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Abstract— Nonlinear Model Predictive Control (NMPC),  One of the potential approaches to guarantee closed-loop
generally based on nonlinear state space models, needsstability in the presence of estimation errors in the siate,
knowledge of the full state for feedback. However, in prac- to employ (inherent) robustness of the model predictive

tice knowledge of the full state is usually not available. . .
Therefore, an asymptotically stabilizing MPC scheme for a controller. In [4] asymptotic stability of state feedback

class of nonlinear discrete-time systems is proposed, which NMPC is examined in the face of asymptotically decaying
only requires knowledge of the output of the system for disturbances. As stated by the authors of [4], their results
feedback. The presented output based NMPC _scheme consistsgre also useful for the solution of the output feedback
of an extended observer interconnected with an NMPC problem, although a formal proof is missing. A stability

controller which represents a possibly discontinuous state . .
feedback control law. Sufficient conditions for asymptotic result on Observer Based Nonlinear Model Predictive

stability of the system in closed-loop with the NMPC observer Control (OBNMPC) is reported in [5], under the standing
interconnection are derived using the discrete-time input-to- assumption that the NMPC value function and the resulting
state stability framework. Moreover, it is shown that there  NMPC control law are Lipschitz continuous. However,
always exist NMPC tuning parameters and observer gains, n, ophserver which satisfies the assumptions is given in

Z:cga:g%teéhe derived sufficient stabilization conditions can [5]. The stability problem of OBNMPC is revisited in

Keywords— Output feedback, Observers, Nonlinear model [6], where only continuity of the NMPC value function is
predictive control, Input-to-state stability, Asymptotic stabil-  assumed. Still, a general observer design methodology is
ity also missing in [6]. Other related results on OBNMPC can

be found in [7]. However, there the problem is considered
. INTRODUCTION from a continuous-time perspective, while we focus on

. : - discrete-time nonlinear systems.
One of the problems in Nonlinear Model Predictive Con- . . . .
b In this paper we investigate stability of an OBNMPC

trol (NMPC) that receives an increased attention and hash me. The noveltv of the or q roach consists in
reached a relatively mature stage, consists in guaralgteel‘?lc eme. The novelly of the proposed approach consists

closed-loop stability. The approach usually used to ensuPéOViding an observer design method and using the Input-

nominal closed-loop stability in NMPC is to consider theto'State Stability (ISS) framework, e.g. see [8], [9] and

value function of the NMPC cost as a candidate Lyapunowe references therein, to study the stability of the rexilt

function, see the surveys [1], [2] for an overview. Theclosed—loop system. The extended observer design method-

stability results heavily rely on state space models of thglogy from [10], [11] is considered. This extended observer

system, and the assumption that the full state of the reggﬁtrgli;hahaﬁe?etod[ﬁgk;az:egata:gtﬁfegggrmE:]t.'grr: ;);sthlfs
system is available for feedback. However, in practice i PPl y , Wi u

is often the case that the full state of the system is ndt & causality problem. Since n the NMPC framework
npredlcted future controls are available, this framework is

itable to be employed with the proposed observer theory.

is the use of an observer. An observer can generate 'ﬂ . . ; ) )
9 is idea has been pointed out in [12]. Still, general condi-

estimate of the full state using knowledge of the outpy ions to guarantee a priori closed-loop stability are lagki
and input of the system. However, nominal stability result 9 P P y 9

for NMPC usually do not guarantee closed-loop stability esolving this issue is one of the main contributions of the

of an interconnected NMPC-observer combination. Moregurrent papgr. . .
The remainder of the paper is organized as follows.

over, there exist examples, see for example [3], of zerq. . ! o .
robustness of nominally stabilizing NMPC controllers in'g'rSt.’ some nota_mons, l_3a5|c definitions and NMPC notions
e introduced in Section Il. The observer theory of [10]

the presence of disturbances, such as estimation errof: . . . . o
P IS summarized in Section Ill. In Section IV it is shown
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one to employ existing NMPC scenarios, with a prioriA. Systems theory notions

ISS guarantee with respect to additive disturbances, in anconsider the following discrete-time nonlinear system
observer based NMPC scenario. Next, in Section VI we

prove ISS of the estimation error dynamics of the observer S = F (& Vi) &o=2E, keZ )
with respect to disturbances due to imperfection of the &k=G(&w) T 7 v

predicted future control inputs fed to the observer, i'ewhere & ER
the predicted future input sequence does not coincide
general with the real input sequence applied to the syste
This is the second contribution of the paper. In Sectio

VIl the stability property of the NMPC-observer inter- Further, F : R" x R™ — R" and G : R" x R™ — R! are

connection is investigated. The ISS results obtained f‘?{onlinear, possibly discontinuous, functions. For siipyi

the NMPC controller and the ISS result of the estimatioQVe assume thafe = 0 is an equilibrium of the O-input
. e —

error dynamics of the observer, together with small ga'gystem i.eF(0,0) = 0, and thatG(0,0) — 0. A solution

arguments from [9], are used to prove asymptotic stability ", ciifferenc’e equa,tion ) for a ’given input function

of the proposed OBNMPC closed-loop system, which ia d initial condition&, is denoted ag (-, &, V)

the main result of this paper. Conclusions are summarized. e

in Section VIl Definition 1.2 A set2? C R" is called aRobust Positively
Invariant (RPI) set for system (2) if for alfx € &2 it holds

Il. PRELIMINARIES that F (&, V) € 2 for all v € V andk € Z, .

LetR, R, Z andZ, denote the field of real numbers,
the set of non-negative reals, the set of integer numbers
the set of non-negative integers, respectiv&ly; denotes
the set{k € Z|k > i} for somei € Z. A functiony: R, —
R is a2 -function if it is continuous, strictly increasing

is the statelx € R' the output andv €
C R™M the input at discrete timé& € Z,. The input

Wk' can be an unknown disturbance at tirkes Z,. V
i assumed to be a known compact set with it(V).

Dﬁfinition 1.3 Let Z be a subset dR", with 0 € int(%).
en,

i) system (2) is called locallynput-to-state stable
(ISS) if there exist a .Z-function B; and a

and y(0) = 0. A function 8 : R, x R, — R, is a % .- ~ -function y%’ such that, for each bounded input
function if, for each fixedk € R, the functionf(-,k) is a function v and each initial conditiofp € 2, it
¢ -function, and for each fixede R, the functiong(s, ) holds that for eactk < Z.

is non-incre_asing an@(s,k) — 0 ask — oo. Cqmposition 1€ (K, &0,V)| < B (|€ol, k) + V¥(||V||)’ (3)
of two functionsf : R" — R™ andg: RV — R" is denoted . . .

by fog. A function f(x) is calledsmooth if it is infinitely i) system (2) is called locallynput-to-output stable
many times differentiable. A smooth function which has (10S) if there exist a#”Z-function 5; and a’-
the property that the Taylor series at any potin its function y; such that, for each bounded input
domain is convergent for close enough tay and its value and each initial conditiorfo € 2, it holds that
equals f(x) is called ananalytic function. The class of for eachk € Z.

analytic functions is denoted ®. A function@: R, — 12 (K, &0,V)| < B; (1&0l,K) + V\Z/(”V”)' ()

R", i.e. @(k), is for shorthand notational purposes also

denoted asp. Furtherlim,_.q is a shorthand notation Another formulation of the ISS notion in Definition 1.3 is
for limy_..supg. For anyx € R", x; with i € {1,2,....n}  one where (3) is replaced by

stands for the™ component ofx and |x| stands for its ~ o

Euclidean norm. For a x m matrix A, |A| stands for its 1€k &o.v)] < maX{Bf(|E°|’k)’VE(HV||)}’ ®)

induced matrix norm. For any functiop: Z, — R", we for some % .%-function ﬁé and . -function VE/ Note
— . n

denote(|g|| = sup{|@] :k € Z,}. For a sety.g R ' W that if trajectory & (k, &o,v) of (2) satisfies property (3)

denote byd.# the boundary of, by int(.7) its interior in Definition 11.3, then it is sufficient to takqéf = 2B

and by c[.%) its closure. For two arbitrary setg’ C R" ~ :
W pa n and ¥ = 2y for (5) to hold. This also holds for the 10S
and 2 CRY, 7~ 2 = {xeR"[x+ 2 C 7'} denotes, property (4) in Definition 11.3.

their Pontryagin difference.

Definition 11.4 Let 2 CR", with O€int(.2"). We say that
Definition 1.1 A function g: X xS — R" with X C R™ the system (2) has thasymptotic gain (AG) property if for
andS C R"™ is Lipschitz continuous with respect toin  all §o € 2 and each bounded input functierthere exists
the domainX x S, if there exists a constantQLy <«  some.Z -function yag (asymptotic gain) such that

such that for allx;, X, € X and for alls€ S, . .
I ¢ 80,9 < o (T ). ©)

‘Q(Xlas) _Q(X235)| < Lq‘xl_x2‘~ (1)
In Lemma 3.8 given in [9] it is stated that if the system
The ConstanLq is called the LipSChitZ constant QfWIIh trajec[ories admit property (5)’ thq’?‘tj can be taken as the
respect tox. asymptotic gainyg of the system.



Definition 1.5 Let 2° CR", with O int(Z). System (2) X and by applying the input sequencel[(o‘N_l} =

is called (locally)0-asymptotically stable (0-AS) if for all [ukT“(,...,uLNfllk]T e UN, whereUN 2 U x ... x U. Fur-
éo € 2 and inputv = 0 there exists a7 .Z-function B;  thermore, let27 C X denote a desired target set that con-

such that for eack € Z . tains the origin. The class a&fdmissible input sequences
defined with respect t®?7 and statex € X is 2 (%) =
&(k,€0,0)| < Bs (|0l k). (7 N— o ON-
1€ ( )| < Be (€, k) {UONY N XN (g uONTY € XN, € 27},

Lemma 1.6 [9], [13] Let Z beAan R’;’/ set for SXStQ(ﬁA) Problem 1.8 Let the target se?7 C X andN € Z1 be
with O € int(Z') and letay(|<]) = alg|*, az(|€]) = Db[E]"  given and leF : R" — R with F(0) =0 andL :R" xR —

andas(|¢|) = c||* for somea,b,c,A >0ando € . Let R, with L(0,0) = 0 be continuous bounded mappings.
V:R"— R, be a function withV (0) = 0. Consider now At time k € Z,, let % € X be given and minimize

the following inequalities: the cost](f(k,u{(o’N’l]) A F(Xk+N\k)+Zi’\‘:Bl L (X Uk )
a1(|&]) < V() < az(|€]), (8a) with prediction model (9a), over all>™ ™ € 24 (%).

V(F(§,v) =V (&) < —as([&]) +a(|V]). (8b)  |n the NMPC literaturer, L andN are called the terminal

If inequalities (8) hold for all £ € %, v eV, then cost, the stage cost and the prediction horizon, respéctive
the perturbed system(2) is (locally) ISS with re- We call a stateg’c X feasible if % (%) 7 0. Similarly,
spect to inputv in V for initial conditions & in 2. Problem I1.8 s said to béeasiblefor % € X if 7 (%) # 0.
Moreover, the ISS property of Definition 11.3 is satis-L8t 21(N) C X denote the set offeasible initial states
fied with Bs (|&o|,k) £ a;t(2p%az(|&l)) and A 4 with respect to Problem 11.8 and I8t : Z7(N) — R,

a; H(20(||VI[) 25), wherep £ £ € [0,1). Vi) 2 inf I®eut™ ) (10)

[o,N—l]e% -
The proof of Lemma 1.6 can be based on the proof O{j h ukl ¢ N(Xk.) di Prob
Lemma 3.5 in [9]. A complete proof, including how the enote the NMPC value function corresponding to Prob-

specific form of theB; and y/ functions are obtained, is lem 11.8. T(:"; existenc_e of a minimum i(; %O) is_usyally
given in [13]. Note that, the conditions (8a), (8b) implyguarantee y assuming compactnes§/aind continuity

Lyapunov asymptotic stability for the O-input system. of the dynamics (9a), the stage and terminal costs [14]. We
assume in the sequel that there exists a feasible sequence

—[ON=1] & (=T = - .
Definition 1.7 A function V : R" — R, that satisfies Of contrplsul[( = [ukT\k7ukT+1|k7'"’ukT+N71\k]T’~pOSSIny
the hypothesis of Lemma 1.6 is called &8S Lyapunov ~ Sub-optimal, for Problem 1.8 and any statee 2 (N).
function. Then, Vipc(%) = J()”(k,ULO’Nfl]) denotes the NMPC value
) function and thehe NMPC control law is defined as
B. MPC notions s B e 1
Consider the following nominal and perturbed discrete- U = K™ () = Tig € & (11)
time nonlinear systems Substituting (11) in (9b) yields the closed-loop system
X1 = f(4 W), kezZ,, (9a) K1 = f(Ro K" (%) +Wk, W€ WCRY keZ.
(12)

R = TR U+ W, KEZy, (9b) Since the model predictive control law (11) is discon-

where x,, % € R" and ux € R™ are the state and the tinuous in general, even when simple continuous feed-
input at discrete-timek € Z ., respectively. Furtherf :  back stabilizers and Lyapunov functions exist [3], (12)
R"x R™— R"is a nonlinear Lipschitz continuous functionis discontinuous in general too. In literature there are
with respect tocin the domain of interest witti(0,0) =0. various NMPC schemes with an a priori guarantee that
The vectorwg € W C R" denotes an unknown additive (12) is ISS with respect tev as additive disturbance input,
disturbance andV is assumed to be a known compactsee for example [4], [13], [15], [16], [17]. In all these
set with O¢ int(W). The nominal discrete-time nonlinear approaches it is shown that there are conditions under
system (9a) will be used in a NMPC scheme to mak&lan which a candidate 1SS Lyapunov function, mostly:,
time steps ahead prediction of the systems behavior. Tatisfies the hypothesis of Lemma 11.6 for initial condison
system given by (9b) represents a perturbed discrete-tinigin some subse®t (N) with 0 in its interior. In Section V
system to which the NMPC controller based on the nhomwe will elaborate on this issue.

inal model (9a) will be applied to. Throughout the paper A well known property, which is often employed to
we assume that the state and the controls are constrairdve stability of NMPC schemes, see for example [4],
for both systems (9a) and (9b) to sommnpact subsetsX s regularity.

of R" andU of RY, respectively, which contain the origin pefinition 1.9 Regularity is obtained when the future
in their interior. AN o ON_1] inputs predicted by the model predictive controller satisfy
[Ugyikl < Bifxqel for i=0,....N—-1,  (13)

For a fixed N € Zsq, let x. o (%, Uy ) =
[xLl“(,...,xiLN‘k]T denote the state sequence generated
by the nominal system (9a) from initial statgy = for some constant§ > 0.



[1l. EXTENDED OBSERVERTHEORY: AN sequence, an invertible output function for the system
INTRODUCTORY SURVEY in ENOCF. Except for the future input sequence, all

In this paper we use the extended observer theo@ther sequences are known at tikeéf input and output
proposed in [10], [11]. For notational brevity we considepariables (_measure_ments) are buffered. The dependence on
the theory for the single input single output case, aIthoque future input variables corresponds (or can be compared
the theory applies in the multiple input output case as welf0) the appearance of (also unknown) time derivatives of

Consider the following system the input in the generalized contir_luoqs-time obse.rver from
¢ [19]. Why a system representation in ENOCF is future

Rier1 = (Xk’uk), X0 =X, KEZi, (14) input dependent, in the considered discrete-time context,

Yk =9(%) will become clear later when details on the existence of

wherex, € R", uc € R andyy € R is the state, the control & system representation in ENOCF are discussed. First
and the output at discrete-tinkes Z, , respectively. Further We focus on the existence of observers for the system
f:R"xR™— R" andg: R" — R are analytic i.ef,gcC® representation in ENOCF. Observer candidates based on
with f(0,0) = 0 andg(0) = 0. The observer problem for the system descriptions in EN_OCF were propoged in
(14) deals with the question how to reconstruct the stald0]- One of the observer candidates simply consists of
trajectoryx(-, o, u) on the basis of the knowledge of the@ “COpy” of the z-dynamics (15) added with an output
input u and the outputy of the system. The problem injection term (also known as an “innovation* term)
of observer design in its full generality is a problem(‘s. - fnl” (hy k(iU ™) =20k, i.e.

that is not yet fully solved for nonlinear systems of the

- N 1-n,0]  [1-n0]  [1,
form (14). A proposed potential observer candidate for a 41 =Azzk+f2(y|[< " ]’ul[< " ]vUL ")+
broad class of discrete-time nonlinear systems is studied (1, ] T (N2 (ViU ™) —204), (16)
in this paper. To be more precise, observer design for a
class of systems that can be expressed in the so called Ik

Extended Nonlinear Observer Canonical Form (ENOCF)
is considered. Observers that are based on the system fi
in ENOCF are denoted bgxtended observers. One of the

with 2, = Cz%, %-0 = 2, k€ Z; andh;1 _ represents
O{m . . [1-n,0] L .

or a fixed input sequence, the inverse function
major characteristics that distinguishesended observers of I in (15). Further,é,.... represent the observer

form “conventional“ observers, is that not only the outpugams' _Thg (r)]bs_erverfgtﬁms gan be used(;co assign E_l”(:el’taln
(input) at the current timegy is employed to obtain an ynamic behavior Of the observererror dynamics. The

estimate of the state trajectory but, as in the receding z-error dynamics is the dynamics which describes the

horizon observer approach [18], additional knowledge 0‘?V0|ftion of thez-error defined at each time € Z,. as

past information present in the output trajectgrys also ok = A — & Dl’!e to the fact that the.stanz Of. a system
taken into account. representation in ENOCF appears linearly in the system

equations and all nonlinearity enters the state equations

A. Observersin ENOCF via the nonlinear functiorf,, depending only on input and
A system representation in ENOCF, or the z-dynamicgutput sequences of the system, linear autononaesrsor
for brevity, reads as dynamics is obtained. Theerror dynamics for (15) and
N B (16) reads as
ZkJrl:AZZk"'_ fZ(y|[(l nAO]aul[(l n70]7ul[<1’n]) Zo=12 keZ
e =hy(Crz Ut ™) P A0TB KER g =Ae, with A2 (A [, 4] TC) . (17)
(15) o
0O .. 00 In the next subsection it will become clear that a system
1 0 0 description in ENOCF is not unique. To some extent there
with A, = , C,2[0...01], is freedom in choosing the structure for the functibn
: : (and alsoh;). A possible structure for the functiofy is
0 ... 10 f,=10,...,0, f,n_1] . Based on this structure df, another
fLo(yk,uk,uﬂl’”]) observer candidate in ENOCF is proposed in [10] and is
f 1 (-10 ,[-10] u[l-,nfl}) given by
[1-n0 . [1-n0  [Lny a| 220k U U
f2(yy » U U= A
: 0 0121k
£ [1-n,0] u[lfn,O] u . . : .
1-n0 & “n l(yk Tk [1Lnkar]l) A L1 = ) + . s with
where yo 7 & [WicengreW 0 U 0 & 0 On-1Zn-1k no
a _ -n,
[Uk—nits o Ui TS uLl*”} 2 (U1, Ukn] T, zZ € R" fzn1 On(Znk — Mg heaVio U 7))
represent the past output, input, future input and state £,
in zcoordinates at discrete timk € Z., respectively. (18)

Further, f, . R" x R"x R" - R" and h, : R x R" — R 2o =2, k€ Z, and whereg[qy, ..., € R" denote the
are nonlinear functions, wheré; is, for fixed input observer gains. The-error dynamics of the observer in



(18) then reads as for all admissible input sequencebﬂo’n_ﬂ, implies that

0 thZak X0 =Xo.
71k - i) System (14) isstrongly locally observable, if i) holds
&1 S Zal— A= | . |- q Zn . (19) forall xo € X.
n—14n—-1k

anll ‘ On(Znk — Znk) The wordlocally refers to the fact that two states must be
o _ ’ ’ distinguishable in some neighborhood’. And the word

Then, after n—1 time iterations we have that gyongly refers to the distinguishability of the states after
21k =0,...,Z1-1x = O irrespective of the initial condition ,pserying the output trajectory for a finite number of time
Zo. This follows directly from the structure of the dynamlcsste|0S ( time steps). A sufficient condition for system (14)

(15) and the fact thatzo,...,fzn-2 have been chosen to be (g pegrongly locally observable in xo is the following rank
identically zero. This observation implies that after 1 - nqition

time steps thez-error dynamics given by (19) behaves

. . [0,n-2]
linearly according to rank{ 0w(x$1>|(<k ) } —n, VuLO’“_Z] cU™1L,

& ki1 =Aqek, With Aq=diag{(qs,....tn]}. (20) X=Xo 23)

The matrices defining the-error dynamics of both ob- whereU"1 C R" andy is defined as in (21). Condition
servers (16) and (18) can always be rendered Schur K83) is sufficient for the existence of a one-to-one smooth
choosing appropriate observer gains such that the propodadertible map of the observability map for fixed input
observers are asymptotically stable. Therefore, systermequences. This follows from the fact thfitis analytic
that can be transformed into ENOCF admit the design dbecausef and h are analytic). The inverse function
several suitable observers for (15). of ¢ for fixed input sequences is denoted @g?,. If
system (14) isstrongly locally observable, theny in (21)
acts for fixed inputs, as a (local) diffeomorphism relating

Previously, we showed that if the dynamics of a systerstate x, satisfying (14) to a state satisfying another
is given in the extended nonlinear observer canonical forfgpresentation of system (14) having the form

(15), then it is always possible to design an observer

B. Existence of equivalence relation

for this system. However, the following question remains S2k

open: What can be done if the dynamics are not in the form _ : _ _ o4
of (15) but in the more common form given by (14)? In this Sl = Sk » V=St Sco=%, (24)
subsection we will therefore show under which condition fs(sk,u;[?’nfl])

system (14) can be transformed into (15).

In order to answer the posed question, we have to recjuhere
the strongly local observability notion [20]. For conve- — Wik ulon-2y — w1 (s ulon-2 25
nience we first introduce thebservability map for non- S= Yot ) Xe = Yol S U™ ), (25)
autonomous discrete-time nonlinear systems, which was (s, ul™ ) = g( (L (s U™ 2),ul™ ). (26)

k ixe
already defined for discrete-time nonlinear autonomous f.d . -
systems in [21], [22]. Note that system (24) is obtained by definizg as

S 2 [Yk-1,--Yk-n+1] |- By defining ¢ in this manner
future input sequence dependence, as is encountered in the
previous subsection, is introduced. Next it will be shown
that from states, one can obtain statg satisfying (15)

Definition 11l.1 The observability mapp of the system
given by (14) is defined as:

g(lfo(xk)) employing for fixed input and output sequences a map
Wk uo" 2 & 9( (%, Ui)) 1) Q:R"xR"IxR"xR"— R, je.
» Yk ’ Zk:Q(&( yl[(l—n7—1] ul[(l—n,O] uLl,n—l]) (27)
g(fnil(xkv[uk7"'7uk+n72]—r)) 1-n-1 a - -1 a
where fO(x) = X, (X, [Ug, .o, Uiri—a] T) = where i - T Yinst,-Ya] and u o =
FOFCf(1 : PO th 0> 1 [Uks1, -, Ukin1] . The motivation for (27) can be ex-
(P (F (o W), U 1) ooy ) Ueri-a), - Wi b= L plained by considering the structure of the system rep-
Next, strongly locally observability is introduced. resentation in ENOCF (15) and taking into account that

S 2 [Yk_1,---,Yk_nt1] ' Taking the inverse of the output

Definition 111.2 i) Let .# € X be an open neighborhood equation of (15) for fixed input Sequenﬂ:élfn‘o] yields
around some state € X and letxg be a state in#". Then, z,, = hzjulﬁxed(yk,ul[(l’”’o]). Substitution ofy, by s,k results
systemv(14) |sstrongl_y IogaJIy observable in Xo, if for all Znk = hzjulﬁxed(sl,kau{(linp])- From the last component of
statesxg € ./ resulting in the same output sequence as

obtained byxo, i.e. INote that the rank condition (23) is sufficient for inverilyi Take for
0n-2] o [on-2] exampley = x3. The rank condition is obviously not satisfied. However,
Yxo,uy ) =yXo,ug ), (22)  a one-to-one inverse function exists.



the state equation (15), it follows thaf_1x = Z,kr1 —  that under the condition that the system (14)ldsally
fzn_l(yﬁl_n’0]7u;[<1_n’°],uk +1) wWherez, ;1 can be replaced strongly observable the observer; given by (;6) and (18)
by ol (vie l7ul[<2fn,1]) and yiui, i = 0,1,...n— 1, by are .(Iocal) observers for (14). Via the goordlrjate transfor
S 1k Continuing in this way, one obtains the following Mation map (29) the estimated statezoordinates can
structure forQ in (27): be mapped to estimates of_the statexmoqrdlnates. By
continuity of the transformation map (29), it can be argued
71k éhzfulﬂxed(%,k,uf’nfl]) that the behavior of the estimation errorrcoordinates

n—1 &k = X — X is representable for the behavior assigned

-> fz,j(Yk—1,31,k7---,Sj,k,ULfl’nfl]) for in the z-coordinates. Although the observers seem to
=1 be global observers in the z-coordinates, the observers are
locally defined inx-coordinates. This follows from the fact
N [3;&2] that the equivalence relation between thdynamics and

Zn2k =z e Sa K, Ui ) 28) the x-dynamics denoted by (29) is not globally defined
_ fz.nfl(YLz_n’_lkslAk,32,kvul[<2_n’2]) in general due to the local nature of the strongly locally

' 2—n,—1] 2-n2] observability notion. Therefore the observer candidates a

— fzn-a(yy St ) in general only locally well defined. However, if the equiv-

Zo 1k éhiixed(sz,ka ul[f*“*l]) alence relation between the system representation (15) and

; [1-n-1] [1-n1 (14) is defined globally also the observer candidates will
— fzn-1(yi +S1ks Ui ) be global observer candidates for (14).

Zok 2hy L (sukoup ™).

The following composition of2 and y, i.e.

IV. PROBLEM FORMULATION

Consider the system dynamics given by (14). The full
Zk:E(Xk7yl[<1*”»*1]’UL1*”70]7UL1v”*1]) 200y, (29) Statex is assumed not to be available for feedback.

_ ) _ For feedback, an estimate of the stadeis fed to an

then acts, for fixed input and output sequencesik). NMPC controller instead, i.euq = k™°(%). The state
as a local diffeomorphism around relating the state«  estimatex; is generated by, for example, observer (16) or

from (14) andz from (15), iff (14) is strongly locally (18) in combination with the mag_1 , defined in (29).

uyfixed

observable ako. The interested reader can find a detaileghe opserver candidates appear to be (local) observers

proof in [10]. for a broad class of systems of the form 514) under the
n

Note that the observer design based on the systefaq,mption that the future input sequenit” is known
representation in ENOCF is thus based on the selectiq oy, still, the future input sequence is not known a

of two functions, namelyf; andh,. A question still unan- o Under the assumption that the prediction horizon
§Wered is, what c_rlterla the functiorisandh, _mus'F satisfy of the NMPC controller is sufficiently long\(> n), one
in order to obtain a system representation in ENOCE,, employ a part of theredicted future input sequence

and its coordinate transformation (29) relating the systemy;-.naq by the NMPC controller at every time step

representation in ENOCF to (14). In [10] it is shown thatdenoted byU[l,n] and feed this sequence to the observer
this criteria for f, and h; is given by ko

o1 [ini as an educated guess for the unknown sequeﬁé’é In
n— N

e fe(Sti ™), U ™) = Fig. 1 a block diagram of the resulting control scheme is
5 on (30) Presented. The major question that must be answered in
Zj 2 (St S2k +os i 1k U ™). ;
y k| System
1 . ey NMPC (14)

Note that there are various possibilities to choose the Y

functions f, and h,. This means that given system (14), % HY :

there can exist multiple system representations of this ——

system in ENOCF. We can now summarize the previous Observe

in the following result

Fig. 1. Proposed OBNMPC Scheme.
Theorem II1.3 [10] Let (14) be strongly locally observ-

able atxo. Then, for all functionsf, : R" x R" x R" —  order to show that the proposed OBNMPC scheme can
R" andh, : R x R" — R satisfying (30) =, defined in work, is whether the resulting closed-loop system can be
(29), acts, for fixed input and output sequences as a locgndered (locally) asymptotically stable to the origin(0
diffeomorphism relating state satisfying(14) and a state a@nd &= x—X=0). An outline of the reasoning used to
z satisfying a system representation in ENO@B). answer this question is given in the sequel.

In Subsection 1l-A we showed that (16) and (18) are®™ Outline of the approach
observers for a system representation in ENOCF. Then, vialn order not to destabilize the model predictive controller
the result established in this subsection one can concludath the estimation error presented in the state infornmatio



introduced by the observer, we want to synthesize a modBemark V.1 If the predicted future input sequence would
predictive controller which is robust to the estimatioroerr coincide with the actual future input sequene§ﬂ] =0),
Notions of input-to-state-stability (ISS) are used forsthi one recovers the linear autonomous descriptioh of the error
purpose. Once the controller in closed-loop with systerdynamics defined by either (16) or (18).

(14), e.g. ) ) ) _ ) ) )
The estimation error irx-coordinates manifests itself via

X1 = O K" (% +ek), e&k<€ExCR", ke€Zy, the coordinate transformation map given by (29). The
(31) influence of the mismatch between the predicted future

is (locally) ISS with respect to the estimation erggritis  input sequence and the actual future input sequence on the

known that if the estimation error vanishes, @&g.— 0 for  estimation error ir-coordinates ) can be studied using

k — o alsox, — 0 for k — co. This follows directly from  the coordinate transformation map given in (29). Note that

the ISS system property given in Definition 11.3. Following a . in 1 [1-n0 —(1n-1] [in1]

this approach, we in fact decouple the observer desigck =A=(€k, %Yk LU U &% )

problem from the controller design problem. An approach 2 =—1 (2 — &k y[lfnfl] Gl itn-1 e[l,nfl])
to synthesize an NMPC controller that renders (31) 1SS e 2ok Tk Tk Uk
with respect toey is given in the next section. X
As pointed out before, under the assumption that system —=z1 d(zk,yLl’””l],uLl’”‘o],ULl’”*l}),
(31) is ISS, a sufficient condition which will lead to - .
asymptotic stability of the OBNMPC scheme is that the " (33)
estimation error vanishes, i.@ — 0 for k — o. The whereA=(0,.-,.-,-,0) — 0. Equations (32) and (33) define

condition under which the error of the observer candidatf%e -er

vanlshes_En]easy o find if the futurpred|§:teq mput. of feeding an imperfect predicted future input sequence to
sequencél ", from the NMPC corltroller, coincides with yhe gnservers. The error dynamics has now become a non-
the actual future input sequenmé’"]. In that case, as autonomous system. In Section VI it will be proven that
shown in Section lll, the error dynamics of the observethe zerror dynamics given b?/ 332) is 1SS with respect to
is. asymptotically staplee(,k — 0 for k — ), and thus  f,ture input prediction erroreulif.

with the ISS assumption on (31) we also haye- 0 for In Section VIl the cascade, as depicted in Fig. 2, of the
k — oo, For this situation (perfect future input sequencggg (10S) observer error dynamics (32), (33) and the 1SS

predictions), The major question considered in this papgimpc controller in closed-loop with (14) is considered.
is thus trivially answered. However, since thredicted and

real future input sequences do not coincide in general, the

ror dynamics of the observer candidates in case

asymptotic stability result of the estimation error dynesni e Observer. & System (31) X
pointed out in Section Ill cannot be applied for this —[error dynamicg X1 = f (x K (x+ ) [
scenario. A closer study to the error dynamics of the (32), (33) i

observer in the case of an imperferedicted future input _ _ _
Fig. 2. ISS, IOS observer error dynamics (with respece}LJtB] as input)

sequence 1S theref(_)re necessa.ry' n—1] cascaded with the ISS NMPC controller in closed-loop with) (with
In case the predicted future input sequeﬁ&e fed respect tog as input).

to the proposed observer candidates (16) or (18) does not h di £ th ded N _
coincide with the real future input seque " in the The state and input of the cascaded system in Fig. 2 is

[1,n] ; ;
dynamics in ENOCF (15), cancellation of the nonlinearity?€n0t€d by(e;,x) ande; ™, respectively. By assuming
in the derivation of thez-error dynamics as in Section 111 regul@rity of the NMPC controller, it is proven that one can

is not realized. Taking this fact into account and definingun€ the NMPC controller andn}Observer tuning parameters
(28] & L] such that the prediction erreE’ , present in theredicted

the future predicted input error sequencaa,é# =00 — . i : :
[1,n] . . . future inputt,. ", will asymptotically decay to zero, i.e.

u," ", the error dynamics of the observer in z-coordinates i X

is given by g —0 for[ k — . Due to the asymptotic decaying

property ofeul""} and the 10S and ISS property of (32),
ez,k+1:Aaez,k+Afz(yLl_”’0],uLl_"’O],ULl’n],eLT]), (32) (33) and the ISS NMPC controller in closed-loop with

. . . (14), respectively, one can conclude that the cascade in
whereA; = A, or A = Aq (depending on which observer kg 2 is (locally) asymptotically stable. This implies {lo

structure, either (16) or (18), is used) aAd; is of the  ¢a)) asymptotic stability of the proposed OBNMPC scheme

form as presented in Fig. 1.
[1-n0] . [1-n0] —[1n] _[1n]\ a
Af(ye g O e k) = V. CONTROLLERDESIGN: ISSW.R.T. ADDITIVE
oy -0 GlLa _ L)y DISTURBANCES IMPLIESISSW.R.T. ESTIMATION
Yk Uk » Uk €Uk

ERRORS FORLIPSCHITZ CONTINUOUS SYSTEMS

_f (y[lfn,O] u[lfn.O] U[1,n])
2k Tk 0Tk D As explained in the previous section, we seek for NMPC
with Af,(-,-,-,0) =0. schemes that can render (31) ISS with respect to estimation



error e,.. Rendering system (31) ISS with respect to thevherew, = f (K — &k, KM(Ki) ) — T (K, KM°(RKc)) + 6 k1
estimation errorey by using NMPC is however difficult. Using the Lipschitz property of (-,u) for all fixed u in a
The problem was considered in [5], where robustness to essmpact spacél leads to

timation errors is shown under the assumption of Lipschitz . .

continuity of the NMPC value function and control law. [ F (R — 8k Ue) = F (R, )| < Ls [k (39)
A simi_lar result was obtained more recently in [6], “ndeﬁ'hus, for allk € Z, it holds that

the milder assumption of continuity of the NMPC value

function. To the authors knowledge, besides the result of [wi| =|f (% — &k, K" (%)) — f (K, K*7(%)) + k1
[6], no general practically applicable NMPC schemes are <[ F (R~ 6k, K"(Rk)) — T (R, K"(R)) | 4 [l x|
available in literature that can a priori guarantee ISS &j (3 <(Ls+ D).

with respect to the estimation erreg as input. However, - (40)

due to the result obtained in this section we can infeg,om the hypothesis we have that (38) is locally 1SS with

ISS of (31) with respect ta from ISS of (12) with  regpect taw in W for % in 27 (N). Moreover, from (40)
respect to additive disturbances This result then allows it tollows that (38) is thus locally ISS with respect &
us to employ all existing NMPC schemes that can a prioth . for all k 7., ie.

guarantee ISS of (12) to also establish a priori ISS of (31).
Note that there are several MPC schemes for nonlinear I8k (K, %o, &)] < Bx(|%ol, K) + V&*(|ex]])s (41)
systems that have an a priori ISS guarantee with respect . A ke 1o
to additive disturbances, see for example, [1], [4], [13]VVNere Bx(|%l.k) = 0~ (2p%as([%l) andly/xf*(||e?(_||)_ =
[16], [17]. ¥ o (L +1)|[&ll = ap~(20((Lt +1)|lex]]) £=5). Utilizing

The standing assumption is Lipschitz continuity of théN® Proposed coordinate change (35) and property (41), we
function f, with respect tox with Lipschitz constant; OPtain that for allx, % € 2%(N), ke Z+,
on the domainX x U. Moreover, we assume we have ¢ (e S e @

' X k7 ) = k7 ) — €, S X k7 ) + 1€

an NMPC scheme, which renders (12) locally 1SS with Px(k;Xo.80)] = el %o, 8) =Bkl < [k, %o, 80)| + [

respect toadditive disturbancewy and initial conditions«y < Be(Ix0+ &xol, k) + ¥ (lledl) + lexk

in 27(N). Assume2;(N) is an RPI set of system (12) < Bx([%o| + |&xol, k) + y&* (llexll) + [lex]l

and has the origin in its interior, then the following result < Br(2[%0l, k) + Bx(2exol. k) + ve<(|led]l) + [l

can be obtained: < Ba(2lx0l, k) + Bx(2l el 0) + ¥ (llexll) + [l ex
<

Theorem V.1 Supposel, = K"*°(%) is an NMPC control < Be(lxol. k) + e (llel), (42)

law which renders systel12) locally ISS for initial condi- \\here Be(%ol.K) 2 Br(2lxolk) = a{l(Zpkaz(2|xo|))
tions%y in 2t (N) and additive disturbanca\sinW%{wg and y&(lel]) 2 Bx(2edll,0) + VgeX(HeS(H) + e =
RN | HWH < /J} for someu > 0 a'nd I?tl.f be the I_IpSChItZ a]__l(202<2||3(”)) + 01_1(20((Lf + 1)“3(“)1%) + ”eX”
constant of the system dynamitsvith respect tox. Then, Expression (42) implies (local) ISS of (31) with respect
the NMPC control lavw, = K"°(x+€xk), K € Ly, renders & as input. -

(31) locally ISS for initial conditionsxy in Z%(N), and

estimation errorsy in Ex = {&x € R" | [l&]| <v = F7}, VI. OBSERVERDESIGN

i.e. In Section IV we derived the error dynamics (32), (33)
[X(K, %0, )] < Bx([%ol,K) + v*(ll&xll); (34)  of the observer candidates (16) and (18). In this section
with Be(|xol,k) 2 a;l(Zpkag(Z\xoD) and e (|led]) 2 we will prove th.at error dynamﬁ:s (3?), (33) is (locally)
UI1(202(2\|€S<H))+G{1(20((Lf+1)H63<H)ﬁ)+||€s<||- ISS and 10S with respect te, as input. Recall that
eLlj’kn] represents the prediction error present inpieslicted

Proof: Consider system (31). We perform the follow-
ing coordinate change on (31), i.e.

future input sequencﬁl[(l’"] fed from the NMPC controller

to the observer candidates at discrete tikne Z,. The

X =% — &k, VKEZL, (35) standing assumption for the result in this sectiorf ig €
. ) C%, and Lipschitz continuity off, with respect tcuLl’n .
which gives
K1 = T (K — 6k, K'™°(Rk)) + 6kt (36) Theorem VI.1 Let (14) be strongly locally observable at
. ' ' Xo andA; in (32) be Schur. Suppose the sequery%@"’o],
Rewriting (36) as ul™™% andul" are bounded for ak € Z. . Then, the z-

K1 = (% — 6k, K7 (Re)) + F (R, K" (Rk)) error dynamic€32) is ISS with respect te™" as input, i.e.
— (R K" (%)) + Bk forallk € Z.,
(37) ~ .
yields ex(k,ez0, )| < max{ B, (Jezol. k), 72 (eI }

K1 = F (Ko, KMC(S)) + W, (38) (43)



A

where B&(|@7o\,k) 2 2nnX|ezol, Vg;(HeLl’”]H) £ Next it will be shown that there exists an explicit bound
o Ln

2L et with 5 > 0 and n € [0,1) such that on & satisfying (32), (33) for allef" in some compact

|A"| < hr]" holdg. Moreover, thex-error dynamics deflned setllq, with zero in its interior.

by (32), (33) is (locally) 10S with respect to inp m“ Lemma V1.2 Let (14) be strongly locally observable &t

with
andA; in (32) be Schur. Suppose the sequeny%é"’o],
lex(k. ez0.6i")| < max{Bex(|ezo| k), 72 (| et ||)} ul ™% a* are bounded ane" € Eq, whereEq, £
G Sl
~ ~ n g - ]
where e (|ez0,k) = LEﬁez(|eZ,0|7k): VQ'(”QJ D £ tal conditionsezo in & with & = {e;0 € R"| |g;0| <

L=max{ 2L, 1}|ef = Is the Lipschitz constant 7L}, the trajectonex(k,e;0, € M), satisfying thex-

of the functlon_;y,,lxed with respect to the argumerts and error dynamicg32), (33), satisfies
[1,n— l]

u 2h
‘ lex(k, 0, €f™")| < Lz, max{sz, 1} , VKEZ,.
Proof: The z-error dynamics defined by (32) can be 1-n (49)
seen as a non-autonomous finear system, i.e. Moreover, for observer18) there exist observer gains
€k+1=A€k+Vk, €7k=0= €0, (45)  ,...,0n such that
where inputvy is defined as lex(k, ez,o,el[Jl’n])l <Llzg&,, VKEZ,. (50)
Afz(yLl ", Ll "o ULl " lenl) Proof: From the hypothesis we have that expression

The function f; is Lipschitz continuous with respect to (43) in Theorem V1.1 holds, so that for &l Z.,

r therefore there exists for all fixed bounded sequences ey (K, 9207 )| < maX{Bel(|ezo| k), y%(|
1-n,0

)}

1 n0l andu[1 " a Lipschitz constarit ;, such that o
for all kez+ < maX{Bez(Iezol k), n'—fzfeu}
w| = |Af,(y2 0 20 gl gty ) . ~ 2h
| k‘ | Z(yk k k uk )| HQJ |l46) <max{ﬁez(|ez70|70)71_anZ£ed}'
SinceA; in (45) is Schur, there exist constarits> 0 and (51)

n €[0,1) such that/AX| < anX holds, e.g. see [9]. From For initial conditionse, € &; we have that

(45), we have that - 2%
e.0/,0) < Lt,&q,- 52
ki k-ﬁ—leZ _'_%AI JV], (47) Bez(| ,0| ) -n f ey ( )
which yields that the ISS property in Definition 1.3 holds ' 'US: fOrézo € &, inequality (51) yields

with

° h
Lpnk Y (IVDES Aindjv]|2 —"—
Be,(€20], ) 27" |ez0], ¥&,([IVI]) §: At IVII= = M-

2h
leell < 3= Letas: (53)
Subst[itutir;g (53) in (48) and taking into account the fact
thateJ C Eq, the first statement in Lemma V1.2, i.e.
Via (46) we obtam (local) ISS of (32) (in the sense of (5))(49) follows. Taﬁe second statement of Lemma V1.2, i.e.
with respect toel™" as input, for ’ ’

(50), follows from the fact that the diagonal structure @ th

P A ,n] matrix Aq, defining thez-error dynamics (32) of observer
Pe.(lezol. k) = 2hn* €0, yeu(He” ”) - sz||eL I candidate observer (18), allows to render the tett
, _ [1-n, o] J0 s L ) (49) arbitrary small by choosing appropriate observergain
Next, since the mag,;..,(-, Yx U 0)is L'prh'tz 01, ...,Gn. This can be concluded by employing the relation
continuous, for all fixed bounded sequeng&?”’_ I and |A|c§\ < hin* from Theorem VI.1. m
[1-n,0] . . .
Uy , with respect to the first and last argument with VIl. | NTERCONNECTIONRESULTS

Lipschitz constant.=, we obtain that for alk e Z

ekl = [A= (k. 2yl ™Y U0,

< L=max{ Je,i, IIeLL”’”H}

So far, we haveseparately designed an NMPC con-
troller which is robust (ISS) to estimation errom)(and
obtained an observer for which the error dynamics is
robust (I0S) with respect to prediction err@{%”] present
in the predicted future input sequenge-" fed to the
observer. In this section we investigate the properties of
the IOS observer error dynamics interconnected with the
ISS NMPC system (31) according to Fig. 2.

2L, is the Lipschitz constant of the functiof in (15) with respect The standing assumptions for the results in this section
to the argumenti,™" are

ul[(1n 1]7 len 1])|

(48)
Substitution of (43) in (48) results in (44) with thg -
and .7 -functions Be, and {5, respectively, as stated in
Theorem VI.1.



Assumption VII.1 respectively, hold. Thus, we know that

. f,geCY%;
. Lir?schitz continuity of f with respect tox on the EM,H < PR (||m |eu “]|) (592)
domainX x U;
« Lipschitz continuity off, with respect toul[(l’”]; Tim x| < 2y (”m|&k|> : (59b)
« Regularity of the NMPC controller, in the sense of —e k—oor
Definition 11.9, w.r.t thex; i.e. Ui/ < 6 R I|m |e \ < max{y‘ <|1i—mxk|) v (|!i_m|ex’k|> }
(59c¢)

Lemma VII.2 SupposeN > n and Assumption VII.1
holds. Then, there exist’-functionsy andyg< such that  Substitution of (59a) and (59b) in (59c) yields
the sequence.} satisfies

T e < 20+ 0) max{ 2o 2 (jim e ).

e (k. x 80| < max{ i, (IIx]). (llexl) } Vkez&) e -
o (T el '
where ¥ and & are defined asyx(||x||) V&(kaeu_k |>}

(60)
By inspection of the gain functiog®x (defined in Theo-
rem V.1) we can conclude that the maximum in (60) is
determined by its first argument, so that

2(60 + B)|Ix| and E(|lexll) £ 2(60 + 0)|lexll, with
0 =maXcp12. . ni6i}-

Proof: Using regularity (Definition 11.9) and the
triangle inequality, the induced norm of the difference 1]
between the predicted future inputs and the real inputs can k|m ‘eu k | <4(60+8)y o Ve (hm |eu |>
be upper bounded for ale Z, andi=1,...,n, i.e.

(61)

with j& £ L= max{%sz, 1}. By the hypothesis of The-
(55) orem VII.3 we have that @+ 8)y* o & < 1. together
with the fact thatﬁkﬂm\ehl’km is well defined (due to

Ukt — Unegigk| < Ui+ Ukl < Bo[Ricsi| + 6 %l
< Bo[Riri| + O]R|-
Since (55) holds for alk € Z, andi=1,...,n we have compactness ot) we know thatﬁk_,m|ehlﬂ\ is finite)

that we have that (61) can only be true if (58) in Theorem
VII.3 holds. This concludes the proof of the statemenmt.

1, e
e < (60+B)|%| Under condition (57) in Theorem VII.3, the 10S and 1SS
< ] 56 "~
- (90+9)(HX||ir||<:‘x||) _ (56) property of the observer error dynamics (32), (33) with
< max{2(6o+ 6)||x||,2(60 + 6)|ex]| }, respect tae " as input impliese,x — O for k— oo. Then,
which concludes the proof of the statement. m due tothe ISS property of the NMPC controller in closed-

loop with (14) with respect teyx as input implies — 0
Regularity thus leads to property (54). Due to this propertyfor k — co. Thus, if condition (57) in Theorem VII.3
the following result can be obtained. is satisfied (local) asymptotic stability of the proposed

OBNMPC scheme as depicted in Fig. 1 is guaranteed.

Theorem VII.3 Let (14) be strongly locally observable
on the domainX x U andA; in (32) be Schur. Suppose VIIl. CONCLUSIONS

the NMPC control lawk"™, with N > n, renders(31) In this paper we proposed an observer based nonlin-

(locally, i.e. for initial conditionsxo € Z7(N)) ISS with  ear predictive control approach for a class of nonlinear

respect to ’”PUG& €Ex = {&cR" | |leg| <v} withv >  discrete-time systems. We derived sufficient conditions
L=go, max{ %L ,, 1} and assume Assumption VII.1 holds.for (local) asymptotic stability of the closed-loop system
Then, if trajectory of the observer based nonlinear model predictiv
. ok control scheme. The sufficient (local) asymptotic stapilit

4(6p+ 0) e (Lg max{l—sz,l}> <1 (57) conditions can in theory always be satisfied by choos-

L ing appropriate controller tuning parameters and observer

it holds that gains.

TimlelY =0 58
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