section 4.

2. Proposed Scheme

2.1. Architecture of Interrupt Handling in
Linux

In Linux 2.4, the architecture of interrupt han-
dling is divided into two phases. The first is the
ISR or interrupt handler. The second is the bottom
halves.

As shown in Figure 2, the in-coming interrupt
signal is passed to ISR in terms of its category. Be-
cause ISR disables other interrupt signals during
the processing interrupt, ISR handles only critical
operations and activates the bottom halves. After-
wards, the bottom half activated by ISR is executed
by the dispatcher and copes with deferred opera-
tions, such as receiving or sending data through the
device.

Linux 2.4 has three types of deferrable func-
tions (or bottom halves) by means of its func-
tion : softirq, tasklet, and bottom

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

User Processes

Kernel

Hardware

Bottom Halves

softirq tasklet
bottom

half

ISRISR ISR

Interrupt

Scheduler

Figure 2. Structure of Bottom Halves
in Linux 2.4

half. In this paper, the “bottom half” de-
notes all types of these deferrable functions. A de-
vice driver or a kernel service uses one of these
three kinds of bottom halves according to its pur-
pose.

A kernel thread called ksoftirq CPUn ex-
ists in each CPU in Linux 2.4. It determines if the
pending bottom halves exist before switching to
the user mode, and executes them.

By means of a bottom half processing mech-
anism, the activated bottom half copes with all
deferred operations at the executed time. In the
worst case, it might consume the entire time of a
tick(in Linux, 10 msec). Since the amount of de-
ferred operation is unpredictable and a range of
variation is wide, the CPU time allocated to user
process suffer from high variation and the process
scheduler cannot schedule normally.

2.2. Proposed New Architecture

As seen in Figure 3, the proposed Bottom Half
Scheduler contains three types of modules.

� Processing Time Monitor

� Threshold Time Controller

� Pending Queue Controller

The Processing Time Monitor mea-
sures the CPU time consumed by each bottom
half. To prevent the bottom halves from consum-
ing too much or intensely fluctuating the CPU
time, the Threshold Time Controller
computes the threshold time that the bot-
tom halves can consume. A Pending Queue

Kernel

Hardware

Bottom Halves

softirq tasklet
bottom

half

ISRISR ISR

Interrupt

User Processes

Scheduler

Bottom Half Scheduler

Processing Time
Monitor

Threshold Time
Controller

Pending Queue
Controller

Time
Quantum

Figure 3. Architecture of Bottom Half
Scheduler

Controller removes the remaining pend-
ing jobs when the total execution time of the bot-
tom halves reaches the threshold time established
by the Threshold Time Controller. Af-
terwards, it is reinserted at the head of the pending
queue of the bottom halves when the kernel acti-
vates the bottom halves the next time.

The time consumed by the bottom halves fluc-
tuates in spite of a fixed workload(see Fig-
ure 5 (a) in section 4 for the result). Consequently,
the Bottom Half Scheduler defers execu-
tion of the bottom halves until the next time acti-
vated by ksoftirq CPUn kernel thread when
the time consumed by them reaches the estab-
lished threshold time. Therefore, the Bottom
Half Scheduler prevents an intensive incre-
ment of consumed time. In this manner, excess
beyond the established threshold time is pro-
cessed when the jobs of the bottom halves is be-
low the threshold time. Thus, the variation of CPU
time consumed by the bottom halves can be re-
duced.

2.3. Design of Threshold Time Controller

As mentioned in the previous section, the vari-
ation of processing time consumed by the bottom
halves disturbs the scheduler in a stable distribut-
ing CPU time to user processes. A purpose of the
Threshold Time Controller is to restrict
the execution time of the bottom halves within the
average time. The Bottom halves not-yet-disposed
by the threshold time are postponed in the next ac-
tivated time so that the time consumed by the bot-
tom halves is below the threshold time.

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

Notation Description

������� In ��� sampling time, threshold time of bottom halves

� Control gain

��� ���

�
In ��� sampling time, expected processing time variation of bottom halves
not-yet-disposed by threshold time

��� ���

�
In ��� sampling time, time variation consumed by bottom halves

�
���

�
In ��� sampling time, time consumed by bottom halves

� ���

�
In ��� sampling time, average expected processing time of bottom halves
not-yet-disposed by threshold time

�
���

�
In ��� sampling time, the number of processed job

� ���

�
In ��� sampling time, the number of bottom halves not-yet-disposed
by threshold time

�� size of average time window

Table 1. Notations

Algorithm 1: The bottom half threshold time assignment scheme based on the processing time of the
bottom halves not-yet-disposed by threshold time and the processed bottom halves

input : ����

�
, � ���

�
, � ���

�

output : �������
begin

if �����

�
� �� then

� ���

�
� � ���

�
� �� ���

�
/ ����

�
�

else
� ���

�
� � ���

�
� Default processing time per packet

end
��� ���

�
� �
�

��
���� / �� �� � ���

�
��� ���

�
� �
�

��
���� / �� �� � ���

�

�������� ������� �� ������ ���

�
� ��� ���

�
�

end

Table 1 describes the notations used by the
threshold control algorithm. Using the notations of
Table 1, the algorithm to estimate the maximum
time that can be consumed by the bottom halves is
described as algorithm 1.

If the threshold time is too low, the number of
bottom halves not-yet-disposed by the threshold
time is continuously increased. On the other hand,
if the threshold time is too high, the time consumed
by the bottom halves fluctuates as the one without
bottom half scheduling. Thus, the Threshold
Time Controller adjusts the threshold time
so that a variation in both the consumed time and
the expected processing time of the bottom halves

not-yet-disposed by the threshold time to zero.
When the threshold time of ��� ���

�
and ��� ���

�

is zero we keep the time consumed by the bottom
halves controlled without dropped jobs and high
variation.

3. Performance Evaluation

In this section, we describe our experimen-
tal result using our proposed scheme on Linux
2.4. The implementation of the Bottom Half
Scheduler was performed based on kernel ver-
sion 2.4.20. Since a network device is one of the
most high-bandwidth devices, we implemented

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

�

�����

�����

�����

�����

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�

(a) Inter-frame delay on no traffic

�

�����

�����

�����

�����

������

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�

(b) Inter-frame delay without Bottom
Half Scheduler under high network
traffic

�

�����

�����

�����

�����

������

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�

(c) Inter-frame delay with Bottom
Half Scheduler under high network
traffic

Figure 4. Comparison with inter-frame delay : Whereas, in Figure (a), average inter-
frame delay is nearly 40 msec. In Figure (b), it is 96.2 msec under high network traffic.
In Figure (c), it is 43.2 msec by preventing fluctuation of time consumed by the bot-
tom half.

no network load without scheduling with scheduling
Decoding Time 12 sec 29.03 sec 14.52 sec
Network Throughput n/a 10.006 MB/sec 10.046 MB/sec
Average Packet Processing Time per msec n/a 454.489 usec 497.697 usec
CPU Usage(%) User Domain 10.9 7.5 24.8

System Domain 1.3 92.4 75.1

Table 2. Comparison with total decoding time, network throughput, average packet
processing time and CPU usage

and evaluated it only for network packet process-
ing. The Processing Time Monitor and
Threshold Time Controller is loaded
as a dynamic kernel module. In addition, a par-
tial kernel code of packet processing is mod-
ified to keep the packet from being processed
when the time consumed by the bottom half ex-
ceeds the threshold time.

3.1. Experimental Setup

The experimental setup consists of two 2GHz
Pentium-4 machines, each configured with 512MB
of RAM and connected through a 100Mbps Ether-
net. For the network load, one machine sent UDP
packets of 50 bytes using the ttcp[11] benchmark
tool.

We performed experiments on a multimedia ap-
plication, mplayer[12]. We chose an inter-frame
delay as the latency metric for mplayer. For mea-
suring the inter-frame delay, we modified the

source code of the mplayer. The mplayer is an au-
dio/video player that can handle several me-
dia formats. The mplayer synchronizes audio and
video streams by using time-stamps that are as-
sociated with frames. The audio card is used
as a timing source. When a video frame is de-
coded, its time-stamp is compared with the
time-stamp of the currently playing audio frame.
If the video time-stamp is smaller than the au-
dio time-stamp, the video frame is late and the
video is immediately displayed. Otherwise, the
mplayer sleeps until the time difference be-
tween the video and audio time-stamps and then
displays the video.

3.2. Effects of Bottom Half Scheduling

If time consumed by the bottom halves strongly
fluctuates, the inter-frame delay is influenced by
variation that is caused by the stolen-time. Thus,
we presented the effect of our scheme by measur-

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

�

���

���

���

���

���

���

���

���

	��

����

� ���� ���� ���� ���� ����

��
����
��

�
�
�
�
�
��
�
��
�
�
	
	

�
�
�

�
�
��
�
	
�
�
�

(a) Packet processing time consumed by bottom
halves without scheduling

�

���

���

���

���

���

���

���

���

	��

����

� ���� ���� ���� ���� ����

��
����
��

�
�
�
�
�
��
�
��
�
�
	
	

�
�
�

�
�
��
�
	
�
�
�

(b) Packet processing time consumed by bottom
halves with scheduling

Figure 5. Comparison with time consumed by bottom half per msec : Without Bot-
tom Half Scheduler, in Figure (a), range of consumed time is from nearly 200 usec
to maximum 850 usec. With Bottom Half Scheduler, in Figure (b), the range is be-
tween 450 usec and 550 usec after starting phase(until approximately 300 msec).

ing the inter-frame delay of mplayer.

In our experiment, we chose sample video data
that was encoded in MPEG-4 at a rate of 25 frames
per second. If the system resource is sufficient, the
decoding interval should be 40 msec. We evalu-
ated inter-frame delay through three types of ex-
periments. First, we evaluated inter-frame delay
without network traffic. As expected, Figure 4(a)
shows that inter-frame delay is approximately 40
msec. In our second experiment, the inter-frame
delay was highly increased by packet processing
time that was consumed by bottom halves. Fig-
ure 4(b) shows that its maximum inter-frame delay
is about 160 msec and the average is 96.2 msec.

Next, we evaluated the inter-frame delay with
the Bottom Half Scheduler under high
network traffic. We used a value of 0.25 for gain�
and 100 for average time window�� . These val-
ues were derived from a heuristic approach. In the
third experiment, Figure 4(c) shows that the max-
imum inter-frame delay is about 60 msec and
the average is 43.2 msec. Figure 5 shows the
packet processing time consumed by the bot-
tom halves. In Figure 5, the X axis is the sam-
pling time whose interval is 1 msec, and the Y
axis is the packet processing time (usec) con-
sumed by the bottom halves per 1 msec. Whereas
Figure 5(a) shows that the range of the process-
ing time is wide from 250 usec to maximum 850
usec per msec, Figure 5(b) shows that the varia-
tion range is much narrower from 480 usec to 580

usec, although it is highly variable in the start-
ing phase until approximately 300 msec.

As shown in Table 2, the average time con-
sumed by the bottom halves is similar in
the two experiments. However, the CPU us-
age rate of the user domain in experiment
with Bottom Half Scheduler is approxi-
mately three times more than it without the bottom
half scheduling. We estimated that schedul-
ing anomalies cause this result, as noted in section
1. In other words, the process scheduler can-
not schedule user processes exactly under the high
jitter of execution time in the kernel mode, al-
though the average time consumed by the bot-
tom halves is similar. In Figure 5(a), if a scheduler
distributes the available CPU time to user pro-
cesses exactly when the time consumed by
the bottom halves is below the average con-
sumed time, only the jitter of inter-frame de-
lay should be shrunk in Figure 4(c) compared
with Figure 4(b). However, because the sched-
uler cannot distribute the available CPU time
to user processes under the highly variable pro-
cessing time in the kernel mode, the CPU us-
age of user domain is decreased below the amount
required by application(see the 5th row of Ta-
ble 2). Consequently, the average time as well
as jitter of the inter-frame delay shrinks in Fig-
ure 4(c).

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

�

�����

�����

�����

�����

������

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�

(a) Inter-frame delay without Bottom Half Sched-
uler playing through NFS

�

�����

�����

�����

�����

������

������

������

������

� �� ��� ��� ��� ��� ���

� 	
��
�����
������

��
��
��
�
��
�
�
	

�
��
�

(b) Inter-frame delay with Bottom Half Scheduler
playing through NFS

Figure 6. Comparison with inter-frame delay under high network traffic playing
through NFS : Without Bottom Half Scheduler, in Figure(a), range of the inter-frame
delay is nearly between 60msec and 150msec. With Bottom Half Scheduler, in Fig-
ure(b), it is nearly 30 msec and 60 msec.

3.3. Impact of Bottom Half Scheduling on
Network Processing

In this section, we show the impact of the pro-
posed bottom half scheduling on network process-
ing. To show the impact on network processing,
we performed an additional experiment. For the
experiment, we used another machine that con-
tains sample video data. A machine that plays
video data is connected to the machine that con-
tains video data through NFS(Network File Sys-
tem). The other machine sent UDP packets for net-
work load, as in the previous experiment.

As shown in Figure 6, the experimental result
is similar to the result of the previous experiment.
Although the Bottom Half Scheduler defers packet
processing when the time consumed by the bottom
halves reaches the established threshold time, the
average time of packet processing is almost iden-
tical compared with the case without the Bottom
Half Scheduler. In other words, the proposed Bot-
tom Half Scheduler does not give rise to delays in
network processing since the Threshold Time
Controller adjusts the threshold time to the
average time of packet processing.

4. Conclusion and Future Work

The stolen-time problem is that the execution
time allocated to a user process is stolen by the in-
terrupt processing time handled mainly by the bot-
tom halves. Since the time consumed by the bot-

tom halves is unpredictable and strongly fluctu-
ates, the stolen-time should distort the stable exe-
cution time of user processes. Thus, time-sensitive
applications such as multimedia player cannot pro-
vide consistent quality. In addition, we defined a
scheduling anomaly as a state where the scheduler
cannot distribute the available CPU time to user
processes normally because of a high variation of
processing time in the kernel mode. We showed
that, due to highly fluctuating stolen-time, a sched-
uler cannot distribute CPU to user processes in a
stable manner. To overcome the problem, we pro-
posed a bottom half scheduling scheme that esti-
mates the threshold time in terms of the previous
time consumed by bottom halves and controls han-
dling time of bottom halves based on the estimated
threshold time. Experimental results conducted in
Linux 2.4 revealed that our scheme can prevent
a high variation of time consumed by the bottom
halves and stabilize the execution time of a user
process. Also, we show that the proposed mecha-
nism does not cause a delay in network processing
despite deferring packet processing when the time
consumed by the bottom halves reaches the estab-
lished threshold time.

While we proposed an algorithm and scheme to
schedule the bottom halves, it was limited by a part
of network packet processing. We plan to unify all
the bottom halves to schedule in future work. We
are also interested in investigating a more sophis-
ticated algorithm to adapt to workload variations.

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

References

[1] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and
Jonathan Walpole. Analysis of a reservation-based
feedback scheduler. Proceedings of the IEEE Real-
Time Systems Symposium, 2002

[2] John Regehr and John A. Stankovic. Augmented
CPU reservations: Towards predictable execution
on general-Purpose operating systems. Proceed-
ings of the Real-Time Technology and Applica-
tions Symposium, 2001

[3] J. Mogul, K. Ramakrishnan. Eliminating receive
livelock in an nterrupt-driven kernel. ACM Trans-
actions on Computer Systems, 1997

[4] Kevin Jeffay, F. Donelson Smith, Arun Moorthy,
and James Anderson. Proportional share schedul-
ing of operating system services for real-time ap-
plications. Proceedings of the IEEE Real-Time
Systems Symposium, 1998

[5] Luca Abeni and Giuseppe Lipari. Compensating
for interrupt process times in real-time multime-
dia systems. Real-Time Linux Workshop Work in
Progress, 2001

[6] Luca Abeni. Coping with interrupt execution time
in RT kernels: A non-intrusive approach. IEEE
Real-Time Systems Symposium Work in Progress,
2001

[7] Peter Druschel and Gaurav Banga. Lazy Receiver
Processing (LRP): A network subsystem archi-
tecture for server systems. Proceedings of the
USENIX Symposium on Operating System De-
sign and Implementation, 1996

[8] A. Indiresan, A. Mehra, and K.G.Shin. Receive
livelock elimination via dynamic interrupt rate
control. Technical report, University of Michigan,
1997

[9] G.F.Franklin, J.D.Powell and M.L.Workman. Dig-
ital control of dynamic systems(3rd Ed.). Addison-
Wesley, 1998.

[10] C.Lu, J.A.Stankovic, G.Tao, and S.H.Son. Feed-
back control real-time scheduling: Framework,
modeling, and algorithms. Real-Time Systems
journal, Special Issue on Control-Theoretical Ap-
proaches to Real-Time Computing, 2002

[11] Test TCP(TTCP) benchmark tool.
http://www.ccci.com/tools/ttcp/

[12] Mplayer - Movie player for Linux.
http://www.mplayerhq.hu

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04)

1068-3070/04 $20.00 © 2004 IEEE

