
Stabilizing Link-Coloration of Arbitrary
Networks with Unbounded Byzantine Faults

Toshimitsu Masuzawa1 and Sébastien Tixeuil2

1 Osaka University, Japan
2 Univ. Pierre & Marie Curie - Paris 6 & INRIA Futurs, France
masuzawa@ist.osaka-u.ac.jp, Sebastien.Tixeuil@lip6.fr

Abstract. Self-stabilizing protocols can tolerate any type and any num-
ber of transient faults. However, in general, self-stabilizing protocols
provide no guarantee about their behavior against permanent faults.
This paper considers self-stabilizing link-coloring resilient to (permanent)
Byzantine faults in arbitrary anonymous networks. First, we show that
stabilizing link-coloring is impossible in anonymous cycles when there is
no constraint on the spatial scheduling of processes. Then, given the as-
sumption that no correct neighbors execute their actions simultaneously,
we present a self-stabilizing link-coloring protocol that is also resilient
to Byzantine faults in arbitrary anonymous networks. The protocol uses
2Δ − 1 colors where Δ is the maximum degree in the network. This
protocol guarantees that any link (u, v) between non faulty processes u
and v is assigned a color within 2Δ + 2 rounds and its color remains
unchanged thereafter. Our protocol is Byzantine insensitive in the sense
that the subsystem of correct processes remains operating properly in
spite of unbounded Byzantine faults.

Key words: distributed protocol, self-stabilization, link-coloring, Byzan-
tine fault, fault tolerance, fault containment

1 Introduction

Self-stabilization [4] is one of the most effective and promising paradigms for
fault-tolerant distributed computing [5]. A self-stabilizing protocol is guaran-
teed to achieve its desired behavior eventually regardless of the initial network
configuration (i.e., global state). This implies that a self-stabilizing protocol is
resilient to any number and any type of transient faults since it converges to its
desired behavior from any configuration resulting from transient faults. However
the convergence to the desired behavior is guaranteed only under the assumption
that no further fault occurs during convergence.

The problem of vertex or link coloring consists in ensuring that two neighbor-
ing vertices (resp. links) are assigned different colors. Many variants of the prob-
lem have important applications related to resource allocation in distributed sys-
tems and networks (e.g. frequency or time slot allocation in wireless networks),
and have been largely studied in the area of self-stabilization. Self-stabilizing

International Journal of Principles and Applications of Information Science and Technology
December 2007, Vol.1, No.1

protocols for distance one vertex coloring have been studied in [7, 10, 11, 14, 21–
23], and for distance two vertex coloring in [9, 13]. Self-stabilizing protocols for
link coloring have been studied in only a few papers [12, 15, 20, 24] and is further
discussed thereafter.

There exist several researches on self-stabilizing protocols that are also re-
silient to permanent faults [1–3, 8, 16–20, 25]. Most of those consider only crash
faults, and guarantee that every non faulty process achieves its intended behav-
ior regardless of the initial network configuration. Only a few papers [17, 19, 20]
provide self-stabilizing solutions that tolerate unbounded Byzantine faults. The
main difficulty in this setting is caused by arbitrary and unbounded state changes
of the Byzantine process: to adapt to any (initial) configuration, some process
has to execute its action when it detects inconsistency between a neighbor and
itself. Thus, processes around the Byzantine processes may change their states
in response to the state changes of the Byzantine processes, and processes next
to the processes changing their states may also change their states. This implies
that the influence of the Byzantine processes could expand to the whole system,
preventing every process from conforming to its specification forever. In [19],
the proposed protocols manage to contain the influence of Byzantine processes
to only those in their vicinity, so that the remaining processes are eventually
able to exhibit correct behavior. The complexity measure introduced in [19] is
the containment radius, which is the maximum distance between a Byzantine
process and a process affected by the Byzantine process. They also propose self-
stabilizing protocols resilient to Byzantine faults for the vertex coloring problem
and the dining philosophers problem. The containment radius is one for the ver-
tex coloring problem and two for the dining philosophers problem. In [20], the
authors consider a self-stabilizing link-coloring protocol resilient to Byzantine
faults in oriented tree networks, achieving a containment radius of two.

When the network is uniform (all nodes execute the same code) and anony-
mous (nodes have no possibility to distinguish from one another), a self-stabilizing
link coloring algorithm cannot make the assumption that the color of a link is
completely determined by a single node. Indeed, since nodes are uniform, it
could be that two nodes have decided (differently) on the color of the link. As
a result, the color of a link must come from some kind of coordination between
at least two nodes. In this paper, we make the realistic assumption that a link
color is decided only by its adjacent nodes. In this context, it follows that, from a
Byzantine containment point of view, link coloring is harder than vertex coloring
and dining philosophers for the following reason: while the two latter problems
require only one process to take an action to correct a single fault (and the afore-
mentioned papers make that assumption), link colors result from an agreement
of two neighboring nodes, and thus can result in the update of two nodes to
correct a single failure.

In this paper, we present a self-stabilizing link-coloring protocol resilient to
unbounded Byzantine faults. Unlike the protocol of [20], we consider arbitrary
anonymous networks, where no pre-existing hierarchy is available. We show that
link-coloring is impossible in anonymous rings when the spatial scheduling of

2 International Journal of PAIST, Dec. 2007, Vol.1, No.1

the nodes is unconstrained (i.e. two neighboring nodes may be scheduled for
execution at the same time). Thus, in the remaining of the paper, we assume
that multiple processes may execute their actions simultaneously only if they
are not neighbors. With this assumption, we present a link-coloring algorithm
that is both self-stabilizing and tolerates an unbounded number of Byzantine
nodes. Our protocol uses 2Δ − 1 colors, where Δ is the maximum degree in
the network. It guarantees that any link (u, v) between non faulty processes u
and v is assigned a color within 2Δ + 2 rounds and its color remains unchanged
thereafter. As far as fault containment is considered, our protocol is optimal,
since the influence of Byzantine processes is limited to themselves. Thus, our
protocol also trivially achieves Byzantine-fault containment with containment
radius of one.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be regarded
as a graph whose vertex set is P and whose edge set is L, so we use some graph
terminology to describe a distributed system S. A subsystem S′ = (P ′, L′) of S
is such that P ′ ⊆ P and L′ = {(u, v) ∈ L|u ∈ P ′, v ∈ P ′}.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by Δv(= |Nv|). The degree Δ of a distributed system S = (P,L) is defined as
Δ = max{Δv | v ∈ P}. We do not assume existence of a unique identifier of each
process. Instead we assume each process can locally distinguish its neighbors
from each other by locally arranging them in some arbitrary order: the k-th
neighbor of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv).

Each process is modeled by a state machine that can communicate with its
neighbors through link registers. For each pair of neighbors u and v, there are
two link registers ru,v and rv,u (Fig. 1). Message transmission from u to v is
realized as follows: u writes a message to link register ru,v and then v reads it
from ru,v. The link register ru,v is called an output register of u and is called an
input register of v. The set of all output (resp. input) registers of u is denoted
by Outu (resp. Inu), i.e., Outu = {ru,v | v ∈ Nu} and Inu = {rv,u |v ∈ Nu}.

A process may take actions during the execution of the system. In an action,
the process executes the followings in an atomic manner: it reads from all of
its input registers, changes its state and writes into all of its output registers.
The literatures of self-stabilization commonly adopt a shared memory model [5],
where a process is able to read the whole state of its neighbors. We adopt the
shared registers instead, in order to narrow the communication capabilities to
what is actually needed to solve the problem.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes and all link registers. We define C to be the

Toshimitsu Masuzawa et al. 3

Fig. 1. Link registers ru,v and rv,u between processes u and v

set of all possible configurations of a distributed system S. For each configuration
ρ ∈ C, ρ|u and ρ|r denote the process state of u and the state of link register r
in configuration ρ respectively.

The configuration of a distributed system changes only by processes’ actions,
and behavior of the distributed system is represented by an (infinite) sequence of
configurations called an execution. Even from the same configuration, different
executions result from different orders of processes to execute their actions. The
order of processes to execute their actions is called a schedule, say Q, which is
represented by an infinite sequence of subsets of processes, e.g., Q = U1, U2, . . .
where U i ⊆ P for each i (i ≥ 1). The schedule implies that processes in U1

execute their actions first at the same time, then processes in U2 execute their
actions at the same time and so on. We consider asynchronous distributed sys-
tems where we can make no assumption on schedules except that any schedule
is weakly fair : every process appears in the schedule infinitely often.

In this paper, we consider (permanent) Byzantine faults: a Byzantine process
(i.e., a Byzantine-faulty process) can arbitrarily behave independently from its
actions. If v is a Byzantine process, v can repeatedly change its state and its
output registers arbitrarily.

Let BF = {f1, f2, . . . , fc} be the set of Byzantine processes. We call a process
v (�∈ BF) a correct process. In distributed systems with Byzantine processes,
execution by a schedule Q = U1, U2, . . . cannot be uniquely determined because
of actions of Byzantine processes. An infinite sequence of configurations e =
ρ0, ρ1, . . . can be an execution by a schedule Q = U1, U2, . . . if the following
conditions hold for each i (i ≥ 0).

– For each correct process u in U i+1, ρi+1|u and ρi+1|r (r ∈ Outu) should
result from an action of u at ρi.

– For each Byzantine process u in U i+1, ρi+1|u and ρi+1|r (r ∈ Outu) can be
arbitrary.

– For any process v not in U i+1, ρi|v = ρi+1|v and ρi|r = ρi+1|r (r ∈ Outv)
hold.

In asynchronous distributed systems, time is usually measured by asyn-
chronous rounds (simply called rounds). Let e = ρ0, ρ1, . . . be an execution from
configuration ρ0 by a schedule Q = U1, U2, The first round of e is defined
to be the minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk, satisfying

⋃
1≤i≤k U i = P .

Round t (t ≥ 2) is defined recursively, by applying the above definition of the

4 International Journal of PAIST, Dec. 2007, Vol.1, No.1

first round to e′′ = ρk, ρk+1, Intuitively, every process has a chance to update
its state in every round.

2.2 Self-stabilizing Protocol Resilient to Byzantine Faults

The link coloring problem considered in this paper is a so-called static problem,
i.e., once the system reaches a desired configuration, the configuration remains
unchanged forever. For example, the spanning-tree construction problem is a
static problem, while the mutual exclusion problem is not [5]. Some static prob-
lems can be defined by a specification predicate, spec(v), for each process v, which
specifies the condition that v should satisfy at the desired configuration. A spec-
ification predicate spec(v) is a boolean expression consisting of the variables of
Pv ⊆ P and link registers Rv ⊆ R, where R is the set of all link registers.

A self-stabilizing protocol is a protocol that guarantees each process v satis-
fies spec(v) eventually regardless of the initial configuration. By this property,
a self-stabilizing protocol can tolerate any number and any type of transient
faults. However, since we consider permanent Byzantine faults, faulty processes
may not satisfy spec(v). In addition, non faulty processes near the faulty pro-
cesses can be influenced by the faulty processes and may be unable to satisfy
spec(v). Nesterenko and Arora [19] define a strictly stabilizing protocol as a self-
stabilizing protocol resilient to Byzantine faults. Informally, the protocol requires
each process v more than � away from any Byzantine process to satisfy spec(v)
eventually, where � is a constant called containment radius. A strictly stabilizing
protocol is defined as follows.

Definition 1. A configuration ρ0 is a BF-stable configuration with containment
radius � if and only if, for any execution e = ρ0, ρ1, . . . and any process v, the
following condition holds (Fig. 2):

If the distance from v to any Byzantine process is more than �, then for
any i (i ≥ 0) (i) v satisfies spec(v) in ρi, (ii) ρi|v = ρi+1|v holds, and
(iii) ρi|r = ρi+1|r (r ∈ Outv) holds.

Definition 1 states that, once the system reaches a BF-stable configuration, a
process v more than � away from any Byzantine process keeps satisfying spec(v)
and never changes the states of v and r (r ∈ Outv) afterwards.

Definition 2 ([19]). A protocol A is a strictly stabilizing protocol with con-
tainment radius � if and only if, for any execution e = ρ0, ρ1, . . . of A starting
from any configuration ρ0, there exists ρi that is a BF-stable configuration with
containment radius �. We say that the stabilizing time of A is k for the minimum
k such that the last configuration of the k-th round is a BF-stable configuration
in any execution of A.

Definition 3. A protocol A is Byzantine insensitive if and only if every process
eventually satisfies its specification in S′ = (P ′, L′), the subsystem of all correct
processes (i.e., P ′ is the set of all correct processes).

Toshimitsu Masuzawa et al. 5

Fig. 2. BF-stable configuration: white processes satisfy spec(v)

Notice that if a protocol is Byzantine insensitive, it is also strictly stabilizing
with containment radius of 1, but the converse is not necessarily true. So, the
former property is strictly stronger than the latter.

2.3 Link-Coloring Problem

The link-coloring problem consists in assigning a color to every link so that no
two links with the same color are adjacent to the same process. In the following,
let CSET be a given set of colors, and let Color(u, v) ∈ CSET be the color of
link (u, v).

Definition 4. In the link-coloring problem, the specification predicate spec(v)
for a process v is given as follows:

∀x, y ∈ Nv : x �= y =⇒ Color(v, x) �= Color(v, y)

We make the realistic assumption that a link color is decided only by the
states of its adjacent nodes. In the following, we denote a link-coloring protocol
with b colors as a b-link-coloring protocol.

3 Impossibility of Link-Coloring in Cycles

When we make no restriction on admissible schedules, the following impossibility
result holds.

Theorem 1. When two neighboring processes can execute their actions at the
same time, self-stabilizing link-coloring of anonymous ring networks is impos-
sible. This impossibility holds even when no Byzantine process exists and any
number of colors are available.

6 International Journal of PAIST, Dec. 2007, Vol.1, No.1

Proof. Consider a ring network S = (P, L) of n processes (n ≥ 3) where P =
{v1, v2, . . . , vn} and L = {(vi, vi+1) | 1 ≤ i ≤ n − 1} ∪ {(vn, v1)}. Assume that
all processes have the same state in the initial configuration. Since the color of
a link is determined (or encoded) by the states of its incident processes, all links
have the same color in the initial configuration.

Assume all processes are correct. When all the processes execute their actions
simultaneously, all the processes have the same state in the resulting configura-
tion, and thus, all the links have the same color. Repeating the argument shows
existence of an infinite execution where link-coloring cannot be attained.

4 Link-Coloring Protocol

4.1 Link-Coloring Protocol on Arbitrary Networks

From Theorem 1, some additional hypothesis on process scheduling is required
to enable self-stabilizing link-coloration of arbitrary networks. In this section, we
allow multiple processes to execute their actions at the same time provided that
no correct neighbors execute their actions at the same time. Note that Byzan-
tine processes may still be arbitrarily scheduled. Our protocol is presented as
Figures 3 and 4. To simplify description of the protocol, we use program pseudo-
codes, instead of state transition functions, to represent behavior of processes.

The protocol is informally described as follows: each process maintains a
list of colors assigned to its incident links and periodically exchanges the list
with each neighbor. From the list received from its neighbor u, a process v can
propose a color for the link (u, v). This proposed color must not appear in the
set of incident colors of u or v. Since the set of colors is of size 2Δ − 1, v can
choose a color that is not used at u or v. Note that neighbors u and v cannot
propose colors at the same time. If both u and v are correct, once they settle on
a color c for link (u, v), this color is never changed.

In case of a Byzantine process, it may happen however, that a Byzantine
process keeps proposing colors conflicting with other neighbors’ proposals. If the
color proposed by the Byzantine process neighboring to v conflicts with a color
on which two neighbors u and v have settled on, the proposition is ignored.
The remaining case is when a node v has two neighbors u and w (where u and
v are correct processes and w is Byzantine), and has not settled on any color
with either u or w. The Byzantine process w may continuously proposed colors
that conflict with u to v, and v could always chose the color proposed by w. To
ensure that this behavior may not occur infinitely often, we use a priority list
(UnDecidedv in Fig. 3) so that neighbors of a particular node v get round robin
priority when proposing conflicting colors (Fig. 5). Then, once u and v (the two
correct processes) settle on a color for the link (u, v), the following proposals
from w (the Byzantine process) are ignored by u.

Toshimitsu Masuzawa et al. 7

constants

Δ = the maximum degree of the network

Δv = the degree of v
Nv(k) (1 ≤ k ≤ Δv) = the k-th neighbor of v
CSET = {1, 2, . . . , 2Δ − 1} // set of all colors

local variables of node v
outColv(k) (1 ≤ k ≤ Δv);

// color proposed by v for the k-th incident link
// We assume outColv(k) takes a value from CSET ∪ {⊥}
// The value ⊥ is used temporarily only during execution of an atomic action

Decidedv : subset of {1, 2, . . . , Δv};
// the set of neighbor u such that the color of (u, v) is accepted
// (or finally decided)

UnDecidedv : ordered subset of {1, 2, . . . , Δv};
// the ordered set of neighbor u such that the color of (u, v) is not accepted
// We assume Decidedv ∪ UnDecidedv = {1, 2, . . . , Δv} holds
// in the initial configuration

variables in shared register rv,u

PCv,u;

// color proposed by v for the link (v, u)
USETv,u;

// colors of links incident to v other than (v, u)
// in-register ru,v has PCu,v and USETu,v

Fig. 3. SS link-coloring protocol (Part 1: constants and variables)

4.2 Correctness Proof

Let u and v be neighbors, and let v be the k-th neighbor of u. We say that register
ru,v is consistent (with the state of u) if PCu,v = outColu(k) and USETu,v =
{outColu(m) | 1 ≤ m ≤ Δu,m �= k} hold.

Lemma 1. Once a correct process executes an action, its output registers become
consistent and remain so thereafter.

Proof. By the code of the algorithm (see the last three lines).

Corollary 1. In the second round and later, all output registers of correct pro-
cesses are consistent.

The following lemma also holds clearly.

Lemma 2. Once a correct process v executes an action, outColv(k) �= outColv(k′)
holds for any k and k′ (1 ≤ k < k′ ≤ Δv) at any time (except that outColv(k) =
outColv(k′) = ⊥ holds temporarily during execution of an action).

Proof. The lemma clearly holds from the following facts:

8 International Journal of PAIST, Dec. 2007, Vol.1, No.1

function LINKCOLORING {
// check the conflict on the accepted color
// This is against that a Byzantine process changes the accepted color.
// Also, this is against the initial illegitimate configuration
// (meaningful only in the first two rounds)
for each k ∈ Decidedv{

if (PCNv(k),v �= outColv(k))
or (outColv(k) = outColv(k′) for some k′(�= k))
then { // something strange happens

outColv(k) := ⊥;
remove k from Decidedv;
append k to UnDecidedv as the last element;

// if this occurs in the third round or later, Nv(k) is a Byzantine
// process
}

}
// check whether v’s previous proposals were accepted by neighbors
for each k ∈ UnDecidedv{

if PCNv(k),v = outColv(k)
then { // v’s previous proposal was accepted by Nv(k)

remove k from UnDecidedv;
append k to Decidedv;

}
else // v’s previous proposal was rejected by Nv(k)

outColv(k) := ⊥;
}
// check whether v can accept the proposal made by neighbors
for each k ∈ UnDecidedv in the order in UnDecidedv {

// the order in UnDecidedv is important to avoid infinite obstruction of
// Byzantine processes
if PCNv(k),v �∈ {outColv(m) | 1 ≤ m ≤ Δv}

then { // accept the color proposed by Nv(k)
outColv(k) := PCNv(k),v;
remove k from UnDecidedv;
append k to Decidedv;

}
else // make proposal of a color for undecided links

outColv(k) := min(CSET\
(({outColv(m) | 1 ≤ m ≤ Δv} − {⊥}) ∪ USETNv(k),v))

// at least one color is available (remark that outColv(k) = ⊥ holds)
}
for k := 1 to Δv { // write to its output registers

PCv,Nv(k) := outColv(k);
USETv,Nv(k) := {outColv(m) | 1 ≤ m ≤ Δv, m �= k};

}
}

Fig. 4. SS link-coloring protocol (Part 2: LINKCOLORING function)

Toshimitsu Masuzawa et al. 9

Fig. 5. Round robin priority for avoiding infinite disturbance of a Byzantine process

– When outColv(k) = outColv(k′) and {k, k′} ⊆ Decidedv hold, then either
outColv(k) or outColv(k′) is reset to ⊥. (outColv(k) = outColv(k′) and
{k, k′} ⊆ Decidedv may hold in the initial configuration.)

– v assigns a color c to outColv(k) only when outColv(k′) �= c holds for any
k′ (k′ �= k).

Let u and v be any neighbors, and let v be the k-th neighbor of u. In the
followings, we say that process u accepts a color c for a link (u, v) if k ∈ Decidedu

and outColu(k) = c holds.

Lemma 3. Let u and v be any correct neighbors, and let v be the k-th neighbor
of u and u be the k′-th neighbor of v.

Once v accepts a color of (u, v) in the second round or later, outColu(k) and
outColv(k′) never change afterwards. Moreover, u accepts the color of (u, v) in
the next round or earlier.

Proof. When process v completes its action at which v accepts a color c of (u, v),

outColu(k) = PCu,v = outColv(k′) = PCv,u = c
∧ outColu(k) �∈ {outColu(m) | 1 ≤ m ≤ Δu,m �= k}
∧ outColv(k′) �∈ {outColv(m) | 1 ≤ m ≤ Δv,m �= k′}

holds.
Process u or v never accepts a proposal c for any other incident link, and

never makes a proposal c for any other incident link, as long as outColu(k) =
outColv(k′) = c holds. This implies that outColu(m) �= c (for each m �= k) and
outColv(m) �= c (for each m �= k′) hold as long as outColu(k) = outColv(k′) = c
holds.

Now we show that outColu(k) = outColv(k′) = c remains holding once
outColu(k) = outColv(k′) = c holds. We assume for contradiction that ei-
ther outColu(k) or outColv(k′) changes. Without loss of generality, we can as-
sume that outColu(k) changes first. This change of the color occurs only when
outColu(m) = c holds for some m such that m �= k. This contradicts the fact
that outColu(m) �= c (m �= k) remains holding as long as outColu(k) = c holds.

10 International Journal of PAIST, Dec. 2007, Vol.1, No.1

It is clear that u accepts the color c for the link (u, v) when u is activated
and outColu(k) = PCv,u = c holds. Thus, the lemma holds.

Lemma 4. Let u and v be any correct neighbors. Process u accepts a color for
the link (u, v) within 2Δu + 2 rounds.

Proof. Let v be the kth neighbor of u. Let t1, t2 and t3 (t1 < t2 < t3) be the
steps (i.e., global discrete times) when u, v and u are activated respectively, and
u is never activated between t1 and t3. We consider the following three cases of
the configuration immediately before u executes an action at t3. In what follows,
let c be the color such that outColu(k) = c holds immediately before u executes
an action at t3.

1. If PCv,u = c holds: Process u accepts the color c for (u, v) in the action at
t3.

2. If PCv,u(= c′) �= c holds and v is the first process among processes w such
that PCw,u = c′ in UnDecidedu: Process u accepts the color c′ of PCv,u for
(u, v) in the action at t3.

3. If PCv,u(= c′) �= c holds and v is not the first process among processes w
such that PCw,u = c in UnDecidedu: Process u cannot accept color c′ for
(u, v) in the action at t3. Process u accepts the color c′ for the link (u,w)
such that w is the first process among processes x such that PCx,u = c′ in
UnDecidedu.

In the third case, Process w is removed from UnDecidedu. From Lemma 3, w
is never appended to UnDecidedu again when w is a correct process. When w is
a Byzantine process, w may be appended to UnDecidedu again but its position
is after the position of u. This observation implies that the third case occurs at
most Δ − 1 times for the pair of u and v before u accepts a color for (u, v).

Now we analyze the number of rounds sufficient for u to accept a color of
the link (u, v). Consider three consecutive rounds. Let t be the time when u is
activated last in the first round of the three consecutive rounds, and let t′ be the
time when u is activated first in the last round of the three consecutive rounds.
It is clear that v is activated between t and t′. This implies that we have at least
one occurrence of the t1, t2 and t3 described above between t and t′. We repeat
this argument by regarding the last round of the three consecutive rounds as the
first round of the three consecutive rounds we consider next. Thus, u accepts a
color of (u, v) within 2Δv + 2 rounds.

From Lemma 4, we can obtain the following theorem.

Theorem 2. The protocol is a Byzantine insensitive link-coloring protocol for
arbitrary networks. The stabilization time of the protocol is 2Δ + 2 rounds.

5 Conclusion

In this paper, we presented the first self-stabilizing link-coloring algorithm that
can be used on uniform anonymous and general topology networks. In addition

Toshimitsu Masuzawa et al. 11

to being self-stabilizing, it is also Byzantine insensitive, in the sense that the
subsystem of correct processes resumes correct behavior in finite time regard-
less of the number and placement of potentially malicious (so called Byzantine)
processes.

The system hypothesis that we assumed (i.e., restriction on schedules) is
necessary to ensure self-stabilizing bounded fault-containment of Byzantine pro-
cesses. However, we assumed that the number of link colors that is available
is 2Δ − 1, where Δ is the maximum degree of the graph. It is well known that
Δ+1 colors are sufficient for link coloring general graphs. Recently, a distributed
(non-stabilizing and non fault tolerant) solution [6] that uses only Δ + 1 colors
was provided. There remains the open question of a possible tradeoff between
the number of colors used for link coloring and the fault-tolerance properties of
distributed solutions.

Acknowledgements

This work is supported in part by Global COE (Centers of Excellence) Program
of MEXT, Grant-in-Aid for Scientific Research ((B)19300017) of JSPS, Grant-in-
Aid for Scientific Research on Priority Areas (16092215) of MEXT, and SCOPE
(Strategic Information and Communications R&D Promotion Programme) of
MIC. This work is also supported in part by the FRAGILE project of the ACI
“Sécurité et Informatique”, the SOGEA project of the ANR “SSIA”, and the
FRACAS project of INRIA.

References

1. E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. In
Proc. 7th International Workshop on Distributed Algorithms, pages 174–188, 1993.

2. J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: Im-
possibility results and solutions using self-stabiling failure detectors. International
Journal of Systems Science, 28(11):1177–1187, 1997.

3. J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing, page 290, 1997.

4. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974.

5. S. Dolev. Self-Stabilization. MIT Press, 2000.
6. S. Gandham, M. Dawande, and R. Prakash. Link scheduling in sensor networks:

Distributed edge coloring revisited. In Proc. Infocom 2005, 2005.
7. S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar

graphs. Distributed Computing, 7(1):55–59, 1993.
8. A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Proc.

12th Annual ACM Symposium on Principles of Distributed Computing, pages 195–
206, 1993.

9. M. Gradinariu and C. Johnen. Self-stabilizing neighborhood unique naming under
unfair scheduler. In Proc. 7th International Euro-Par Conference, pages 458–465,
2001.

12 International Journal of PAIST, Dec. 2007, Vol.1, No.1

10. M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration and arbitrary
graphs. In Proc. 4th International Conference on Principles of Distributed Sys-
tems, pages 55–70, 2000.

11. S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Linear time self-stabilizing
colorings. Information Processing Letters, 87(5):251–255, 2003.

12. T. Herman, I. Pirwani, and S. Pemmaraju. Oriented edge coloring and link schedul-
ing in sensor networks. In Proc. International Conference on Communication Soft-
ware and Middleware, pages 1–6, 2006.

13. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for
wireless sensor networks. In Proc. 1st International Workshop on Algorithmic
Aspects of Wireless Sensor Networks, pages 45–58, 2004.

14. S.-T. Huang, S.-S. Hung, and C.-H. Tzeng. Self-stabilizing coloration in anonymous
planar networks. Information processing letters, 95(1):307–312, 2005.

15. S.-T. Huang and C.-H. Tzeng. Distributed edge coloration for bipartite networks.
In Proc. 8th International Symposium on Stabilization, Safety and Security of Dis-
tributed Systems, pages 363–377, 2006.

16. T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proc. 2nd Workshop on Self-Stabilizing Systems, pages 1.1–1.15, 1995.

17. T. Masuzawa and T. Sébastien. Bounding the impact of unbounded attacks in
stabilization. In Proc. 8th International Symposium on Stabilization, Safety and
Security of Distributed Systems, pages 440–453, 2006.

18. H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-
stabilizing protocols using an unreliable failure detector. IEICE Transactions on
Information and Systems, E83-D(10):1831–1840, 2000.

19. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Proc.
21st IEEE Symposium on Reliable Distributed Systems, pages 22–29, 2002.

20. Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol
in tree networks with permanent byzantine faults. Journal of Aerospace Comput-
ing, Information, and Communication, 3(8):420–436, 2006.

21. S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algo-
rithms via systematic randomization. In Proc. International Workshop on Parallel
Processing, pages 668–673, 1994.

22. S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph
algorithms for anonymous networks. In Proc. the 2nd Workshop on Self-stabilizing
Systems, pages 7.1–7.15, 1995.

23. S. Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences: an International Journal, 69(3):219–227, 1993.

24. C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang. A self-stabilizing (δ +4)-edge-coloring
algorithm for planar graphs in anonymous uniform systems. Information processing
letters, 101(4):168–173, 2007.

25. S. Ukena, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-stabilizing spanning
tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction,
J85-D-I(11):1007–1014, 2002.

Toshimitsu Masuzawa et al. 13

