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Abstract— Nonlinear Model Predictive Control (NMPC),
generally based on nonlinear state space models, needs
knowledge of the full state for feedback. However, in prac-
tice knowledge of the full state is usually not available.
Therefore, an asymptotically stabilizing MPC scheme for a
class of nonlinear discrete-time systems is proposed, which
only requires knowledge of the output of the system for
feedback. The presented output based NMPC scheme consists
of an extended observer interconnected with an NMPC
controller which represents a possibly discontinuous state
feedback control law. Sufficient conditions for asymptotic
stability of the system in closed-loop with the NMPC observer
interconnection are derived using the discrete-time input-to-
state stability framework. Moreover, it is shown that there
always exist NMPC tuning parameters and observer gains,
such that the derived sufficient stabilization conditions can
be satisfied.

Keywords— Output feedback, Observers, Nonlinear model
predictive control, Input-to-state stability, Asymptotic stabil-
ity

I. I NTRODUCTION

One of the problems in Nonlinear Model Predictive Con-
trol (NMPC) that receives an increased attention and has
reached a relatively mature stage, consists in guaranteeing
closed-loop stability. The approach usually used to ensure
nominal closed-loop stability in NMPC is to consider the
value function of the NMPC cost as a candidate Lyapunov
function, see the surveys [1], [2] for an overview. The
stability results heavily rely on state space models of the
system, and the assumption that the full state of the real
system is available for feedback. However, in practice it
is often the case that the full state of the system is not
available for feedback. A possible solution to this problem
is the use of an observer. An observer can generate an
estimate of the full state using knowledge of the output
and input of the system. However, nominal stability results
for NMPC usually do not guarantee closed-loop stability
of an interconnected NMPC-observer combination. More-
over, there exist examples, see for example [3], of zero
robustness of nominally stabilizing NMPC controllers in
the presence of disturbances, such as estimation errors.
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One of the potential approaches to guarantee closed-loop
stability in the presence of estimation errors in the state,is
to employ (inherent) robustness of the model predictive
controller. In [4] asymptotic stability of state feedback
NMPC is examined in the face of asymptotically decaying
disturbances. As stated by the authors of [4], their results
are also useful for the solution of the output feedback
problem, although a formal proof is missing. A stability
result on Observer Based Nonlinear Model Predictive
Control (OBNMPC) is reported in [5], under the standing
assumption that the NMPC value function and the resulting
NMPC control law are Lipschitz continuous. However,
no observer which satisfies the assumptions is given in
[5]. The stability problem of OBNMPC is revisited in
[6], where only continuity of the NMPC value function is
assumed. Still, a general observer design methodology is
also missing in [6]. Other related results on OBNMPC can
be found in [7]. However, there the problem is considered
from a continuous-time perspective, while we focus on
discrete-time nonlinear systems.

In this paper we investigate stability of an OBNMPC
scheme. The novelty of the proposed approach consists in
providing an observer design method and using the Input-
to-State Stability (ISS) framework, e.g. see [8], [9] and
the references therein, to study the stability of the resulting
closed-loop system. The extended observer design method-
ology from [10], [11] is considered. This extended observer
approach has the drawback that future information of the
controls applied to the system are needed, which results
in a causality problem. Since in the NMPC framework
predicted future controls are available, this framework is
suitable to be employed with the proposed observer theory.
This idea has been pointed out in [12]. Still, general condi-
tions to guarantee a priori closed-loop stability are lacking.
Resolving this issue is one of the main contributions of the
current paper.

The remainder of the paper is organized as follows.
First, some notations, basic definitions and NMPC notions
are introduced in Section II. The observer theory of [10]
is summarized in Section III. In Section IV it is shown
how one can deal with the causality problem present in
the proposed observer by employing the observer in an
OBNMPC environment. The definition of the stability
problem follows as a consequence of it. In Section V
we present a result which enables us to infer ISS with
respect to estimation errors (introduced by an observer)
from ISS with respect to additive disturbance inputs. This
result, which is the first contribution of the paper, enables



one to employ existing NMPC scenarios, with a priori
ISS guarantee with respect to additive disturbances, in an
observer based NMPC scenario. Next, in Section VI we
prove ISS of the estimation error dynamics of the observer
with respect to disturbances due to imperfection of the
predicted future control inputs fed to the observer, i.e.
the predicted future input sequence does not coincide in
general with the real input sequence applied to the system.
This is the second contribution of the paper. In Section
VII the stability property of the NMPC-observer inter-
connection is investigated. The ISS results obtained for
the NMPC controller and the ISS result of the estimation
error dynamics of the observer, together with small gain
arguments from [9], are used to prove asymptotic stability
of the proposed OBNMPC closed-loop system, which is
the main result of this paper. Conclusions are summarized
in Section VIII.

II. PRELIMINARIES

Let R, R+, Z andZ+ denote the field of real numbers,
the set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively.Z≥i denotes
the set{k ∈ Z|k ≥ i} for somei ∈ Z. A function γ : R+ →
R+ is a K -function if it is continuous, strictly increasing
and γ(0) = 0. A function β : R+ ×R+ → R+ is a K L -
function if, for each fixedk ∈ R+, the functionβ (·,k) is a
K -function, and for each fixeds∈R+, the functionβ (s, ·)
is non-increasing andβ (s,k) → 0 ask → ∞. Composition
of two functions f : R

n → R
m andg : R

v → R
n is denoted

by f ◦g. A function f (x) is calledsmooth if it is infinitely
many times differentiable. A smooth function which has
the property that the Taylor series at any pointx0 in its
domain is convergent forx close enough tox0 and its value
equals f (x) is called ananalytic function. The class of
analytic functions is denoted byCω . A function φ : R+ →
R

n, i.e. φ(k), is for shorthand notational purposes also
denoted asφk. Further limk→∞φk is a shorthand notation
for limk→∞ supφk. For anyx ∈ R

n, xi with i ∈ {1,2, ...,n}
stands for theith component ofx and |x| stands for its
Euclidean norm. For an×m matrix A, |A| stands for its
induced matrix norm. For any functionφ : Z+ → R

n, we
denote‖φ‖ = sup{|φk| : k ∈ Z+}. For a setS ⊆ R

n, we
denote by∂S the boundary ofS , by int(S ) its interior
and by cl(S ) its closure. For two arbitrary setsS ⊆ R

n

and P ⊆ R
n, S ∼ P , {x ∈ R

n | x +P ⊆ S } denotes,
their Pontryagin difference.

Definition II.1 A function q : X×S → R
n with X ⊆ R

nx

and S ⊆ R
ns is Lipschitz continuous with respect tox in

the domainX× S, if there exists a constant 0≤ Lq < ∞
such that for allx1, x2 ∈ X and for all s ∈ S,

|q(x1,s)−q(x2,s)| ≤ Lq|x1− x2|. (1)

The constantLq is called the Lipschitz constant ofq with
respect tox.

A. Systems theory notions

Consider the following discrete-time nonlinear system

ξk+1 = F(ξk,vk)

ζk = G(ξk,vk)
, ξk=0 = ξ0, k ∈ Z+, (2)

where ξk ∈ R
n is the state,ζk ∈ R

l the output andvk ∈
V ⊆ R

m the input at discrete timek ∈ Z+. The input
vk can be an unknown disturbance at timek ∈ Z+. V

is assumed to be a known compact set with 0∈ int(V).
Further, F : R

n ×R
m → R

n and G : R
n ×R

m → R
l are

nonlinear, possibly discontinuous, functions. For simplicity
we assume thatξe = 0 is an equilibrium of the 0-input
system, i.e.F(0,0) = 0, and thatG(0,0) = 0. A solution
to the difference equation (2) for a given input functionv
and initial conditionξ0 is denoted asξ (·,ξ0,v).

Definition II.2 A setP ⊆R
n is called aRobust Positively

Invariant (RPI) set for system (2) if for allξk ∈P it holds
that F(ξk,vk) ∈ P for all vk ∈ V andk ∈ Z+.

Definition II.3 Let Z be a subset ofRn, with 0∈ int(Z ).
Then,

i) system (2) is called locallyinput-to-state stable
(ISS) if there exist aK L -function βξ and a
K -function γv

ξ such that, for each bounded input
function v and each initial conditionξ0 ∈ Z , it
holds that for eachk ∈ Z+

|ξ (k,ξ0,v)| ≤ βξ (|ξ0|,k)+ γv
ξ (‖v‖), (3)

ii) system (2) is called locallyinput-to-output stable
(IOS) if there exist aK L -function βζ and aK -
function γv

ζ such that, for each bounded inputv
and each initial conditionξ0 ∈ Z , it holds that
for eachk ∈ Z+

|ζ (k,ξ0,v)| ≤ βζ (|ξ0|,k)+ γv
ζ (‖v‖). (4)

Another formulation of the ISS notion in Definition II.3 is
one where (3) is replaced by

|ξ (k,ξ0,v)| ≤ max
{

β̃ξ (|ξ0|,k), γ̃v
ξ (‖v‖)

}
, (5)

for some K L -function β̃ξ and K -function γ̃v
ξ . Note

that if trajectory ξ (k,ξ0,v) of (2) satisfies property (3)
in Definition II.3, then it is sufficient to takẽβξ = 2βξ
and γ̃v

ξ = 2γv
ξ for (5) to hold. This also holds for the IOS

property (4) in Definition II.3.

Definition II.4 Let Z ⊆R
n, with 0∈ int(Z ). We say that

the system (2) has theasymptotic gain (AG) property if for
all ξ0 ∈Z and each bounded input functionv there exists
someK -function γAG (asymptotic gain) such that

lim
k→∞

|ξ (k,ξ0,v)| ≤ γAG

(
lim
k→∞

|vk|

)
. (6)

In Lemma 3.8 given in [9] it is stated that if the system
trajectories admit property (5), theñγv

ξ can be taken as the
asymptotic gainγAG of the system.



Definition II.5 Let Z ⊆ R
n, with 0∈ int(Z ). System (2)

is called (locally)0-asymptotically stable (0-AS) if for all
ξ0 ∈ Z and inputv = 0 there exists aK L -function βξ
such that for eachk ∈ Z+

|ξ (k,ξ0,0)| ≤ βξ (|ξ0|,k). (7)

Lemma II.6 [9], [13] Let Z be an RPI set for system(2)
with 0 ∈ int(Z ) and letα1(|ξ |) , a|ξ |λ , α2(|ξ |) , b|ξ |λ
andα3(|ξ |) , c|ξ |λ for somea,b,c,λ > 0 andσ ∈K . Let
V : R

n → R+ be a function withV (0) = 0. Consider now
the following inequalities:

α1(|ξ |) ≤V (ξ ) ≤ α2(|ξ |), (8a)

V (F(ξ ,v))−V (ξ ) ≤−α3(|ξ |)+σ(|v|). (8b)

If inequalities (8) hold for all ξ ∈ Z , v ∈ V, then
the perturbed system(2) is (locally) ISS with re-
spect to inputv in V for initial conditions ξ0 in Z .
Moreover, the ISS property of Definition II.3 is satis-
fied with βξ (|ξ0|,k) , α−1

1 (2ρkα2(|ξ0|)) and γv
ξ (‖v‖) ,

α−1
1 (2σ(‖v‖) 1

1−ρ ), whereρ , c
b ∈ [0,1).

The proof of Lemma II.6 can be based on the proof of
Lemma 3.5 in [9]. A complete proof, including how the
specific form of theβξ and γv

ξ functions are obtained, is
given in [13]. Note that, the conditions (8a), (8b) imply
Lyapunov asymptotic stability for the 0-input system.

Definition II.7 A function V : R
n → R+ that satisfies

the hypothesis of Lemma II.6 is called anISS Lyapunov
function.

B. MPC notions

Consider the following nominal and perturbed discrete-
time nonlinear systems

xk+1 = f (xk,uk), k ∈ Z+, (9a)

x̃k+1 = f (x̃k,uk)+wk, k ∈ Z+, (9b)

where xk, x̃k ∈ R
n and uk ∈ R

m are the state and the
input at discrete-timek ∈ Z+, respectively. Furtherf :
R

n×R
m →R

n is a nonlinear Lipschitz continuous function
with respect tox in the domain of interest withf (0,0) = 0.
The vectorwk ∈ W ⊆ R

n denotes an unknown additive
disturbance andW is assumed to be a known compact
set with 0∈ int(W). The nominal discrete-time nonlinear
system (9a) will be used in a NMPC scheme to make anN
time steps ahead prediction of the systems behavior. The
system given by (9b) represents a perturbed discrete-time
system to which the NMPC controller based on the nom-
inal model (9a) will be applied to. Throughout the paper
we assume that the state and the controls are constrained
for both systems (9a) and (9b) to somecompact subsetsX
of R

n andU of R
v, respectively, which contain the origin

in their interior.
For a fixed N ∈ Z≥1, let x[1,N]

k (x̃k,u
[0,N−1]
k ) ,

[x⊤k+1|k, . . . ,x
⊤
k+N|k]

⊤ denote the state sequence generated

by the nominal system (9a) from initial statexk|k ,

x̃k and by applying the input sequenceu[0,N−1]
k ,

[u⊤k|k, . . . ,u
⊤
k+N−1|k]

⊤ ∈ U
N , whereU

N , U× ...×U. Fur-
thermore, letXT ⊆ X denote a desired target set that con-
tains the origin. The class ofadmissible input sequences
defined with respect toXT and statexk ∈ X is UN(x̃k) ,

{u[0,N−1]
k ∈ U

N | x[1,N]
k (x̃k,u

[0,N−1]
k ) ∈ X

N , xk+N|k ∈ XT}.

Problem II.8 Let the target setXT ⊆ X andN ∈ Z≥1 be
given and letF : R

n →R+ with F(0) = 0 andL : R
n×R→

R+ with L(0,0) = 0 be continuous bounded mappings.
At time k ∈ Z+, let x̃k ∈ X be given and minimize
the costJ(x̃k,u

[0,N−1]
k ) , F(xk+N|k)+∑N−1

i=0 L(xk+i|k,uk+i|k),

with prediction model (9a), over allu[0,N−1]
k ∈ UN(x̃k).

In the NMPC literatureF , L andN are called the terminal
cost, the stage cost and the prediction horizon, respectively.
We call a state ˜xk ∈ X feasible if UN(x̃k) 6= /0. Similarly,
Problem II.8 is said to befeasible for x̃k ∈X if UN(x̃k) 6= /0.
Let X f (N) ⊆ X denote the set offeasible initial states
with respect to Problem II.8 and letVMPC : X f (N) → R+,

VMPC(x̃k) , inf
u[0,N−1]

k ∈UN(x̃k)

J(x̃k,u
[0,N−1]
k ) (10)

denote the NMPC value function corresponding to Prob-
lem II.8. The existence of a minimum in (10) is usually
guaranteed by assuming compactness ofU and continuity
of the dynamics (9a), the stage and terminal costs [14]. We
assume in the sequel that there exists a feasible sequence
of controlsu[0,N−1]

k , [u⊤k|k,u
⊤
k+1|k, . . . ,u

⊤
k+N−1|k]

⊤, possibly
sub-optimal, for Problem II.8 and any state ˜xk ∈ X f (N).
Then,VMPC(x̃k) = J(x̃k,u

[0,N−1]
k ) denotes the NMPC value

function and thethe NMPC control law is defined as

uk = κMPC(x̃k) , uk|k, k ∈ Z+. (11)

Substituting (11) in (9b) yields the closed-loop system

x̃k+1 = f (x̃k,κMPC(x̃k))+wk, wk ∈ W ⊆ R
n, k ∈ Z+.

(12)
Since the model predictive control law (11) is discon-
tinuous in general, even when simple continuous feed-
back stabilizers and Lyapunov functions exist [3], (12)
is discontinuous in general too. In literature there are
various NMPC schemes with an a priori guarantee that
(12) is ISS with respect tow as additive disturbance input,
see for example [4], [13], [15], [16], [17]. In all these
approaches it is shown that there are conditions under
which a candidate ISS Lyapunov function, mostlyVMPC,
satisfies the hypothesis of Lemma II.6 for initial conditions
x̃0 in some subsetX f (N) with 0 in its interior. In Section V
we will elaborate on this issue.

A well known property, which is often employed to
prove stability of NMPC schemes, see for example [4],
is regularity.

Definition II.9 Regularity is obtained when the future
inputspredicted by the model predictive controller satisfy

|uk+i|k| ≤ θi|xk|k| for i = 0, . . . ,N −1, (13)

for some constantsθi > 0.



III. E XTENDED OBSERVERTHEORY: AN

INTRODUCTORYSURVEY

In this paper we use the extended observer theory
proposed in [10], [11]. For notational brevity we consider
the theory for the single input single output case, although
the theory applies in the multiple input output case as well.
Consider the following system

xk+1 = f (xk,uk)

yk =g(xk)
, xk=0 = x0, k ∈ Z+, (14)

wherexk ∈ R
n, uk ∈ R andyk ∈ R is the state, the control

and the output at discrete-timek∈Z+, respectively. Further
f : R

n×R
m →R

n andg : R
n →R are analytic i.e.f ,g∈Cω

with f (0,0) = 0 andg(0) = 0. The observer problem for
(14) deals with the question how to reconstruct the state
trajectoryx(·,x0,u) on the basis of the knowledge of the
input u and the outputy of the system. The problem
of observer design in its full generality is a problem
that is not yet fully solved for nonlinear systems of the
form (14). A proposed potential observer candidate for a
broad class of discrete-time nonlinear systems is studied
in this paper. To be more precise, observer design for a
class of systems that can be expressed in the so called
Extended Nonlinear Observer Canonical Form (ENOCF)
is considered. Observers that are based on the system form
in ENOCF are denoted byextended observers. One of the
major characteristics that distinguishesextended observers
form “conventional“ observers, is that not only the output
(input) at the current timeyk is employed to obtain an
estimate of the state trajectoryx, but, as in the receding
horizon observer approach [18], additional knowledge of
past information present in the output trajectoryy is also
taken into account.

A. Observers in ENOCF

A system representation in ENOCF, or the z-dynamics
for brevity, reads as

zk+1=Azzk + fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )

yk =hz(Czzk,u
[1−n,0]
k )

, zk=0 = z0, k ∈Z+,

(15)

with Az ,




0 . . . 0 0
1 . . . 0 0
...

...
...

...
0 . . . 1 0


 , Cz , [0. . .0 1],

fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ),




fz,0(yk,uk,u
[1,n]
k )

fz,1(y
[−1,0]
k ,u[−1,0]

k ,u[1,n−1]
k )

...

fz,n−1(y
[1−n,0]
k ,u[1−n,0]

k ,uk+1)




,

where y[1−n,0]
k , [yk−n+1, ...,yk]

⊤, u[1−n,0]
k ,

[uk−n+1, ...,uk]
⊤, u[1,n]

k , [uk+1, ...,uk+n]
⊤, zk ∈ R

n

represent the past output, input, future input and state
in z-coordinates at discrete timek ∈ Z+, respectively.
Further, fz : R

n × R
n × R

n → R
n and hz : R × R

n → R

are nonlinear functions, wherehz is, for fixed input

sequence, an invertible output function for the system
in ENOCF. Except for the future input sequence, all
other sequences are known at timek if input and output
variables (measurements) are buffered. The dependence on
the future input variables corresponds (or can be compared
to) the appearance of (also unknown) time derivatives of
the input in the generalized continuous-time observer from
[19]. Why a system representation in ENOCF is future
input dependent, in the considered discrete-time context,
will become clear later when details on the existence of
a system representation in ENOCF are discussed. First
we focus on the existence of observers for the system
representation in ENOCF. Observer candidates based on
the system descriptions in ENOCF were proposed in
[10]. One of the observer candidates simply consists of
a “copy“ of the z-dynamics (15) added with an output
injection term (also known as an “innovation“ term)
[ℓ1, ..., ℓn]

⊤(h−1
z,ufixed(yk,u

[1−n,0]
k )− ẑn,k), i.e.

ẑk+1 = Azẑk+ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )+

[ℓ1, ..., ℓn]
⊤(h−1

z,ufixed(yk,u
[1−n,0]
k )

︸ ︷︷ ︸
zn,k

−ẑn,k), (16)

with ẑn,k = Czẑk, ẑk=0 = ẑ0, k ∈ Z+ and h−1
z,ufixed represents

for a fixed input sequenceu[1−n,0]
k the inverse function

of hz in (15). Further, ℓ1, ..., ℓn represent the observer
gains. The observer gains can be used to assign a certain
dynamic behavior of the observerz-error dynamics. The
z-error dynamics is the dynamics which describes the
evolution of thez-error defined at each timek ∈ Z+ as
ez,k , zk − ẑk. Due to the fact that the statezk of a system
representation in ENOCF appears linearly in the system
equations and all nonlinearity enters the state equations
via the nonlinear functionfz, depending only on input and
output sequences of the system, linear autonomousz-error
dynamics is obtained. Thez-error dynamics for (15) and
(16) reads as

ez,k+1 = Aℓez,k, with Aℓ ,

(
Az − [ℓ1, ..., ℓn]

⊤Cz

)
. (17)

In the next subsection it will become clear that a system
description in ENOCF is not unique. To some extent there
is freedom in choosing the structure for the functionfz

(and alsohz). A possible structure for the functionfz is
fz = [0, ...,0, fz,n−1]

⊤. Based on this structure offz, another
observer candidate in ENOCF is proposed in [10] and is
given by

ẑk+1 =




0
...
0

fz,n−1




︸ ︷︷ ︸
fz

+




q1ẑ1,k
...

qn−1ẑn−1,k

qn(ẑn,k −h−1
z,ufixed(yk,u

[1−n,0]
k ))


 , with

(18)
ẑk=0 = ẑ0, k ∈ Z+ and where[q1, ...,qn]

⊤ ∈ R
n denote the

observer gains. Thez-error dynamics of the observer in



(18) then reads as

ez,k+1 , zk+1− ẑk+1 =




0
z1,k
...

zn−1,k


−




q1ẑ1,k
...

qn−1ẑn−1,k

qn(ẑn,k − zn,k)


 . (19)

Then, after n − 1 time iterations we have that
z1,k = 0, ...,zn−1,k = 0 irrespective of the initial condition
z0. This follows directly from the structure of the dynamics
(15) and the fact thatfz,0,...,fz,n−2 have been chosen to be
identically zero. This observation implies that aftern−1
time steps thez-error dynamics given by (19) behaves
linearly according to

ez,k+1 = Aqez,k, with Aq , diag{[q1, ...,qn]}. (20)

The matrices defining thez-error dynamics of both ob-
servers (16) and (18) can always be rendered Schur by
choosing appropriate observer gains such that the proposed
observers are asymptotically stable. Therefore, systems
that can be transformed into ENOCF admit the design of
several suitable observers for (15).

B. Existence of equivalence relation

Previously, we showed that if the dynamics of a system
is given in the extended nonlinear observer canonical form
(15), then it is always possible to design an observer
for this system. However, the following question remains
open: What can be done if the dynamics are not in the form
of (15) but in the more common form given by (14)? In this
subsection we will therefore show under which condition
system (14) can be transformed into (15).

In order to answer the posed question, we have to recall
the strongly local observability notion [20]. For conve-
nience we first introduce theobservability map for non-
autonomous discrete-time nonlinear systems, which was
already defined for discrete-time nonlinear autonomous
systems in [21], [22].

Definition III.1 The observability mapψ of the system
given by (14) is defined as:

ψ(xk,u
[0,n−2]
k ) ,




g( f 0(xk))
g( f 1(xk,uk))

...
g( f n−1(xk, [uk, ...,uk+n−2]

⊤))


 , (21)

where f 0(xk) = xk, f i(xk, [uk, ...,uk+i−1]
⊤) =

f ( f (... f ( f (xk,uk),uk+1), ...,),uk+i−1), with i ≥ 1.

Next, strongly locally observability is introduced.

Definition III.2 i) Let N ∈ X be an open neighborhood
around some statex0 ∈X and let ˘x0 be a state inN . Then,
system (14) isstrongly locally observable in x̆0, if for all
states ˘x0 ∈ N resulting in the same output sequence as
obtained byx0, i.e.

ψ(x0,u
[0,n−2]
0 ) = ψ(x̆0,u

[0,n−2]
0 ), (22)

for all admissible input sequencesu[0,n−2]
k , implies that

x0 = x̆0.
ii) System (14) isstrongly locally observable, if i) holds

for all x0 ∈ X.

The wordlocally refers to the fact that two states must be
distinguishable in some neighborhoodN . And the word
strongly refers to the distinguishability of the states after
observing the output trajectory for a finite number of time
steps (n time steps). A sufficient condition for system (14)
to bestrongly locally observable in x0 is the following rank
condition,

rank

{
∂ψ(x,u[0,n−2]

k )

∂xk

∣∣∣∣
x=x0

}
= n, ∀u[0,n−2]

k ∈ U
n−1,

(23)
whereU

n−1 ⊆R
n−1 andψ is defined as in (21). Condition

(23) is sufficient1 for the existence of a one-to-one smooth
invertible map of the observability map for fixed input
sequences. This follows from the fact thatψ is analytic
(because f and h are analytic). The inverse function
of ψ for fixed input sequences is denoted asψ−1

ufixed. If
system (14) isstrongly locally observable, thenψ in (21)
acts for fixed inputs, as a (local) diffeomorphism relating
state xk satisfying (14) to a statesk satisfying another
representation of system (14) having the form

sk+1 =




s2,k
...

sn,k

fs(sk,u
[0,n−1]
k )


 , yk = s1,k, sk=0 = s0, (24)

where

sk = ψ(xk,u
[0,n−2]
k ) ⇔ xk = ψ−1

ufixed(sk,u
[0,n−2]
k ), (25)

fs(sk,u
[0,n−1]
k ) = g( f n(ψ−1

ufixed(sk,u
[0,n−2]
k ),u[0,n−1]

k )). (26)

Note that system (24) is obtained by definingsk as
sk , [yk−1, ...,yk−n+1]

⊤. By defining sk in this manner
future input sequence dependence, as is encountered in the
previous subsection, is introduced. Next it will be shown
that from statesk one can obtain statezk satisfying (15)
employing for fixed input and output sequences a map
Ω : R

n ×R
n−1×R

n ×R
n → R

n, i.e.

zk = Ω(sk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ), (27)

where y[1−n,−1]
k , [yk−n+1, ...,yk−1]

⊤, and u[1,n−1]
k ,

[uk+1, ...,uk+n−1]
⊤. The motivation for (27) can be ex-

plained by considering the structure of the system rep-
resentation in ENOCF (15) and taking into account that
sk , [yk−1, ...,yk−n+1]

⊤. Taking the inverse of the output
equation of (15) for fixed input sequenceu[1−n,0]

k yields

zn,k = h−1
z,ufixed(yk,u

[1−n,0]
k ). Substitution ofyk by s1,k results

in zn,k = h−1
z,ufixed(s1,k,u

[1−n,0]
k ). From the last component of

1Note that the rank condition (23) is sufficient for invertibility. Take for
exampleψ = x3. The rank condition is obviously not satisfied. However,
a one-to-one inverse function exists.



the state equation (15), it follows thatzn−1,k = zn,k+1 −

fz,n−1(y
[1−n,0]
k ,u[1−n,0]

k ,uk+1) wherezn,k+1 can be replaced

by h−1
z,ufixed(yk+1,u

[2−n,1]
k ) and yk+i, i = 0,1, ...,n − 1, by

si+1,k. Continuing in this way, one obtains the following
structure forΩ in (27):

z1,k ,h−1
z,ufixed(sn,k,u

[0,n−1]
k )

−
n−1

∑
j=1

fz, j(yk−1,s1,k, . . . ,s j,k,u
[−1,n−1]
k )

...

zn−2,k ,h−1
z,ufixed(s3,k,u

[3−n,2]
k )

− fz,n−1(y
[2−n,−1]
k ,s1,k,s2,k,u

[2−n,2]
k )

− fz,n−2(y
[2−n,−1]
k ,s1,k,u

[2−n,2]
k )

zn−1,k ,h−1
z,ufixed(s2,k,u

[2−n,1]
k )

− fz,n−1(y
[1−n,−1]
k ,s1,k,u

[1−n,1]
k )

zn,k ,h−1
z,ufixed(s1,k,u

[1−n,0]
k ).

(28)

The following composition ofΩ andψ, i.e.

zk = Ξ(xk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ) , Ω◦ψ, (29)

then acts, for fixed input and output sequences (Ξuyfixed),
as a local diffeomorphism aroundx0 relating the statexk

from (14) andzk from (15), iff (14) is strongly locally
observable atx0. The interested reader can find a detailed
proof in [10].

Note that the observer design based on the system
representation in ENOCF is thus based on the selection
of two functions, namelyfz andhz. A question still unan-
swered is, what criteria the functionsfz andhz must satisfy
in order to obtain a system representation in ENOCF
and its coordinate transformation (29) relating the system
representation in ENOCF to (14). In [10] it is shown that
this criteria for fz andhz is given by

h−1
z,ufixed( fs(sk,u

[0,n−1]
k ),u[1,n]

k ) =

n−1

∑
j=0

fz, j(s1,k,s2,k, ...,s j+1,k,u
[0,n]
k ).

(30)

Note that there are various possibilities to choose the
functions fz and hz. This means that given system (14),
there can exist multiple system representations of this
system in ENOCF. We can now summarize the previous
in the following result

Theorem III.3 [10] Let (14) be strongly locally observ-
able at x0. Then, for all functionsfz : R

n × R
n × R

n →
R

n and hz : R × R
n → R satisfying (30) Ξ, defined in

(29), acts, for fixed input and output sequences as a local
diffeomorphism relating statexk satisfying(14) and a state
zk satisfying a system representation in ENOCF(18).

In Subsection III-A we showed that (16) and (18) are
observers for a system representation in ENOCF. Then, via
the result established in this subsection one can conclude

that under the condition that the system (14) islocally
strongly observable the observers given by (16) and (18)
are (local) observers for (14). Via the coordinate transfor-
mation map (29) the estimated state inz-coordinates can
be mapped to estimates of the state inx-coordinates. By
continuity of the transformation map (29), it can be argued
that the behavior of the estimation error inx-coordinates
ex,k = xk − x̂k is representable for the behavior assigned
for in the z-coordinates. Although the observers seem to
be global observers in the z-coordinates, the observers are
locally defined inx-coordinates. This follows from the fact
that the equivalence relation between thez-dynamics and
the x-dynamics denoted by (29) is not globally defined
in general due to the local nature of the strongly locally
observability notion. Therefore the observer candidates are
in general only locally well defined. However, if the equiv-
alence relation between the system representation (15) and
(14) is defined globally also the observer candidates will
be global observer candidates for (14).

IV. PROBLEM FORMULATION

Consider the system dynamics given by (14). The full
state xk is assumed not to be available for feedback.
For feedback, an estimate of the state ˆxk is fed to an
NMPC controller instead, i.e.uk = κMPC(x̂k). The state
estimate ˆxk is generated by, for example, observer (16) or
(18) in combination with the mapΞ−1

uyfixed defined in (29).
The observer candidates appear to be (local) observers
for a broad class of systems of the form (14) under the
assumption that the future input sequenceu[1,n]

k is known
a priori. Still, the future input sequence is not known a
priori. Under the assumption that the prediction horizon
of the NMPC controller is sufficiently long (N ≥ n), one
can employ a part of thepredicted future input sequence
obtained by the NMPC controller at every time stepk,
denoted byu[1,n]

k , and feed this sequence to the observer

as an educated guess for the unknown sequenceu[1,n]
k . In

Fig. 1 a block diagram of the resulting control scheme is
presented. The major question that must be answered in

NMPC

Extended
Observer

System
(14)

yk
u[1,n]

k

uk

x̂k

Fig. 1. Proposed OBNMPC Scheme.

order to show that the proposed OBNMPC scheme can
work, is whether the resulting closed-loop system can be
rendered (locally) asymptotically stable to the origin (x = 0
and ex , x− x̂ = 0). An outline of the reasoning used to
answer this question is given in the sequel.

A. Outline of the approach

In order not to destabilize the model predictive controller
with the estimation error presented in the state information



introduced by the observer, we want to synthesize a model
predictive controller which is robust to the estimation error.
Notions of input-to-state-stability (ISS) are used for this
purpose. Once the controller in closed-loop with system
(14), e.g.

xk+1 = f (xk,κMPC(xk + ex,k)), ex,k ∈ Ex ⊆ R
n, k ∈ Z+,

(31)
is (locally) ISS with respect to the estimation errorex, it is
known that if the estimation error vanishes, e.g.ex,k → 0 for
k → ∞ also xk → 0 for k → ∞. This follows directly from
the ISS system property given in Definition II.3. Following
this approach, we in fact decouple the observer design
problem from the controller design problem. An approach
to synthesize an NMPC controller that renders (31) ISS
with respect toex is given in the next section.

As pointed out before, under the assumption that system
(31) is ISS, a sufficient condition which will lead to
asymptotic stability of the OBNMPC scheme is that the
estimation error vanishes, i.e.ex,k → 0 for k → ∞. The
condition under which the error of the observer candidate
vanishes is easy to find if the futurepredicted input
sequenceu[1,n]

k , from the NMPC controller, coincides with

the actual future input sequenceu[1,n]
k . In that case, as

shown in Section III, the error dynamics of the observer
is asymptotically stable (ex,k → 0 for k → ∞), and thus
with the ISS assumption on (31) we also havexk → 0 for
k → ∞. For this situation (perfect future input sequence
predictions), The major question considered in this paper
is thus trivially answered. However, since thepredicted and
real future input sequences do not coincide in general, the
asymptotic stability result of the estimation error dynamics
pointed out in Section III cannot be applied for this
scenario. A closer study to the error dynamics of the
observer in the case of an imperfectpredicted future input
sequence is therefore necessary.

In case the predicted future input sequenceu[1,n−1]
k fed

to the proposed observer candidates (16) or (18) does not
coincide with the real future input sequenceu[1,n−1]

k in the
dynamics in ENOCF (15), cancellation of the nonlinearity
in the derivation of thez-error dynamics as in Section III
is not realized. Taking this fact into account and defining
the future predicted input error sequence ase[1,n]

u,k , u[1,n]
k −

u[1,n]
k , the error dynamics of the observer in z-coordinates

is given by

ez,k+1 = Aiez,k +∆ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ,e[1,n]

u,k ), (32)

whereAi , Aℓ or Ai , Aq (depending on which observer
structure, either (16) or (18), is used) and∆ fz is of the
form

∆ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ,e[1,n]

u,k ) ,

fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k −e[1,n]

u,k )

− fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ),

with ∆ fz(·, ·, ·,0) = 0.

Remark IV.1 If the predicted future input sequence would
coincide with the actual future input sequence (e[1,n]

u,k = 0),
one recovers the linear autonomous description of the error
dynamics defined by either (16) or (18).

The estimation error inx-coordinates manifests itself via
the coordinate transformation map given by (29). The
influence of the mismatch between the predicted future
input sequence and the actual future input sequence on the
estimation error inx-coordinates (ex) can be studied using
the coordinate transformation map given in (29). Note that

ex,k = ∆Ξ(ez,k, ẑk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ,e[1,n−1]

u,k )

, Ξ−1
uyfixed(ẑk − ez,k,y

[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k −e[1,n−1]

u,k )
︸ ︷︷ ︸

xk

−Ξ−1
uyfixed(ẑk,y

[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k )

︸ ︷︷ ︸
x̂k

,

(33)
where∆Ξ(0, ·, ·, ·, ·,0) = 0. Equations (32) and (33) define
the x-error dynamics of the observer candidates in case
of feeding an imperfect predicted future input sequence to
the observers. The error dynamics has now become a non-
autonomous system. In Section VI it will be proven that
the z-error dynamics given by (32) is ISS with respect to
future input prediction errorse[1,n]

u,k .
In Section VII the cascade, as depicted in Fig. 2, of the

ISS (IOS) observer error dynamics (32), (33) and the ISS
NMPC controller in closed-loop with (14) is considered.

Observer
error dynamics

(32), (33)

System (31)
xk+1 = f (xk,κMPC(xk + ek))

e[1,n]
u ex x

Fig. 2. ISS, IOS observer error dynamics (with respect toe[1,n]
u as input)

cascaded with the ISS NMPC controller in closed-loop with (14) (with
respect toex as input).

The state and input of the cascaded system in Fig. 2 is
denoted by(ez,k,xk) and e[1,n]

u , respectively. By assuming
regularity of the NMPC controller, it is proven that one can
tune the NMPC controller and observer tuning parameters
such that the prediction errore[1,n]

u , present in thepredicted
future inputu[1,n]

k , will asymptotically decay to zero, i.e.

e[1,n]
u → 0 for k → ∞. Due to the asymptotic decaying

property of e[1,n]
u and the IOS and ISS property of (32),

(33) and the ISS NMPC controller in closed-loop with
(14), respectively, one can conclude that the cascade in
Fig. 2 is (locally) asymptotically stable. This implies (lo-
cal) asymptotic stability of the proposed OBNMPC scheme
as presented in Fig. 1.

V. CONTROLLER DESIGN: ISS W.R.T. ADDITIVE

DISTURBANCES IMPLIESISS W.R.T. ESTIMATION

ERRORS FORL IPSCHITZ CONTINUOUS SYSTEMS

As explained in the previous section, we seek for NMPC
schemes that can render (31) ISS with respect to estimation



error ex. Rendering system (31) ISS with respect to the
estimation errorex by using NMPC is however difficult.
The problem was considered in [5], where robustness to es-
timation errors is shown under the assumption of Lipschitz
continuity of the NMPC value function and control law.
A similar result was obtained more recently in [6], under
the milder assumption of continuity of the NMPC value
function. To the authors knowledge, besides the result of
[6], no general practically applicable NMPC schemes are
available in literature that can a priori guarantee ISS of (31)
with respect to the estimation errorex as input. However,
due to the result obtained in this section we can infer
ISS of (31) with respect toex from ISS of (12) with
respect to additive disturbancesw. This result then allows
us to employ all existing NMPC schemes that can a priori
guarantee ISS of (12) to also establish a priori ISS of (31).
Note that there are several MPC schemes for nonlinear
systems that have an a priori ISS guarantee with respect
to additive disturbances, see for example, [1], [4], [13],
[16], [17].

The standing assumption is Lipschitz continuity of the
function f , with respect tox with Lipschitz constantL f

on the domainX × U. Moreover, we assume we have
an NMPC scheme, which renders (12) locally ISS with
respect toadditive disturbancewk and initial conditions ˜x0

in X̃ f (N). AssumeX̃ f (N) is an RPI set of system (12)
and has the origin in its interior, then the following result
can be obtained:

Theorem V.1 Supposeuk = κMPC(x̃k) is an NMPC control
law which renders system(12) locally ISS for initial condi-
tionsx̃0 in X̃ f (N) and additive disturbancesw in W , {w ∈
R

n | ‖w‖ ≤ µ} for someµ > 0 and letL f be the Lipschitz
constant of the system dynamicsf with respect tox. Then,
the NMPC control lawuk = κMPC(xk +ex,k), k ∈Z+, renders
(31) locally ISS for initial conditionsx0 in X̃ f (N), and
estimation errorsex in Ex , {ex ∈ R

n | ‖ex‖ ≤ ν ,
µ

L f +1},
i.e.

|x(k,x0,ex)| ≤ βx(|x0|,k)+ γex
x (‖ex‖), (34)

with βx(|x0|,k) , α−1
1 (2ρkα2(2|x0|)) and γex

x (‖ex‖) ,

α−1
1 (2α2(2‖ex‖))+α−1

1 (2σ((L f +1)‖ex‖)
1

1−ρ )+‖ex‖.

Proof: Consider system (31). We perform the follow-
ing coordinate change on (31), i.e.

xk = x̃k − ex,k, ∀k ∈ Z+, (35)

which gives

x̃k+1 = f (x̃k − ex,k,κMPC(x̃k))+ ex,k+1. (36)

Rewriting (36) as

x̃k+1 = f (x̃k − ex,k,κMPC(x̃k))+ f (x̃k,κMPC(x̃k))

− f (x̃k,κMPC(x̃k))+ ex,k+1
(37)

yields
x̃k+1 = f (x̃k,κMPC(x̃k))+wk, (38)

wherewk , f (x̃k −ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))+ex,k+1.
Using the Lipschitz property off (·,u) for all fixed u in a
compact spaceU leads to

| f (x̃k − ex,k,uk)− f (x̃k,uk)| ≤ L f |ex,k|. (39)

Thus, for allk ∈ Z+ it holds that

|wk| =| f (x̃k − ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))+ ex,k+1|

≤| f (x̃− ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))|+‖ex‖

≤(L f +1)‖ex‖.
(40)

From the hypothesis we have that (38) is locally ISS with
respect tow in W for x̃0 in X̃ f (N). Moreover, from (40)
it follows that (38) is thus locally ISS with respect toex

in Ex for all k ∈ Z+, i.e.

|x̃k(k, x̃0,ex)| ≤ βx̃(|x̃0|,k)+ γex
x̃ (‖ex‖), (41)

where βx̃(|x̃0|,k) , α−1
1 (2ρkα2(|x̃0|)) and γex

x̃ (‖ex‖) =
γw

x̃ ◦ (L f +1)‖ex‖ , α−1
1 (2σ((L f +1)‖ex‖)

1
1−ρ ). Utilizing

the proposed coordinate change (35) and property (41), we
obtain that for allx0, x̃0 ∈ X̃ f (N), k ∈ Z+,

|x(k,x0,ex)| = |x̃k(k, x̃0,ex)− ex,k| ≤ |x̃k(k, x̃0,ex)|+ |ex,k|

≤ βx̃(|x0 + ex,0|,k)+ γex
x̃ (‖ex‖)+ |ex,k|

≤ βx̃(|x0|+ |ex,0|,k)+ γex
x̃ (‖ex‖)+‖ex‖

≤ βx̃(2|x0|,k)+βx̃(2|ex,0|,k)+ γex
x̃ (‖ex‖)+‖ex‖

≤ βx̃(2|x0|,k)+βx̃(2‖ex‖,0)+ γex
x̃ (‖ex‖)+‖ex‖

≤ βx(|x0|,k)+ γex
x (‖ex‖),

(42)
where βx(|x0|,k) , βx̃(2|x0|,k) = α−1

1 (2ρkα2(2|x0|))
and γex

x (‖ex‖) , βx̃(2‖ex‖,0) + γex
x̃ (‖ex‖) + ‖ex‖ =

α−1
1 (2α2(2‖ex‖)) + α−1

1 (2σ((L f + 1)‖ex‖)
1

1−ρ ) + ‖ex‖.
Expression (42) implies (local) ISS of (31) with respect
to ex as input.

VI. OBSERVERDESIGN

In Section IV we derived the error dynamics (32), (33)
of the observer candidates (16) and (18). In this section
we will prove that error dynamics (32), (33) is (locally)
ISS and IOS with respect toe[1,n]

u,k as input. Recall that

e[1,n]
u,k represents the prediction error present in thepredicted

future input sequenceu[1,n]
k fed from the NMPC controller

to the observer candidates at discrete timek ∈ Z+. The
standing assumption for the result in this section isf ,g ∈

Cω , and Lipschitz continuity offz with respect tou[1,n]
k .

Theorem VI.1 Let (14) be strongly locally observable at
x0 andAi in (32) be Schur. Suppose the sequencesy[1−n,0]

k ,

u[1−n,0]
k andu[1,n]

k are bounded for allk ∈ Z+. Then, the z-

error dynamics(32) is ISS with respect toe[1,n]
u as input, i.e.

for all k ∈ Z+

|ez(k,ez,0,e
[1,n]
u )| ≤ max

{
β̃ez(|ez,0|,k), γ̃eu

ez
(‖e[1,n]

u ‖)
}

,

(43)



where β̃ez(|ez,0|,k) , 2ℏηk|ez,0|, γ̃eu
ez

(‖e[1,n]
u ‖) ,

2ℏ

1−η L fz‖e[1,n]
u ‖ with ℏ > 0 and η ∈ [0,1) such that

|Ak| ≤ ℏηk holds2. Moreover, thex-error dynamics defined
by (32), (33) is (locally) IOS with respect to inpute[1,n]

u
with

|ex(k,ez,0,e
[1,n]
u )| ≤ max

{
β̃ex(|ez,0|,k), γ̃eu

ex
(‖e[1,n]

u ‖)
}

,

(44)
where β̃ex(|ez,0|,k) , LΞβ̃ez(|ez,0|,k), γ̃eu

ex
(‖e[1,n]

u ‖) ,

LΞ max{ 2ℏ

1−η L fz ,1}‖e[1,n]
u ‖ andLΞ is the Lipschitz constant

of the functionΞ−1
uyfixed with respect to the argumentszk and

u[1,n−1]
k .

Proof: The z-error dynamics defined by (32) can be
seen as a non-autonomous linear system, i.e.

ez,k+1 = Aiez,k + vk, ez,k=0 = ez,0, (45)

where inputvk is defined as

vk , ∆ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ,e[1,n]

u,k ).

The function fz is Lipschitz continuous with respect to
u[1,n]

k , therefore there exists for all fixed bounded sequences

y[1−n,0]
k , u[1−n,0]

k andu[1,n]
k a Lipschitz constantL fz such that

for all k ∈ Z+

|vk| = |∆ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ,e[1,n]

u,k )| ≤ L fz‖e[1,n]
u ‖.

(46)
SinceAi in (45) is Schur, there exist constantsℏ > 0 and
η ∈ [0,1) such that|Ak

i | ≤ ℏηk holds, e.g. see [9]. From
(45), we have that

ez,k+1 = Ak+1
i ez,0 +

k

∑
j=0

Ak− j
i v j, (47)

which yields that the ISS property in Definition II.3 holds
with

βez(|ez,0|,k),ℏηk|ez,0|, γv
ez
(‖v‖),

∞

∑
j=0

ℏη j‖v‖,
ℏ

1−η
‖v‖.

Via (46) we obtain (local) ISS of (32) (in the sense of (5))
with respect toe[1,n]

u as input, for

β̃ez(|ez,0|,k) , 2ℏηk|ez,0|, γ̃eu
ez

(‖e[1,n]
u ‖) ,

2ℏ

1−η
L fz‖e[1,n]

u ‖.

Next, since the mapΞ−1
uyfixed(·,y

[1−n,0]
k ,u[1−n,0]

k , ·) is Lipschitz

continuous, for all fixed bounded sequencesy[1−n,−1]
k and

u[1−n,0]
k , with respect to the first and last argument with

Lipschitz constantLΞ, we obtain that for allk ∈ Z+

|ex,k| = |∆Ξ(ez,k, ẑk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ,e[1,n−1]

u,k )|

≤ LΞ max
{
|ez,k|,‖e[1,n−1]

u ‖
}

,

(48)
Substitution of (43) in (48) results in (44) with theK L -
and K -functions β̃ex and γ̃eu

ex
, respectively, as stated in

Theorem VI.1.

2L fz is the Lipschitz constant of the functionfz in (15) with respect

to the argumentu[1,n]
k

Next it will be shown that there exists an explicit bound
on ex satisfying (32), (33) for alle[1,n]

u in some compact
setEeu with zero in its interior.

Lemma VI.2 Let (14) be strongly locally observable atx0

and Ai in (32) be Schur. Suppose the sequencesy[1−n,0]
k ,

u[1−n,0]
k , u[1,n]

k are bounded ande[1,n]
u ∈ Eeu whereEeu ,

{e[1,n]
u ∈ R

n | ‖e[1,n]
u ‖ ≤ εeu} with εeu > 0. Then, for ini-

tial conditions ez,0 in Ez with Ez , {ez,0 ∈ R
n | |ez,0| ≤

1
1−η L fz εeu}, the trajectoryex(k,ez,0,e

[1,n]
u ), satisfying thex-

error dynamics(32), (33), satisfies

|ex(k,ez,0,e
[1,n]
u )| ≤ LΞεeu max

{
2ℏ

1−η
L fz ,1

}
, ∀k ∈ Z+.

(49)
Moreover, for observer(18) there exist observer gains
q1, ...,qn such that

|ex(k,ez,0,e
[1,n]
u )| ≤ LΞεeu , ∀k ∈ Z+. (50)

Proof: From the hypothesis we have that expression
(43) in Theorem VI.1 holds, so that for allk ∈ Z+

|ez(k,ez,0,e
[1,n]
u )| ≤ max

{
β̃ez(|ez,0|,k), γ̃eu

ez
(‖e[1,n]

u ‖)
}

≤ max

{
β̃ez(|ez,0|,k),

2ℏ

1−η
L fz εeu

}

≤ max

{
β̃ez(|ez,0|,0),

2ℏ

1−η
L fz εeu

}
.

(51)
For initial conditionsez,0 ∈ Ez we have that

β̃ez(|ez,0|,0) ≤
2ℏ

1−η
L fz εeu . (52)

Thus, forez,0 ∈ Ez, inequality (51) yields

‖ez‖ ≤
2ℏ

1−η
L fzεeu . (53)

Substituting (53) in (48) and taking into account the fact
that e[1,n−1]

u ⊆ Eeu the first statement in Lemma VI.2, i.e.
(49), follows. The second statement of Lemma VI.2, i.e.
(50), follows from the fact that the diagonal structure of the
matrix Aq, defining thez-error dynamics (32) of observer
candidate observer (18), allows to render the termℏ1−η in
(49) arbitrary small by choosing appropriate observer gains
q1, ...,qn. This can be concluded by employing the relation
|Ak

q| ≤ ℏηk from Theorem VI.1.

VII. I NTERCONNECTIONRESULTS

So far, we haveseparately designed an NMPC con-
troller which is robust (ISS) to estimation errors (ex) and
obtained an observer for which the error dynamics is
robust (IOS) with respect to prediction errorse[1,n]

u present
in the predicted future input sequenceu[1,n] fed to the
observer. In this section we investigate the properties of
the IOS observer error dynamics interconnected with the
ISS NMPC system (31) according to Fig. 2.

The standing assumptions for the results in this section
are



Assumption VII.1

• f ,g ∈Cω ;
• Lipschitz continuity of f with respect tox on the

domainX×U;
• Lipschitz continuity of fz with respect tou[1,n]

k ;
• Regularity of the NMPC controller, in the sense of

Definition II.9, w.r.t the ˆx, i.e. |uk+i|k| ≤ θi|x̂k|.

Lemma VII.2 SupposeN ≥ n and Assumption VII.1
holds. Then, there existK -functionsγx

eu
andγex

eu such that

the sequencee[1,n]
u,k satisfies

|e[1,n]
u (k,x,ex)| ≤ max

{
γ̃x
eu

(‖x‖), γ̃ex
eu

(‖ex‖)
}

, ∀k ∈ Z+,

(54)
where γ̃x

eu
and γ̃ex

eu are defined as γ̃x
eu

(‖x‖) ,

2(θ0 + θ)‖x‖ and γ̃ex
eu (‖ex‖) , 2(θ0 + θ)‖ex‖, with

θ = maxi∈{1,2,...,n}{θi}.

Proof: Using regularity (Definition II.9) and the
triangle inequality, the induced norm of the difference
between the predicted future inputs and the real inputs can
be upper bounded for allk ∈ Z+ and i = 1, . . . ,n, i.e.

|uk+i −uk+i|k| ≤ |uk+i|+ |uk+i|k| ≤ θ0|x̂k+i|+θi|x̂k|,

≤ θ0|x̂k+i|+θ |x̂k|.
(55)

Since (55) holds for allk ∈ Z+ and i = 1, . . . ,n we have
that

‖e[1,n]
u ‖ ≤ (θ0 +θ)‖x̂‖

≤ (θ0 +θ)(‖x‖+‖ex‖)

≤ max
{

2(θ0 +θ)‖x‖,2(θ0 +θ)‖ex‖
}

,

(56)

which concludes the proof of the statement.

Regularity thus leads to property (54). Due to this property
the following result can be obtained.

Theorem VII.3 Let (14) be strongly locally observable
on the domainX × U and Ai in (32) be Schur. Suppose
the NMPC control lawκMPC, with N ≥ n, renders (31)
(locally, i.e. for initial conditionsx0 ∈ X̃ f (N)) ISS with
respect to inputex ∈ Ex , {ex ∈ R

n | ‖ex‖ ≤ ν} with ν ≥
LΞεeu max{ 2ℏ

1−η L fz ,1} and assume Assumption VII.1 holds.
Then, if

4(θ0 +θ)γex
x

(
LΞ max

{
2ℏ

1−η
L fz ,1

})
≤ 1, (57)

it holds that

lim
k→∞

|e[1,n]
u,k | = 0, (58)

for all initial conditions ez,0 ∈ Ez , {ez,0 ∈ R
n | |ez,0| ≤

1
1−η L fz εeu}.

Proof: By the hypothesis we have that property (34),
(44) and (54) of Theorem V.1, VI.1, and Lemma VII.2,

respectively, hold. Thus, we know that

lim
k→∞

|ex,k| ≤ γ̃eu
ex

(
lim
k→∞

|e[1,n]
u,k |

)
, (59a)

lim
k→∞

|xk| ≤ 2γex
x

(
lim
k→∞

|ex,k|

)
, (59b)

lim
k→∞

|e[1,n]
u,k | ≤ max

{
γ̃x
eu

(
lim
k→∞

|xk|

)
, γ̃ex

eu

(
lim
k→∞

|ex,k|

)}
.

(59c)

Substitution of (59a) and (59b) in (59c) yields

lim
k→∞

|e[1,n]
u,k | ≤ 2(θ0 +θ)max

{
2γex

x ◦ γ̃eu
ex

(
lim
k→∞

|e[1,n]
u,k |

)
,

γ̃eu
ex

(
lim
k→∞

|e[1,n]
u,k |

)}
.

(60)
By inspection of the gain functionγex

x (defined in Theo-
rem V.1) we can conclude that the maximum in (60) is
determined by its first argument, so that

lim
k→∞

|e[1,n]
u,k | ≤ 4(θ0 +θ)γex

x ◦ γ̃eu
ex

(
lim
k→∞

|e[1,n]
u,k |

)
, (61)

with γ̃eu
ex

, LΞ max{ 2ℏ

1−η L f z,1}. By the hypothesis of The-
orem VII.3 we have that 4(θ0 + θ)γex

x ◦ γ̃eu
ex

< 1. together

with the fact thatlimk→∞|e
[1,n]
u,k | is well defined (due to

compactness ofU we know thatlimk→∞|e
[1,n]
u,k | is finite)

we have that (61) can only be true if (58) in Theorem
VII.3 holds. This concludes the proof of the statement.

Under condition (57) in Theorem VII.3, the IOS and ISS
property of the observer error dynamics (32), (33) with
respect toe[1,n]

u,k as input impliesex,k → 0 for k → ∞. Then,
due to the ISS property of the NMPC controller in closed-
loop with (14) with respect toex,k as input impliesxk → 0
for k → ∞. Thus, if condition (57) in Theorem VII.3
is satisfied (local) asymptotic stability of the proposed
OBNMPC scheme as depicted in Fig. 1 is guaranteed.

VIII. CONCLUSIONS

In this paper we proposed an observer based nonlin-
ear predictive control approach for a class of nonlinear
discrete-time systems. We derived sufficient conditions
for (local) asymptotic stability of the closed-loop system
trajectory of the observer based nonlinear model predictive
control scheme. The sufficient (local) asymptotic stability
conditions can in theory always be satisfied by choos-
ing appropriate controller tuning parameters and observer
gains.
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