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Stabilizing Model Predictive Control of Stochastic
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Abstract—This paper investigates stochastic stabilization proce-
dures based on quadratic and piecewise linear Lyapunov functions
for discrete-time linear systems affected by multiplicative distur-
bances and subject to linear constraints on inputs and states. A
stochastic model predictive control (SMPC) design approach is
proposed to optimize closed-loop performance while enforcing
constraints. Conditions for stochastic convergence and robust
constraints fulfillment of the closed-loop system are enforced by
solving linear matrix inequality problems off line. Performance is
optimized on line using multistage stochastic optimization based
on enumeration of scenarios, that amounts to solving a quadratic
program subject to either quadratic or linear constraints. In the
latter case, an explicit form is computable to ease the implemen-
tation of the proposed SMPC law. The approach can deal with a
very general class of stochastic disturbance processes with discrete
probability distribution. The effectiveness of the proposed SMPC
formulation is shown on a numerical example and compared to
traditional MPC schemes.

Index Terms—Constrained linear systems, model predictive con-
trol (MPC), stochastic control.

I. INTRODUCTION

M ODEL predictive control (MPC) is a popular strategy
which has been widely adopted in industry as an ef-

fective mean of dealing with multivariable constrained control
problems [1]. The idea behind MPC is to obtain the control
signal by solving at each sampling time an open-loop finite-
horizon optimal control problem based on a given prediction
model of the process, by taking the current state of the process
as the initial state. The control inputs are implemented in accor-
dance with a receding horizon scheme.

Classical MPC formulations do not provide a systematic
way to deal with model uncertainties and disturbances. Many
predictive control schemes have been proposed to guarantee sta-
bility and constraint fulfillment in the presence of disturbances.
Most works are based on the min-max approach, where the
performance index to be minimized is computed over the worst
possible disturbance realization [2]–[6]. However, min-max
policies are often computationally demanding, and the resulting
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control law may be too conservative, as no statistical properties
about the disturbance are taken into account.

A different approach is addressed by stochastic MPC
(SMPC), where convergence in probability and expected values
of constraints and/or performance indices are considered (see,
e.g., [7]–[10] and references therein). A common assumption
when facing uncertainty with values on a continuous domain
is to model the disturbance signal as a Gaussian noise, with
given mean and covariance matrix [11]–[13]. Although such
an assumption facilitates analytical computations of statistical
properties and the statement of fundamental theoretical results,
it can be restrictive in many practical applications, in which
process uncertainty is better described by more general, even
time-varying, statistical properties that are not satisfactorily
captured by normal and time-invariant distributions.

When dealing with optimization problems in the presence of
stochastic data, the approximation of continuous uncertainty to
a discrete domain is often used, and constructed in a way to pre-
serve the main properties of the underlying continuous process
[14]–[16]. In this framework, the control problem formulation
involves the setup of a scenario-based optimization tree, where
only the most relevant disturbance patterns are modeled.

In this paper, we propose a SMPC formulation based on sce-
nario generation for linear systems with discrete multiplicative
disturbances. Our main goal is to obtain a less conservative
control action with respect to standard robust MPC [2], [3] by
restricting ourselves to consider stochastic convergence to the
origin and a stochastic performance index. By virtue of the sep-
aration between stabilization and feasibility issues on one side,
and stochastic performance optimization on the other, the pro-
posed control scheme deals with an extremely general class of
discrete stochastic disturbance processes. Stability and feasi-
bility properties do not depend on the stochastic process model
that generates the scenarios. Such a scenario generation engine
can therefore change from application to application, e.g., from
human driver’s power and velocity demand learnt by a cognitive
system in automotive power management and adaptive cruise
control [17], [18], to network-induced uncertainty models in
networked control systems [19], to a stock price model with sto-
chastic volatility in option hedging [20].

The paper is organized as follows. The class of stochastic
dynamic models dealt with in the paper is described in
Section II. In Section III, two SMPC schemes based on
quadratically constrained quadratic programming are proposed,
for both the unconstrained and the constrained case. Section IV
presents a procedure to recast the SMPC problem as a standard
quadratic program, for which an explicit form is derived.
Results of simulation tests are reported in Section V, and
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conclusions are drawn in Section VI. A preliminary version of
this paper was presented in [21].

Notation: In this manuscript, is the identity matrix
and denotes transposition. By and we denote column vec-
tors or matrices of appropriate dimensions with, respectively, all
zero and one entries. The minimum and maximum eigenvalues
of a matrix are denoted by and , respec-
tively, and the expression is used to indicate
that is (semi)definite positive. Given a set , denotes
the convex hull of . If is a polytope, is the set
of the vertices of . Let be a sequence of random
variables. We denote by the conditional expectation
taken with respect to , given the
sequence , where , and

. We also write for and use the short
form to denote .

II. MODEL DESCRIPTION

Consider the discrete-time linear system

(1)

where is the time index, is the state,
is the input, is the disturbance, and

is a finite set (we consider scalar
values for simplicity, the same ideas can be applied if has
more components). By enumerating all the possible realiza-
tions of , system (1) can be rewritten as

if
if

...
...
if

(2)

where , , are given matrices of appro-
priate dimensions. To model the evolution of the disturbance

, we introduce the (possibly time-varying) probability dis-
tribution

where , for all , with
, for all , and is the

standard probability simplex. In order to characterize the avail-
able information on we make the following assumptions.

Assumption 1: The probability distribution for
all , where is a known polytope with vertices

, and .
Assumption 2: The probability distribution is observ-

able at each time step .
In addition, a (possibly time-varying) model of the time evo-

lution of may be available. Such a model will be exploited
in the presented approach to increase the accuracy of the pre-
dicted system trajectory, hence improving performance. More-
over, note that Assumption 1 can always be satisfied by set-
ting , and this can either be obtained from the model
of , or when no model of exists. However, as shown

in Section III, the size of affects the conservativeness of the
control action, so any information that restricts is useful to
speed up convergence of the closed-loop system.

Hereafter, we briefly review a few popular stochastic models
that are suitable to be used, within the presented framework,
as dynamics models describing the disturbance and the
distribution .

A. Stochastic Volatility

Stochastic volatility models are models where the variance
of the considered random variable is driven by a stochastic
process. An example is given by generalized autoregressive
conditional heteroskedasticity (GARCH) models, in which
the evolution of the variance is described by an autoregres-
sive moving average (ARMA) model. Stochastic volatility
models are commonly employed in econometrics, to model
financial time-series. The quantized disturbance
can be seen as a piecewise approximation of a random variable

, which is described by the time-varying probability
density function (pdf) (other pdfs
can be also considered). By partitioning the real domain in
cells , we compute the probability distribu-
tion at time as , and the values

, for all . Assuming that the
evolution of the variance is modeled by

(3)

where , , , for all and
, are given parameters, we can derive (a con-

servative approximation of) the bounding set from the stan-
dard deviation bounds , such that , for all

. We define

where , , and

for all . An example of the values of and
for a specific choice of the parameters is shown in Fig. 1. In

the case of it is easy to show that and
, where ,

provided that .

B. Markov Chains

Markov chains are used in a wide area of applications, such as
physics, statistics, biology, and economics. A distinctive char-
acteristic of Markov chains is that the next state depends only
on the current state, and not on the history of transitions that
lead to the current state. They are defined by a discrete set of
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Fig. 1. Values of � (blue, lower level) and � (yellow, upper level) obtained
for � � ������� �� �� �� and � ��� � � ��� � ����, where � ��� is mod-
eled by (3) with � � � � � and parameters � � �, � � ���, 	 � ���.
Plots of � ��� � � and � ��� � � are also reported.

states , a discrete set of outputs or emis-
sions , a transition probability matrix

, and an emission matrix , such that

(4a)

(4b)

where and are the state and the output of the Markov
chain at time , and and are the elements of and ,
respectively. If is driven by a Markov chain, we define

, where is the th row of . In
this case, system (2) belongs to the well studied class of Markov
jump linear systems [22], [23].

III. STOCHASTIC MPC DESIGN

Consider the problem of regulating the state of system (1)
to the origin. Our goal is to design a stochastic MPC control
scheme which solves this problem by exploiting the available in-
formation on the disturbance. Stochastic control is intended here
with respect to both the performance index to be minimized, and
the type of stability considered. We aim at enforcing exponen-
tial stability in the mean-square sense, in accordance with the
following definition.

Definition 1: System (1) is said Uniformly Globally Mean-
Square Exponentially Stable (UGMSES) if there exist
and such that for any initial condition it
holds that

(5)

Moreover, system (1) is said Uniformly Locally Mean-Square
Exponentially Stable (ULMSES) in if (5) holds for any initial
condition .

Lemma 1: Consider the stochastic autonomous discrete-time
linear system

(6)

where the disturbance , for all , is an independent
and identically distributed (i.i.d.) random process. Define the

function as , with ,
and assume a matrix exists such that

(7)
Then system (6) is UGMSES.

Proof: The proof follows in spirit the proof of [24, Lemma
1]. Since is independent of and is indepen-
dent of , for all , by (7) we
have

By induction, this leads to

(8)

and hence

Define . Clearly , as
is always a nonnegative quantity and therefore

(8) imposes to be nonnegative, and because the
conditions , imply .
Hence, by also setting , property
(5) is satisfied.

The presence or the absence of state and/or input constraints
poses different issues. These two cases, which are handled sep-
arately in the rest of this section, share the same methodological
approach: Off line, a Lyapunov function and a linear feedback
control law which provide mean-square stability are obtained by
solving a semidefinite programming (SDP) problem. On line,
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a stochastic MPC controller based on scenario enumeration is
applied to optimize a given objective function by exploiting the
current measurements and the stochastic information on the dis-
turbance, using the previously computed Lyapunov function to
retain stability.

A. The Unconstrained Case

Our first goal is to compute a Lyapunov function and a con-
trol law which provide mean-square stability of the controlled
system in the absence of constraints. We restrict ourselves to
consider quadratic Lyapunov candidates , and
impose a linear feedback structure on the input, i.e.,

, . Although such constant control law will not
be used to compute the actual input signal, the existence of the
matrix will serve to prove the recursive feasibility of the re-
ceding horizon policy that will be presented later.

1) Lyapunov Function Synthesis: We begin considering an
instance of the mentioned regulation problem where the prob-
ability distribution is constant over time, and then extend the
result to time-varying distributions.

Lemma 2: Consider a process modeled by system (1), where
the disturbance is described by an i.i.d. random
process with constant probability distribution , for all

. Let , , be a
solution of the LMI

(9)

where , , ,

and

...

Then, system (1) in closed loop with for all
, with , is UGMSES.

Proof: Letting , , we have

(10)
where ,
By using (10), substituting , , ,

in (7), and applying Schur complements,
we have that (7) is equivalent to (9). Hence, if (9) is feasible,
then by Lemma 1 the constant feedback control law

makes the closed-loop system UGMSES.
In the following, we will denote the LMI (9) as ,

stressing the dependance of the solution on the value of . The
result of Lemma 2 can be easily extended to the case in which
the probability distribution varies over time, as shown in
the following lemma.

Lemma 3: Consider a process modeled by system (1), where
the disturbance is described by a i.i.d. random
process with probability distribution , for all ,
such that Assumption 1 is satisfied. Let be the
vertices of , and let , ,
be a solution of the SDP problem

(11a)

s.t. (11b)

(11c)

(11d)

where , and . Then,
system (1) in closed loop with for all ,
with , is UGMSES.

Proof: Easily follows by Lemma 2, noting that if
is a solution of (11), then it is also a solution

of , for any , and thus it satisfies (5). To
prove this, see that for any there exists a vector

such that , , and
. Since satisfies (11d), we have

(12)

for all , where , ,
. For to be a solution of , , it

must satisfy

or, equivalently,

which is satisfied as and because of (12).
Constraint (11c) imposes a bound on the decay rate of :

instead of looking for the fastest mean-square convergence to
the origin, we aim at obtaining a Lyapunov function with sat-
isfactory decay rate; the available extra margin will be used on
line to optimize with respect to a given objective function.

Remark 1: It can be easily checked that, if ,
problem (11) is a robust control problem (e.g., is analogous
to what is proposed in [2]), and its solution enforces robust
convergence to the origin for all the possible sequences of

.
In other words, in this framework robust stability can be seen
a special case of stochastic stability, where no a priori infor-
mation on probability bounds is exploited. On the other hand,
when is constant over time (as in Lemma 2), we have

, i.e., constraint (11d) is imposed for a single distri-
bution , thus providing a non-conservative solution which
enforces stochastic convergence only for the particular distri-
bution considered. Hence, we see that the size of affects the
conservativeness of the resulting control law, which ranges from
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Fig. 2. Example of a multiple-horizon optimization tree. The root node � is
defined by the measured state ����. The set � includes all the leaf nodes, that
may have different prediction horizons.

purely stochastic deterministic probability distribution to
totally robust unknown probability distribution .

2) Optimization Tree Design: In order to optimize over a sto-
chastic measure of the predicted system trajectory, we need to
construct an optimization tree which describes the possible evo-
lution in time of the state. We assume here that a model of the
time dynamics of the probability distribution is available.
Such a model, which may have any form (deterministic, sto-
chastic, etc.), is exploited to generate the predicted scenarios
over which the stochastic performance is optimized. Note that
the stability properties granted by solving problem (11) do not
involve any dynamic model of , except for the bounds ex-
pressed by . In other words the dynamic model that we as-
sume here for predicting the future values of does not af-
fect closed-loop convergence or control problem feasibility. As
a consequence, its exactness is not critical for stability. How-
ever, the better is the dynamic model, the better the performance
of the closed-loop system will be. In this sense we claim that,
in the proposed control policy, stability/feasibility issues are de-
coupled from performance optimization.

We next present a tree design scheme based on a max-
imum-likelihood approach, where the optimization tree is
updated every time step using the available information on
the state and the disturbance. Let us introduce the following
quantities to formally define the tree design procedure.

• : the set of the tree nodes. Nodes are
indexed progressively as they are added to the tree (i.e.,
is the root node and is the last node added).

• : the predecessor of node .
• : the successor of node generated with mode

.
• : the mode leading to node .
• : the realization probability of node , i.e., the proba-

bility of reaching node from .
• : the set of candidate nodes, defined

as .
• : the set of leaf nodes,

, .
An illustrative optimization tree is shown in Fig. 2. The tree de-
sign procedure is listed in Algorithm 1 and described next. Each

node of the tree represents a future state which will be taken
into account in the optimization problem. Starting from the root
node , which is defined by the current value , a list of
candidate nodes is evaluated by considering all the possible
dynamics in (2) and their probabilities .
The candidate with maximum probability is added to the
tree and removed from . Then, the list of candidates is updated
by adding all the successors of the last node added to the tree,
i.e., , for all . The algorithm is re-
peated until a desired number of nodes is reached. This
procedure leads to a flexible tree structure, where different paths
may in general have different prediction horizons, and as such
we refer to it as a multiple-horizon approach (see Fig. 2).

Algorithm 1 Optimization tree design procedure at time

1: set , , , ;

2: set

3: while do
4: for all , do
5: compute according to the dynamic model of ;

6: end for
7: set ;

8: set ;

9: set ;

10: set ;

11: set ;

12: set ;

13: set ;

14: end while

3) Control Problem Formulation: We propose a formulation
where the objective function to be minimized relies on an ap-
proximation of the expected value of the closed-loop perfor-
mance, evaluated as a quadratic function of the state and the
input. This is an arbitrary choice, however, and other kinds of
criteria could also be considered, e.g., by optimizing over higher
order moments. The approximation can be made arbitrarily ac-
curate by increasing the number of nodes , at the expense
of a higher computational load (see Remarks 2–3 for further de-
tails).

For ease of notation, in the following the abbreviate forms ,
, , will be used to denote , , , respec-

tively. Moreover, with , we denote, respectively, the state
and the input associated with node . Let be the mea-
sured state and the probability distribution of at time

. Then, the unconstrained stochastic MPC problem can be for-
mulated as

(13a)

s.t. (13b)

(13c)
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(13d)

where , , and are weight matrices of appropriate di-
mensions. Problem (13) is a quadratically constrained quadratic
programming (QCQP) problem. Constraints (13b) and (c) de-
fine the initial condition and the state dynamics, respectively.
Constraint (13d) recursively enforces closed-loop stability in the
mean-square sense, as shown in the following theorem.

Theorem 1: Consider a process modeled by system (1), where
the disturbance is described by a random process
with probability distribution , for all , such
that Assumptions 1–2 are satisfied. Let problem (11) admit a
solution and let , . Then,
system (1) in closed loop with , where is given
by the receding horizon solution of problem (13), is UGMSES.

Proof: By similar reasonings of Lemma 3, we have that
mean-square stability is provided by the receding-horizon satis-
faction of constraint (13d), which now depends explicitly on the
measured state and on the decision variable . We only
need to show that problem (13) is recursively feasible at every
time step. This follows by noting that (11d) implies (13d) if a
state-feedback structure is imposed on the input . Hence,

, for all such that , where ,
is always a feasible solution of (13).

Remark 2: In the borderline case where is a complete tree,
i.e., a tree in which all the leaf nodes are at some depth and all
nodes but the leaf nodes have exactly successors, we have that
minimizing the objective function (13a) at time is equivalent
to minimizing

(14)

Otherwise, if the tree is not complete, (13a) is an approximation
of (14), where the nodes related to the cut branches can be seen
as terms in the cost function with null weight.

Remark 3: Even though only mean-square stability
of the state is explicitly guaranteed by Theorem 1, it
is easy to see that also the state covariance matrix is
asymptotically driven to zero. Let and

be the mean and
the covariance matrix of at time , respectively, and
the elements of , with , . The trace of

is . We
have that (5) implies and hence

. Combining these equations we obtain
. Since all the elements of are

nonnegative, we have , . Semidefinite
positiveness and symmetry of yield .
Moreover, by similar reasonings, if we set and

in (13a), problem (13) recursively minimizes

an approximation of over the prediction tree. Hence,
the weight matrices , , can be seen as tuning knobs
which trade variance of the state trajectory for user-defined
performance requirements.

The rest of this section is devoted to illustrate possible ex-
tensions of the proposed approach, intended to deal with more
general problem formulations.

4) Stochastic Weight Matrices: In problem (13), the weight
matrices , , are assumed to be constant over time.
However, in general they can explicitly depend on the realiza-
tion of the stochastic disturbance . For instance, in financial
applications the objective function is often an economic quan-
tity where the weights represent prices of goods or assets, which
are in general time-varying. Within the presented framework we
can easily account for stochastic weight matrices by defining a
set of possible weight values

such that

if , . The availability of such a
stochastic model which includes uncertainty on the weight
matrices does not affect stability of the closed-loop system, but
only performance. Hence, the computation of the Lyapunov
function (11) needs not to be modified, and the cost function
(13a) can be recast as

where now are the weights related to the
disturbance realization associated to the th node of the tree. For
clarity of presentation, in the following we will assume constant
weight matrices.

5) Soft Probabilistic Constraints: As described in
Section III-A2, at every time step the optimization tree provides
information on the realization probability of every modeled
node. This knowledge can be exploited to add soft constraints
to the control problem to be satisfied in a probabilistic fashion,
while retaining stochastic convergence to the origin. As a
simple example, consider a soft constraint on a scalar state

(more complex constraints can be handled similarly).
Let , , and let

(15)

for all , the probabilistic condition that is desirable to
achieve, where can be time-varying. We can im-
pose the constraint as a soft constraint on every node

, by recasting the control problem (13) as

(16a)

s.t. (13b), (13c), (13d) (16b)

(16c)
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where is a vector of slack variables weighted in the cost func-
tion by means of the matrix . By using this formulation, we
aim at fulfilling (15) with a minimum probability

(17)

where is the set of successors of the root node at time
, i.e., . By suitably mod-

ifying the control problem formulation, the value of the prob-
ability bound can be tuned as needed, according to (17).
Additional nodes can be added to the tree in order to increase

, or the set of nodes where (16c) is imposed can be restricted
to decrease it. Indeed, satisfaction of the probabilistic condition
(15) is not guaranteed by the receding horizon solution of (16),
and it holds at time if . Even though soft prob-
abilistic constraints have been introduced here for the case of
unconstrained systems, analogous considerations hold as well
for the constrained case, which is addressed below.

B. The Constrained Case

Let us take now into account constraints on state and input
vectors. We consider the component-wise bounds

(18a)

(18b)

Other kinds of constraints, such as polytopic or ellipsoidal con-
straints, can be managed in a similar way, see, e.g., [2]. While
the optimization tree design described in Section III-A3 is not
affected by the presence of constraints (18), the offline Lya-
punov function computation and the online control problem for-
mulation presented, respectively, in Sections III-A1 and III-A4
need to be modified.

1) Lyapunov Function Synthesis: We present a solution de-
rived from [2]. Our goal here is not to enlarge the feasible state
set with respect to the robust controller presented in [2], but to
exploit the stochastic model of the disturbance in order to pro-
vide a less conservative control action. The basic idea is to ob-
tain, offline, a Lyapunov function and a feedback control law
that guarantee constraints fulfillment and robust convergence to
the origin, i.e.,

(19)

for all , and then relax (19) to its mean-square counter-
part (7) in the online control problem, using the available in-
formation on . By using Schur complements (19) can be
expressed as the LMIs

(20)

for all , in the variables ,
, , where , ,
, and a constant feedback structure has been imposed

on the input, i.e., , , with .
In order to take into account constraints, we define the ellipsoid

is an invariant ellipsoid for the closed-loop trajectories of
system (1) controlled by , i.e.,
implies , . A sufficient condition for the
satisfaction of (18a) and (b) is given, respectively, by the LMIs

(21)

for all , , and

(22)

where is the th row of the identity matrix, and
are the diagonal elements of the symmetric matrix

(see [2] for more details). Finally, given a state , we
can express the condition as

(23)

Hence, the problem of computing a quadratic Lyapunov func-
tion and a constant feedback control law to fulfill constraints
(18) and robust stability (19) can be cast as the semidefinite pro-
gramming problem

(24a)

s.t. (20), (21), (22), (23) (24b)

where is the initial state. The purpose of maximizing
the objective function is to maximize the volume of
the ellipsoid , to find the largest set of states that contains
the initial condition [25].

2) Control Problem Formulation: With the same nota-
tion used in Section III-A6, the constrained stochastic MPC
problem at time is formulated as the quadratically constrained
quadratic programming (QCQP) problem

(25a)

s.t. (25b)

(25c)

(25d)

(25e)

and (25f)

(25g)

(25h)

Constraint (25f) guarantees that the next state satis-
fies (18a), even if the disturbance realization at time is
not modeled in the current tree . Constraint (25g) recursively
enforces the state to lie in . Imposing this constraint is
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necessary because, in general, there exist states such that
but ; hence, (25f) alone is not sufficient to provide re-
cursive feasibility.

Theorem 2: Consider a process modeled by system (1) with
initial condition , where the disturbance
is described by a random process with probability distribution

, for all , such that Assumptions 1–2 are satis-
fied. Let problem (24) admit a solution and let

. Then, system (1) in closed loop with ,
where is given by the receding horizon solution of problem
(25), is ULMSES in and satisfies constraints (18) for all

.
Proof: Satisfaction of state constraints (18a) at time

is provided by (25d), which concerns the state trajectories mod-
eled in the tree, and (25f), which accounts for the unmodeled
(but possible) scenarios. Satisfaction of input bounds (18b) at
time is provided by (25e) for . Mean-square stability
is enforced by constraint (25h), where the only variable is .
Hence, it remains to prove that problem (25) is recursively fea-
sible at every time step. Following the same lines of Theorem 1,
our goal is to show that the input sequence , for all
such that , where , is always feasible
for problem (25). Since is a solution of (24),
the matrix satisfies the robust stability condition
(19) with , and consequently also its stochastic coun-
terpart (7), of which (25h) is a particular case for a given dis-
tribution . Moreover, if then the control law

guarantees that constraints (18) are fulfilled, i.e.,
it satisfies (25d)–(f), and recursively provides .
Since we have by construction, and the con-
straint (25g) enforces the next state to lie in , then

, for all such that , is a feasible solution of
problem (25) at every time step , and this completes the proof.

IV. QP FORMULATION OF STOCHASTIC MPC AND ITS

EXPLICIT SOLUTION

In this section, we recast the QCQP-based SMPC presented
in Section III-B as a standard quadratic programming (QP)
problem.1 This has a twofold advantage: first, it can be solved
with a reduced computational load; second, it allows to obtain
the SMPC law in explicit form by employing standard multi-
parametric programming solvers. To this end, we construct an
alternative formulation of the QCQP (25) where the quadratic
inequality constraints (25g) and (h) are replaced by affine
inequalities that are linearly dependent on the vector of param-
eters, that is the current state . In order to use piecewise
linear (PWL) functions as candidate Lyapunov functions to
prove stochastic convergence of state trajectories, we introduce
a definition of stability different from the mean-square expo-
nential stability given in Definition 1.

Definition 2: System (1) is said Uniformly Globally
Mean-PWL Exponentially Stable (UGMPES) if there exist

1We only focus on the constrained problem. The unconstrained case can be
derived similarly and is omitted here for the sake of brevity.

and such that for any initial condition
it holds that

(26)

where is defined by

(27)

and satisfies the condition

where , , is the th row of a matrix
. Moreover, system (1) is said Uniformly Locally

Mean-PWL Exponentially Stable (ULMPES) in if (26)
holds for any initial condition .

Lemma 4: Condition (26) holds if

(28)

with , is satisfied for all .
Proof: The proof follows by similar reasonings of Lemma

1. Using (28) we have that

which provides (26) with .
Indeed, any Minkowski function of a polyhedral C-set is a

valid candidate for [26], [27]. A special case is given by
, where .

Remark 4: The stability condition (26), that will be referred
to in short as mean-PWL stability, is as good as condition
(5) to ensure convergence of the state to the origin. In fact,
(26) implies that , and consequently

, since if .
By similar reasonings as in Remark 3, it also implies that

. Hence, the same convergence properties of
mean and covariance of the state vector to the origin granted by
stability in the mean-square sense (5) are retained also in the
case of mean-PWL stability (26).

A. SMPC as a QP

Some additional ingredients are needed to formulate the
SMPC problem as a quadratic programming problem and prove
its properties. Define the scalar

(29)

where is given and is obtained by solving
(24). The parameter describes the guaranteed contracting
factor of the quadratic Lyapunov function from one time
step to another, i.e., . The definition
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Fig. 3. Ellipsoidal and polyhedral sets used for QP formulation of SMPC.

of in (29) is well posed, as a feasible solution of the SDP
problem (29) can always be obtained by an opportune choice
of , e.g., , with . Moreover, define the
ellipsoids

where as . Then, construct the polytope
such that

(30)

The matrix can be obtained using one of the existing methods
for computing polyhedral approximations of ellipsoids, see,
e.g., [28]. For convenience we choose so that its vertices
lie on the boundary of the ellipsoid , i.e., ,

. The polytope will be used to grant
the feasibility of the control problem and to induce a Minkowski
function of the form (27). The level sets of are denoted as

(31)

Define also the scalar

(32)

where for all , and the sets

(33)

(34)

Finally, define the polytope

(35)

where

(36)

According to the notation introduced above, and
, for any such that . An illustration of

the sets (31), (33), (34) and (35) is shown in Fig. 3.

It is easy to show that for all , and
since . Moreover, the value of is not

dependent on the particular state chosen to compute
(36), as shown by the following lemma.

Lemma 5: Let such that , and let
, . Then,

(37)

for all such that .
Proof: Let us parametrize , where and is

such that , i.e., lies on the boundary of .
We have . If

, then . Hence, it holds

By using and , we can rewrite the LHS
of (37) as

which completes the proof.
We are now ready to state the main theorem of this section.
Theorem 3: Consider a process modeled by system (1) with

initial condition , where the disturbance
is described by a random process with probability distribution

, for all , such that Assumptions 1–2 are satis-
fied. Let problem (24) admit a solution , and let

. Consider the following QP problem

(38a)

s.t. (38b)

(38c)

(38d)

(38e)

and (38f)

(38g)

(38h)

(38i)

where and . Then, system (1) in closed
loop with , where is given by the receding horizon
solution of problem (38), is ULMPES in and satisfies
constraints (18) for all .
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Proof: In order to prove the theorem we will show that, if
(24) has a solution, then 1) constraint (38g) admits a solution

for all , 2) the recursive satisfaction
of (38h) and (i) grants mean-PWL stability, and finally 3) con-
straints (38h) and (38i) are always feasible.

1) Note that (38g) is equivalent to ,
for any which is possible at time . Since

is given by the solution of (24), it satis-
fies (19) and by Theorem 2 we have that for all

and , there exists such that
. Of course , because

. Moreover, implies that

i.e., . Combining this with (30), we have
that . Hence, for all

and , there exists
such that , which proves the feasibility
of (38g).

2) As stated in Lemma 4, mean-PWL stability is granted
by the satisfaction of the following condition

(39)

at all time steps , where is defined by (36).
Condition (39) can be rewritten as

(40)

Now, introducing the vector of slack variables
to compute the

operators in (40), adding the term in
the objective function (38a), and substituting ,

, we have that mean-PWL stability is yielded
by the constraints

for all , which are equivalent to (38h)
and (38i).

3) It remains to prove that (38h) and (38i) admit a feasible
solution for all . By definition
of in (32) we have that . Moreover,

as . Finally, by definition of in
(36) we have that . Hence, it holds that

(41)

for all , (for , we have
). Now, by Theorem 2

we have that there exists such that
, for all and , since

. Combining this with (41) we have
that, for all and , there exists

such that , i.e.,

(42)

Now, letting , by (42) we
have that

(43)

Substituting (43) in the left-hand side of (40), we obtain

(44)

which holds as . Hence, (40) is always feasible, and
so are the equivalent constraints (38h) and (38i). This completes
the proof.

Note that the feasible region of the SMPC based on QP (i.e.,
the set of states that fulfill constraints and admit a feasible solu-
tion of the predictive control problem) is given by ,
while the feasible region of the SMPC based on QCQP is

. Being , the QP formulation has in general
a smaller feasible region than the QCQP one (except in the case

, where the regions are both equal to ). This differ-
ence can be reduced by increasing the number of vertices which
define the polytope , at the cost of an increased complexity
of the QP problem (38), since every vertex adds inequality
constraints to the control problem.

B. Explicit Solution of QP-Based SMPC

The complexity of the online control problem (38) grows with
the state and input dimensions, and this may result in imprac-
tical application to fast processes where the available computa-
tion time is small, especially if a high number of nodes is
used to approximate the expected system trajectory with satis-
fying accuracy. An efficient approach to evaluate MPC laws was
proposed in [29]: rather than solving the control problem on line
for the current state vector, by employing multiparametric pro-
gramming techniques the problem is solved off line for a given
range of parameters, providing the explicit dependence of the
control input on the parameters (for a survey on explicit MPC
the reader is referred to [30]). Currently available tools to com-
pute the explicit solution, such as the Hybrid Toolbox for Matlab
[31], require the control problem to have affine equality and in-
equality constraints, with linear dependence on the vector of pa-
rameters. Provided that this is the case, the control law obtained
in explicit form can be shown to be piecewise affine (PWA).

The time-varying nature of the SMPC problem (38), due to
the underlying optimization tree, prevents it from being directly
recast in a fashion suitable for multiparametric programming.
However, the structure of the tree at time , designed accord-
ingly to Algorithm 1, depends only on the current value of the
distribution . Hence, if takes value in a finite set, and
this set is known in advance, we can construct offline all the opti-
mization trees that will be needed on line, one for every possible
value of , thus remapping the time-varying control problem
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(25) in a set of time-invariant problems, each of them depending
only on the measured state . Then, we are able to enumerate
all the possible probability distributions , construct the cor-
responding optimization trees, and compute for each of them
the explicit solution of the SMPC control problem via multi-
parametric programming.

In order to consider a finite set of probability distributions we
rely on the following assumption.

Assumption 3: At each time step , the probability distribu-
tion , where is finite and
for all .

Although restrictive on the values that can assume, As-
sumption 3 is often satisfied in practice, as, for instance, in the
case of Markov chains reviewed in Section II-B. Now, the ex-
plicit SMPC control law can be defined as the PWA function

if and , where and
are the gains associated to every polyhedral re-

gion , ,
. The gains , and the regions are

given by solving with respect to the parameter
the multiparametric quadratic programming (mp-QP) prob-
lems obtained by substituting in (38), for all

. Online, first the active explicit SMPC controller
is selected based on the current value of , then the active
region of the selected controller is found based on the measure-
ment , and finally the control move associated to the se-
lected region is evaluated. The online execution of the explicit
SMPC scheme is summarized in Algorithm 2.

Algorithm 2 Explicit SMPC

1: At time step :

2: find such that ;

3: find such that ;

4: compute ;

V. EXAMPLE

In this section, we test the performance of the proposed ap-
proach on a numerical example, simple enough to concentrate
on highlighting the various features of SMPC. For more ad-
vanced applications to real-life control problems the reader is
referred to [17] and [18], which address the problem of optimal
power splitting among the available sources in hybrid electric
vehicles and of adaptive cruise control; to [19], which intro-
duces an SMPC approach for networked control systems sub-
ject to time-varying delays and time-varying transmission inter-
vals; and to [20] for applications of SMPC to dynamic option
hedging.

Consider the second-order discrete-time uncertain linear

system of the form (1), with , ,

, and . The
spectrum of the matrix can be either contained inside
the unit circle or not, depending on the value . We assume
that is described by a time-homogeneous Markov chain

Fig. 4. Plot of the polytopes � and � for the considered test case.

defined by (4) with , and that the

state of the Markov chain at time is known. This model
satisfies Assumptions 1, 2, and 3, as at time we have
if , , where ,

, and . The plots of
and are shown in Fig. 4.
The purpose of the control action is to steer the state of the

controlled plant to the origin, while satisfying state and input
constraints (18), defined by and . First,
using [32], we found a solution of the semidefinite program-
ming problem (24), and obtained the feasible ellipsoid . In
order to formulate the QP-based SMPC, we designed as a
polygonal approximation of with eight vertices, such that
(30) is fulfilled. Then, we run a set of simulations,
each of time steps, with random initial state sampled
from the feasible region of the QP-based SMPC (see Fig. 6).

The weight matrices used in simulations are ,

, and , and a number of nodes

has been chosen to design the optimization tree.
The proposed SMPC control scheme was compared to the

following three controllers:
— The LMI-based robust MPC (RMPC) proposed in [2],

which provides robust convergence and hard constraint
fulfillment, but does not exploit the available stochastic
information on the disturbance .

— A linear deterministic frozen-time MPC (FTMPC) formu-
lation with time-varying system model, where at every
step a MPC control problem is solved based on the dy-
namics mode which is currently the most
probable, i.e., such that , . FTMPC re-
tains the constraints on mean-square stability and recur-
sive feasibility; hence, stochastic convergence and state
and input constraints fulfillment are guaranteed, but a cost
function based on a single scenario is minimized, instead
of building a stochastic optimization tree. In other words,
FTMPC can be seen as a special case of SMPC where

.
— A linear deterministic prescient MPC (PMPC) formula-

tion, where the complete knowledge of the disturbance re-
alization for a given future horizon window is exploited. At
time , the PMPC solves an optimal control problem over a
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TABLE I
SIMULATION RESULTS

finite horizon of steps by knowing the future evo-
lution of in advance, for all

. The PMPC is optimal if , otherwise the so-
lution is in general suboptimal. The resulting closed-loop
trajectory can be seen as a benchmark to evaluate the per-
formance obtained by the other controllers.

To compare the performances achieved by the aforemen-
tioned control schemes, we define the experimental cost
function

(45)
where indexes the values related to the th
simulation, and
refers to the implemented controller. Table I shows the simu-
lation results in terms of the mean and the variance
over all the simulations of the experimental cost function (45)
for every controller , normalized with respect to the PMPC
value, i.e.,

As we can see from the results in Table I, the proposed sto-
chastic MPC policy achieves an average improvement in the
closed-loop performance of 10% with respect to robust MPC,
and of 7% with respect to frozen-time MPC. In the presented
example, the SMPC based on the QCQP (25) and its QP-based
counterpart (38) achieved indistinguishable results; hence, the
mentioned simulation data hold for both formulations. On a
Macbook 2.4 GHz, using Matlab 7.6 and Cplex 11.2, the average
computation time needed to solve an instance of the QCQP (25)
and of the QP (38) were 2.2 ms and 1.4 ms, respectively.

In order to evaluate the tradeoff between performance and
complexity for both the QCQP and the QP formulations, the pre-
vious simulations have been repeated with different maximum
numbers of nodes in the optimization tree. The results in
terms of averaged normalized experimental cost and compu-
tation time are shown in Fig. 5.

Finally, we applied multiparametric programming techniques
to obtain the QP-based SMPC law in explicit form, as described
in Section IV-B. We solved mp-QPs based on (38), one
for each possible value of the probability distribution . The
corresponding state space partitions are shown in Fig. 6, and
consist of 18 regions for and , and 20
regions for .

Fig. 5. Plot of average normalized experimental cost � and average CPU time
of QCQP-based SMPC (blue, dashed line) and QP-based SMPC (red, solid line)
over � � ���� runs, for varying number of tree nodes � . Cost normal-
ization is computed with respect to 20-nodes PMPC for comparison purposes.

Fig. 6. State space partitions of the explicit solution of the QP-based SMPC
(38) for every Markov chain state �� , � � ��� �� ��. The black solid lines
describe the boundary of the feasible set of QCQP-based SMPC.

VI. CONCLUSION

This paper has presented a stochastic model predictive con-
trol formulation based on scenario generation for linear sys-
tems affected by discrete multiplicative disturbances and state/
input constraints. By separating the problems of performance
optimization on one hand, and stochastic convergence to the
origin with robust constraint fulfillment on the other, we set up
a control scheme which requires the offline solution of an LMI
problem, and the receding horizon implementation of a QCQP
or a QP problem to obtain the control action. For the latter case,
the SMPC law can also be obtained in explicit form. The pro-
posed control algorithm is suitable for application to a wide
class of discrete disturbance processes. Simulations on a numer-
ical example have been run to evaluate performance in compar-
ison to classic robust and deterministic MPC formulations. Al-
though the approach relies on discrete stochastic models of the
disturbance, it can be further extended to consider continuously
distributed uncertainty, as presented in [19].
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