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Abstract: In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integral-
derivative (PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasi-polynomials, is
used to seek the set of complete stabilizing proportional-integral/proportional-integral-derivative (PI/PID) parameters. The range of
admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral
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1 Introduction

Time delay systems are often encountered in various en-
gineering systems such as electrical and communication net-
work, chemical process, turbojet engine, nuclear reactor and
hydraulic system. Delay is frequently a source of insta-
bility, oscillation and poor performance in many dynamic
systems. Furthermore, delay makes system analysis and
control design much more complex[1, 2]. Many processes
in industrial and chemical practice are open-loop unstable
processes that are known to be difficult to control, such as
in the case of polymerization reactors, bioreactors, contin-
uous stirred tank and reactors, exothermic stirred reactors
with back mixing, batch reactors, pump with liquid storage
tank and combined feed/effluent heat exchanger with adi-
abatic exothermic reactor, etc., which are inherently open-
loop unstable by design. Especially, unstable delay pro-
cesses make control system design a complex task, which
has attracted increased attention in the process control
community[3]. Recently, many academic researches have
been devoted to developing proportional-integral -derivative
(PID) control strategies for unstable delay processes. To-
day, proportional-integral (PI) and PID controller types are
the most widely used control strategies. It is estimated that
98% of control loops in the pulp and paper industries are
controlled by PI controllers[4] and that in process control
applications, more than 95% of the controllers are of PID
type[5]. Since the minimal requirement for PID controller
is to guarantee the system stability, it is desirable to know
the complete set of stabilizing PID parameters before tun-
ing and design. Surveys have reported that poor tuning,
configuration errors, traditional and empirical techniques
such as Ziegler Nichols or Cohen-Coon tuning methods, are
found in the industrial application of PID[6]. A great deal
of academic and industrial effort has focused on improv-
ing PID control in the areas of tuning rules to decrease the
rising gap between engineering practice and control theory.
Based on the gain and phase margins criterion, De Paor
and O′Malley[7] proposed PID controllers tuning method
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for the first order delay unstable plant first order delay plant
(FODUP). Quinn and Sanathanan[8] investigated a method
for the design of controllers for unstable delayed processes
based on model matching in the frequency domain. Shafie
and Shenton[9] discussed a graphical technique based on
the D-partition method for PID controller tuning for sta-
ble and unstable processes. Padma Sree et al.[10] presented
PI/PID controllers design for first order unstable delay sys-
tem by extracting the coefficients of the numerator and de-
nominator of the closed-loop transfer function. Huang and
Lin[11] developed optimum PID tuning for unstable first
and second order delay plant (FODUP and SODUP) based
on the minimization of the integral of absolute error (IAE)
criterion and using the least-squares method. Poulin and
Pomerleau[12] studied a graphical tuning method of PI and
PID controllers for integrating processes and unstable pro-
cesses (FODUP and SODUP) which is based on the anal-
ysis of the open-loop frequency response of the process on
the Nichols chart. In [13], the authors applied D-partition
method to characterize the stability domain in the space of
controller parameters. The stability boundary is reduced to
a transcendental equation, and the whole stability domain
is drawn in two-dimensional plane by sweeping the remain-
ing parameters. However, this result only provides suffi-
cient condition regarding the size of the time delay for sta-
bilization of first-order unstable processes. Using Nyquist
criterion, Xiang et al.[14] solved the stabilization problem
of second-order unstable delay process by PID controller.
An enhanced two-degrees-of-freedom control strategy for
second-order unstable process with time-delay is established
in [15]. Shamsuzoha introduced an enhanced PID controller
for unstable first[16] and second order delay plant[17]. Chen
et al.[16] investigated the calculation of set point weighting
PID parameter for unstable first-order time-delay systems.
In [18], the internal model controller equivalent PID tuning
rules are synthesized for a low order unstable delay systems
in [18]. In [19], the authors presented an adaptive iter-
ative learning control scheme for a class of strict-feedback
nonlinear time-delay systems with unknown nonlinearly pa-
rameterised and time-varying disturbed functions of known
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periods. Chen and Li[20] developed an observer-based adap-
tive iterative learning control scheme for a class of nonlin-
ear systems with unknown time-varying parameters and un-
known time-varying delays. In [21], the delay-dependent ro-
bust stabilization and an H∞ control for uncertain stochas-
tic Takagi-Sugeno fuzzy systems with discrete interval and
distributed time-varying delays are discussed. Kumar and
Mittal[22] proposed a parallel fuzzy proportional plus fuzzy
integral plus fuzzy derivative (FP+FI+FD) controller for
some complex processes, such as first and second-order pro-
cesses with delay, inverse response process with and without
delay and higher order processes.

Recent studies have made use of the generalization of
Hermite-Biehler theorem to compute the set of all stabiliz-
ing PID controllers for a given plant[12]. Since almost all
plants encountered in process control contain time-delays,
computing the complete set of PID controllers that stabilize
time delay system is of considerable importance. An ana-
lytical approach is used in [23–25] to study the characteri-
zation of the stability region of delayed systems controlled
via PI/PID. Indeed, by using the Hermite-Biehler theorem
applicable to the quasi-polynomials [25–27], a characteriza-
tion of all values of the PI/PID stabilization gains for stable
and unstable first order delay system is addressed. However,
these results are not applicable to the second order delay
system. In [28, 29], the stabilizing problem of PI/PID con-
troller for second order delay system is analyzed and then
used to obtain all PI and PID gains that stabilize a first
and a second order delay interval systems[30, 31].

In this paper, we employed a version of the Hermite-
Biehler theorem applicable to quasi-polynomials to investi-
gate the complete set of stabilizing PI/PID parameters for
unstable second order process with time delay. However, all
these results mentioned above are centered upon the issues
of controller design, synthesis and parameter tuning, which
do not deal with the determination of the complete set of
stabilizing PID controllers based on stability conditions on
unstable time delay systems by PID controllers as shown in
our paper. We can also improve our approach by searching
optimal PI or PID controller inside the stability region for
a given performance criteria (integral of square error (ISE),
integral of absolute error (IAE), time multiplied by abso-
lute error (ITAE), time multiplied by square error (ITSE),
maximum overshoot, rise time and settling time) by using
genetic algorithm with regard to the complexity of the op-
timization problem as indicated in [28].

2 Preliminary results for analyzing
time delay system

Several problems in process control engineering are re-
lated to the presence of delays. These delays intervene in
dynamic models whose characteristic equations are of the
following form[23−25] :

δ(s) = d(s) + e−L1sn1(s)+

e−L2sn2(s) + · · · + e−Lmsnm(s) (1)

where d(s) and ni(s) are polynomials with real coefficients
and Li represent time delays. These characteristic equa-
tions are recognized as quasi-polynomials. Under the fol-

lowing assumptions

(A1) deg(d(s)) = n and deg(ni(s)) < n

for i = 1, 2, · · · , m

(A2) 0 < L1 < L2 < · · · < Lm (2)

one can consider the quasi-polynomials δ∗(s) described by

δ∗(s) = esLmδ(s) =

esLmd(s) + es(Lm−L1)n1(s)+

es(Lm−L2)n2(s) + · · · + nm(s). (3)

The zeros of δ(s) are identical to those of δ∗(s) since esLm

does not have any finite zeros in the complex plane. How-
ever, the quasi-polynomial δ∗(s) has a principal term since
the coefficient of the term containing the highest powers of
s and es is nonzero. If δ∗(s) does not have a principal term,
then it has infinite roots with positive real parts[23−25] .

The stability of the system with characteristic equation
(1) is equivalent to the condition that all the zeros of δ∗(s)
must be in the open left half of the complex plane. Hence
δ∗(s) is Hurwitz or is stable. The following theorem gives a
necessary and sufficient condition for the stability of δ∗(s).

Theorem 1[23−25]. Let δ∗(s) be given by (3); so

δ∗(jω) = δr(ω) + jδi(ω) (4)

where δr(ω) and δi(ω) represent the real and imaginary
parts of δ∗(jω), respectively. Under conditions A1 and A2,
δ∗(s) is stable if and only if:

1) δr(ω) and δi(ω) have only simple, real roots and these
interlace;

2) δ
′
i(ω0)δr(ω0) − δi(ω0)δ

′
r(ω0) > 0 for some ω0 in

[−∞, +∞].

where δ
′
i(ω) and δ

′
r(ω) denote the first derivative with re-

spect to ω of δi(ω) and δr(ω), respectively.
A crucial stage in the application of the preceding the-

orem is to make sure that δr(ω) and δi(ω) have only real
roots. Such a property can be checked while using the fol-
lowing theorem.

Theorem 2[23−25]. Let M and N designate the highest
powers of s and es which appear in δ∗(s). Let η be an
appropriate constant such that the coefficient of terms of
highest degree in δr(ω) and δi(ω) do not vanish at ω = η.
Then, a necessary and sufficient condition that δr(ω) and
δi(ω) have only real roots is that in each of the intervals
−2lπ + η < ω < 2lπ + η, l = l0, l0 + 1, l0 + 2 · · · , δr(ω)
or δi(ω) have exactly 4lN + M real roots for a sufficiently
large integer l0.

3 PI control for unstable second order
delay system

A second order system with time delay can be mathemat-
ically expressed by a transfer function having the following
form

G(s) =
K

s2 + a1s + a0
e−Ls (5)

where K is the static gain of the plant, L is the time delay,
and a0 and a1 are the plant parameters. The PI controller
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is described by the following transfer function

C(s) = Kp +
Ki

s
.

According to [25], the closed loop characteristic equation
of the system is stable at L = 0, then it will be stable for
all L > 0, whereas if it is unstable for L = 0, then it will be
unstable for all L > 0. So, a minimal requirement for any
control design is that the delay-free closed-loop system be
stable.

The characteristic equation of the closed-loop delay-free-
system (L = 0) is given by

δ(s) = K(Ki + Kps) + (s2 + a1s + a0)s =

s3 + a1s
2 + (a0 + KKp)s + KKi. (6)

δ(s) is a third-order polynomial. The closed-loop stabil-
ity is equivalent to all its coefficients are non zero and have
the same sign, we have

a1 > 0, a0 + KKp > 0, KKi > 0.

For a0 > 0 and a1 > 0, we obtain an open-loop stable
plant. And for a0 < 0 and a1 > 0, we have an open-
loop unstable delay plant. In the following, we present the
synthesis of PI controller in the case of an unstable second
order delay system where K > 0, L > 0, a0 < 0 and a1 > 0.

We state Theorem 3 determining the range of Kp and
Ki for unstable second order delay system controlled by PI
controller.

Theorem 3. Under the assumptions of K > 0, L > 0,
a0 < 0 and a1 > 0, the Kp values, for which there is a
solution for the stabilization problem of the PI controller of
unstable second order delay system, verify:

−a0

K
< Kp <

1

K

(
a1

α

L
sin(α) − cos(α)

(
a0 − α2

L2

))

where α is the solution of the equation: tan(α) =
α(2+a1L)

(α2−a1L−a0L2)
in the interval [0, π].

For Kp values outside this range, there are no stabilizing
PI controllers. The range of Ki value is given by

0 < Ki < min
j=1,3,5,···

{aj}

where aj = a(zj) =
zj

KL

[
sin(zj)(a0 − z2

j

L2 ) + a1
zj

L
cos(zj)

]

and zj , j = 1, 2, 3, · · · , are the roots (arranged in ascending
order of magnitude) of δi(z) = z

L
(KKp +cos(z)(a0 − z2

L2 )−
a1

z
L

sin(z)).
Proof. The characteristic equation of the closed-loop

system is given by

δ(s) = K(Ki + Kps)e−Ls + (s2 + a1s + a0)s (7)

we deduce the quasi-polynomial δ∗(s):

δ∗(s) = eLsδ(s) = K(Ki + Kps) + s(s2 + a1s + a0)e
Ls

(8)

by replacing s by jω, we get

δ∗(jω) = δr(ω) + jδi(ω) (9)

where{
δr(ω) = KKi + (ω3 − a0ω) sin(Lω) − a1ω

2 cos(Lω)

δi(ω) = ω
[
KKp + (a0 − ω2) cos(Lω) − a1ω sin(Lω)

]
.

(10)

Clearly, the parameter Ki only affects the real part of δ∗(jω)
whereas the parameter Kp affects the imaginary part.

Let z = Lω, we get:⎧⎪⎪⎨
⎪⎪⎩

δr(z) = KKi + sin(z)

(
z3

L3
− a0

z

L

)
− a1

z2

L2
cos(z)

δi(z) =
z

L
(KKp + cos(z)

(
a0 − z2

L2
) − a1

z

L
sin(z)

)
.

(11)

The application of the second condition of Theorem 1 led
us to

E(z0) = δ
′
i(z0)δr(z0) − δi(z0)δ

′
r(z0) > 0

from (11), we have

δ
′
i(z) =

KKp

L
− sin(z)

(
a0 +

2a1z

L2
− z3

L3

)
+

cos(z)

(
a0

L
− 3z2

L3
− a1

z2

L2

)

for z0 = 0 (a value that annul δi(z) ), we get

E(z0) = δ
′
i(z0)δr(z0) = (

KKp + a0

L
)KKi > 0

which implies Kp > − a0
K

since K > 0 and Ki > 0. �
We consider the verification of the interlacing condition

of δr(z) and δi(z) roots. For such purpose, we are going
to determine the roots from the imaginary part, which is
translated by the following relation:

δi(z) = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

z = 0

or

KKp + cos(z)(a0 − z2

L2
) − a1

z

L
sin(z) = 0

⇒

⎧⎪⎪⎨
⎪⎪⎩

z = 0

or

KKp + cos(z)(a0 − z2

L2
) = a1

z

L
sin(z)

⇒

⎧⎪⎨
⎪⎩

z = 0

or

f(z) = g(z)

where ⎧⎨
⎩

f(z) = KKp + cos(z)(a0 − z2

L2
)

g(z) = a1
z

L
sin(z).

We notice z0 = 0 is a trivial root of the imaginary part.
The others are difficult to solve analytically. However, this
can be completed graphically. Two cases are presented. In
each case, the positive real roots of δi(z) will be denoted
by zj , j = 1, 2, 3, · · · , arranged in increasing order of mag-
nitude.

Case 1. − a0
K

< Kp < Ku.
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In this case, we graph the curves of f(z) and g(z) which
are presented in Fig. 1.

Fig. 1 Representation of the curves of f(z) and g(z) (Case:

− a0
K

< Kp < Ku)

Ku is defined in second case. We notice that for − a0
K

<
Kp < Ku, the curve of f(z) intersects the curve of g(z)
twice in the interval [0, π]. Also we can see the following
properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 ∈
[
0 ,

π

2

]

z3 ∈
[
3π

2
, 2π

]

z5 ∈
[
7π

2
, 4π

]

...

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2 ∈
[π

2
, π

]

z4 ∈
[
5π

2
, 3π

]

z6 ∈
[
9π

2
, 5π

]

...

i.e., zj verifies:

⎧⎪⎪⎨
⎪⎪⎩

z1 ∈
[
0 ,

π

2

]
and

zj ∈
[
(2j − 3)

π

2
, (j − 1)π

]
for j � 2

and we remark: zj > z = L
√

a0, j = 1, 2, 3, 5, 7, · · · .
Case 2. Kp � Ku.
Fig. 2 represents the case when Kp = Ku, and Ku is the

maximal value of Kp, so the plot of f(z) intersects the plot
of g(z) twice in the interval [0, π] (i.e., f(z) is tangent to
g(z)).

Fig. 2 Representation of the curves of f(z) and g(z) (Case:

Kp = Ku)

The plot in Fig. 3 corresponds to the case when Kp > Ku

and the plot of f(z) does not intersect g(z) twice in the
interval [0, π].

Fig. 3 Representation of the curves of f(z) and g(z) (Case:

Kp > Ku)

Theorem 2 is used to verify that δi(z) possesses only sim-
ple roots. By replacing Ls by s1 in (8), we rewrite δ∗(s)
as

δ∗(s) =eLsδ(s) = es1δ(s1) =

es1

((s1

L

)3

+ a1

( s1

L

)2

+ a0
s1

L

)
+ K

(
Kp

s1

L
+ Ki

)
.

(12)

For this new quasi-polynomial, we see that M = 3 and
N = 1, where M and N designate the highest powers of
s1 and es1 which appear in δ∗(s). We choose η = π

4
that

satisfies the condition given by Theorem 2 as δr(η) �= 0
and δi(η) �= 0. According to Fig. 1, we notice that for
− a0

K
< Kp < Ku, δi(z) possesses four roots in the in-

terval
[
0, 2π − π

4

]
=

[
0, 7π

4

]
including the root at origin.

As δi(z) is odd function, so it possesses seven roots in[−2π + π
4
, 2π − π

4

]
=

[− 7π
4

, 7π
4

]
. Hence, we can affirm

that δi(z) has 4N + M = 7 roots in
[−2π + π

4
, 2π + π

4

]
=[− 7π

4
, 9π

4

]
. At the end, according to Theorem 2, δi(z) has

only real roots for every Kp in
[− a0

K
, Ku

]
. For Kp � Ku

corresponding Figs. 3 and 4, the roots of δi(z) are not real.
We determine the superior bound of Kp, according to the
definition of Ku, if Kp = Ku, then the curves of f(z) and
g(z) are tangent at the point α, which is expressed by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KKu + cos(α)

(
a0 − α2

L2

)
= a1

α

L
sin(α)

and
d

dz

[
KKu + cos(z)

(
a0 − z2

L2

)]
z=α

=
d

dz

[
a1

z

L
sin(z)

]
z=α

⇒ −2α cos(α)(1 + a1L) + sin(α)(α2 − a0L2 − a1L) = 0

⇒ tan(α) =
α(2 + a1L)

(α2 − a0L2 − a1L)
. (13)

Once α is determined, the parameter Ku is expressed by

Ku =
1

K

(
a1

α

L
sin(α) − cos(α)

(
a0 − α2

L2

))
. (14)

After the determination of the roots of the imaginary part
δi(z), we move to the evaluation of these roots by the real
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part δr(z).

δr(z) =KKi + sin(z)

(
z3

L3
− a0

z

L

)
− a1

z2

L2
cos(z) =

K [Ki − a(z)] (15)

where a(z) = z
KL

[
sin(z)

(
a0 − z2

L2

)
+ a1

z
L

cos(z)
]
.

Let us denote the roots of δi(z) by zj , j = 1, 2, 3, · · · . For
z0, we have

δr(z0) = K(Ki − a(0)) = KKi > 0 (16)

for zj �= z0, where j = 1, 2, 3, · · · , we get

δr(zj) = K(Ki − a(zj)) = K(Ki − aj) (17)

where a(zj) = aj .
Interlacing of the roots of δr(z) and δi(z) is equivalent to

δr(z0) > 0 (since Ki > 0), δr(z1) < 0, δr(z2) > 0, · · · .
We can use the interlacing property and the fact that

δi(z) has only real roots to reach that δr(z) possesses real
roots, too. From the previous equations, we get the follow-
ing inequalities.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δr(z0) > 0

δr(z1) < 0

δr(z2) > 0

δr(z3) < 0

δr(z4) > 0
...

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Ki < a1

Ki > a2

Ki < a3

Ki > a4

...

. (18)

From these inequalities, it is clear that the aj odd bounds
must be strictly positive. However, aj even bounds are
negative in order to find a feasible range of Ki, from which
we have:

0 < Ki < min
j=1,3,5···

{aj} . (19)

In the following, we are interested to prove that the odd a′
js

are strictly positive and that the even aj
′s are negative in

order to affirm (19).
The change of a(zj) can be found with a graphical ap-

proach. Given a stabilizing Kp value inside the admissible
range by using Theorem 3, the curve of δi(z) is plotted to
obtain their roots denoted by zj , j = 1, 2, 3 · · · , the curve
of a(zj) is also plotted in order to understand its behav-
ior (Fig. 4). We note that for every Kp in

[− a0
K

, Ku

]
, the

parameters a(zj) verify the following conditions:{
a(zj) > 0, for j = 1, 3, 5, 7, · · ·
a(zj) < 0, for j = 2, 4, 6, 8, · · · .

(20)

Algorithm 1. For determining PI parameters for un-
stable second order delay system:

1) Choose Kp in the interval suggested by Theorem 3;
2) Find the roots zj of δi(z);
3) Compute the parameter aj associated with the zj pre-

viously founded;
4) Determine the lower and the upper bounds for Ki as

0 < Ki < min
j=1,3,5···

{aj} .

5) Go to Step 1).

Fig. 4 Plots of δi(z) and a(z)

Example 1. We consider an unstable second order delay
system described by the following transfer function

G(s) =
2e−0.5s

−0.5 + 5s + s2
.

In order to determine Kp values, we look for α in interval
[0, π] satisfying tan(α) = 4.5α

α2−2.625
⇒ α = 1.5617. Kp range

is given by 0.25 < Kp < 7.85. We remark

{
0.25 < Kp < 6.2 ⇒ Ki > 0

6.2 < Kp < 7.85 ⇒ Ki < 0.

In consequence, we choose the final range of Kp as 0.25 <
Kp < 6.2.

The controller stability region, obtained in (Kp, Ki)
plane, is presented in Fig. 5.

Fig. 5 Controller stability domain in (Kp, Ki) for unstable sec-

ond order delay plant

The step response of the closed-loop system with some
PI controllers is shown in Fig. 6.



R. Farkh et al. / Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System 215

Fig. 6 Time response of the closed-loop system for Example 1

From Fig. 6, we see that the closed-loop system is stable
and the output y(t) tracks the step input signal.

4 PID control for unstable second or-
der delay system

The PID controller is described by the following transfer
function:

C(s) = Kp +
Ki

s
+ Kds.

The characteristic equation of the closed-loop delay-free-
system (L = 0) is given by

δ(s) = K(Ki + Kps + Kds2) + (s2 + a1s + a0)s =

s3 + (a1 + KKd)s2 + (a0 + KKp)s + KKi.

Since this is a third-order polynomial, closed-loop stability
is equivalent to all its coefficients are non zero and have the
same sign, we have

a1 + KKd > 0, a0 + KKp > 0, KKi > 0.

We assume that static gain K of the plant is positive, we
obtain the following condition for closed-loop stability of
delay-free system

Kp > −a0

K
, Ki > 0, Kd > −a1

K
.

For a0 > 0 and a1 > 0, we obtain an open-loop stable
plant. And for a0 < 0 or/and a1 < 0, we have an open-loop
unstable delay plant.

In the following, we present the synthesis of PID con-
troller for the case of an unstable second order delay system
where K > 0, L > 0, a0 < 0 or/and a1 < 0.

Theorem 4. Under the above assumptions of K > 0,
L > 0, a0 < 0 or/and a1 < 0, the range of Kp values for
which a solution exists to the PID stabilization problem of
an open-loop unstable plant with transfer function G(s) is
given by

−a0

K
< Kp <

1

K

(
a1

α

L
sin(α) − cos(α)

(
a0 − α2

L2

))

where α is the solution of the equation tan(α) =
α(2+a1L)

(α2−a1L−a0L2)
in [0, π].

For Kp values outside this range, there are no stabilizing
PID controllers. The complete stabilizing region given by
the cross-section of the stabilizing region in the (Ki, Kd)
space is the triangle Δ (Fig. 7).

Fig. 7 The stabilizing region of (Ki, Kd)

The parameters bj , mj , j = 1, 2, necessary for determin-
ing the boundaries can be determined using

⎧⎪⎪⎨
⎪⎪⎩

mj = m(zj) =
L2

z2

bj = b(zj) =
L

Kzj

[
−a1

zj

L
cos(zj) + sin(zj)

(
z2

j

L2
− a0

)]

where zj , j = 1, 2, are the positive-real roots of δi(z) ar-
ranged in ascending order of magnitude where δi(z) is ex-
pressed by

δi(z) =
z

L

(
KKp + cos(z)

(
a0 − z2

L2

)
− a1

z

L
sin(z)

)
.

Proof. The characteristic equation of the closed-loop
system is given by

δ(s) = K(Ki + Kps + Kds2)e−Ls + (s2 + a1s + a0)s.
(21)

The quasi-polynomial δ∗(s) is given by

δ∗(s) = eLsδ(s) =

K(Ki + Kps + Kds2) + s(s2 + a1s + a0)e
Ls.

(22)

By replacing s by jω, we get

δ∗(jω) = δr(ω) + jδi(ω) (23)

with⎧⎪⎨
⎪⎩

δr(ω) = KKi − KKdω + (ω3 − a0ω) sin(Lω)−
a1ω

2 cos(Lω)

δi(ω) = ω
[
KKp + (a0 − ω2) cos(Lω) − a1ω sin(Lω)

]
.

Clearly, the parameters Ki and Kd only affect the real part
of δ∗(jω), whereas the parameter Kp affects the imaginary



216 International Journal of Automation and Computing 11(2), April 2014

part. Letting z = Lω, we get

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δr(z) = KKi − KKd
z2

L2
+ sin(z)

(
z3

L3
− a0

z

L

)
−

a1
z2

L2
cos(z)

δi(z) =
z

L

(
KKp + cos(z)

(
a0 − z2

L2

)
− a1

z

L
sin(z)

)
.

(24)

We notice that δi(z) is the same in (10) and (24). Conse-
quently, we obtain the same range of Kp values, which is
given by Theorem 3 that stabilize an unstable second order
delay system.

After determination of the roots of the imaginary part
δi(z), we evaluate of these roots by the real part δr(z).

δr(z) = KKi − KKd
z2

L2
+ sin(z)

(
z3

L3
−

a0
z

L

)
− a1

z2

L2
cos(z) =

K
z2

L2

{
−Kd + Ki

L2

z2
+

L

Kz

[
−a1

z

L
cos(z)+

sin(z)

(
z2

L2
− a0

)]}
=

K
z2

L2
[−Kd + m(z)Ki + b(z)] (25)

where

⎧⎪⎨
⎪⎩

m(z) =
L2

z2

b(z) =
L

Kz

[
−a1

z

L
cos(z) + sin(z)

(
z2

L2
− a0

)]
.

(26)

From condition 1 of Theorem 1, the roots of δr(z) and δi(z)
have to interlace for δ∗(s) to be stable. We evaluate δr(z)
at the roots of the imaginary part δi(z).

For z0 = 0, we have

δr(z0) = KKi > 0 (27)

for zj �= z0, where j = 1, 2, 3, · · · , we get

δr(zj) = K
z2

j

L2
[−Kd + m(zj)Ki + b(zj)] =

K
z2

j

L2
[−Kd + mjKi + bj ] (28)

where

{
m(zj) = mj

b(zj) = bj .
(29)

Interlacing the roots of δr(z) and δi(z) is equivalent to
δr(z0) > 0 (since Ki > 0), δr(z1) < 0, δr(z2) > 0, · · · .

We can use the interlacing property and the fact that
δi(z) has only real roots to reach that δr(z) possesses real
roots as well. From the previous equations, we get the fol-

lowing inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δr(z0) > 0

δr(z1) < 0

δr(z2) > 0

δr(z3) < 0

δr(z4) > 0
...

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Kd > m1Ki + b1

Kd < m2Ki + b2

Kd > m3Ki + b3

Kd < m4Ki + b4

...

. (30)

Thus, intersecting all these regions in the (Ki, Kd) space,
we get the set of (Ki, Kd) values for which the roots of δr(z)
and δi(z) interlace for a fixed value of Kp. We notice that
all these regions are half planes with their boundaries being
lines with positive slopes mj . �

Example 2. Consider the plant given by (5) with the
following parameters K = 2, a1 = 5, a0 = −0.5 and L = 0.5.

G(s) =
2e−0.5s

−0.5 + 5s + s2
.

The imaginary part δi(z) has only simple real roots if and
only if 0.25 < Kp < 7.85. We set the controller parameter
Kp to 1.5, which is inside the previous range. For this Kp,
δi(z) takes the form:

δi(z) =
z

0.5

(
2Kp + cos(z)

(
−0.5 − z2

0.25

)
− 5

z

0.5
sin(z)

)
=

2z
[
3 + cos(z)(−0.5 − 4z2) − 10z sin(z)

]
.

We next compute some of the positive real roots of this
equation and arrange them in increasing order of magni-
tude:

z0 = 0, z1 = 0.4375, z2 = 2.292, z3 = 5.185, z4 = 8.141,

z5 = 11.22, z6= 14.31.

Using (29), we calculate the parameters mj and bj for j =
1, · · · , 6:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m1 = 1.3061

m2 = 0.0476

m3 = 0.0093

m4 = 0.0038

m5 = 0.0020

m6 = 0.0012

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = −1.9581

b2 = 3.4130

b3 = −5.7761

b4 = 8.5304

b5 = −11.5059

b6 = 14.5353.

Interlacing of the roots of the real and the imaginary part
occurs for Kp = 1.5, if and only if the following inequalities
are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Kd > 1.3061Ki−1.9581

Kd < 0.0476Ki + 3.413

Kd > 0.0093Ki−5.7761

Kd < 0.0038Ki + 8.5304

Kd > 0.002Ki−11.5059

Kd < 0.0012Ki + 14.5353.

The boundaries of these regions are illustrated in Fig. 8.
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Fig. 8 Region boundaries of Example 2 (Kp = 1.5 )

Example 3. Consider the plant given by (5) with the
following parameters K = 1, a1 = −0.1, a0 = 0.5 and L = 1.

G(s) =
e−s

0.5 − 0.1s + s2
.

The imaginary part δi(z) has only simple real roots if and
only if −0.5 < Kp < 0.2314. We set the controller param-
eter Kp to 0.1, which is inside the previous range. For this
Kp, δi(z) takes the form

δi(z) = z(0.1 + cos(z)(0.5 − z2) + 0.1z sin(z)) = 0.

We next compute some of the positive real roots of this
equation and arrange them in increasing order of magni-
tude:

z0 = 0, z1 = 0.8711, z2 = 1.409, z3 = 4.695, z4 = 7.839,

z5 = 10.99, z6 = 14.13.

Using (29), we calculate the parameters mj and bj for j =
1, · · · , 6:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m1 = 1.3178

m2 = 0.5037

m3 = 0.0454

m4 = 0.0163

m5 = 0.0083

m6 = 0.005

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = 0.2917

b2 = 1.0565

b3 = −4.5895

b4 = 7.7758

b5 = −10.9449

b6 = 14.095.

Interlacing the roots of the real and the imaginary part
occurs for Kp = 0.1 , if and only if the following inequalities
are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Kd > 1.3178Ki+0.2917

Kd < 0.5037Ki + 1.0565

Kd > 0.0454Ki−4.5895

Kd < 0.0163Ki + 7.7758

Kd > 0.0083Ki−10.9449

Kd < 0.005Ki + 14.095.

The boundaries of these regions are illustrated in Fig. 9.

Fig. 9 Region boundaries of Example 3 (Kp = 0.1)

An enlargement of Fig. 9 is shown in Fig. 10.

Fig. 10 Stability region of Example 3 (Kp = 0.1)

Example 4. Consider the plant given by (5) with the
following parameters K = 1, a1 = −0.1, a0 = −0.5 and
L = 1.

G(s) =
e−s

−0.5 − 0.1s + s2
.

The imaginary part δi(z) has only simple real roots if and
only if 0.5 < Kp < 0.7442. We set the controller parameter
Kp to 0.6, which is inside the previous range. For this Kp,
δi(z) takes the form

z(−0.1 + cos(z)(−0.5 − z2) + 0.1z sin(z)) = 0.

We next compute some of the positive real roots of this
equation and arrange them in increasing order of magni-
tude:

z0 = 0, z1 = 0.4188, z2 = 1.1916, z3 = 4.718, z4 = 7.8316,

z5 = 10.9915, z6= 14.1271.

Using (29), we calculate the parameters mj and bj for j =
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1, · · · , 6:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m1 = 5.7015

m2 = 0.7043

m3 = 0.0449

m4 = 0.0163

m5 = 0.0083

m6 = 0.005

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = 0.7472

b2 = 1.5338

b3 = −4.8233

b4 = 7.8957

b5 = −11.0373

b6 = 14.1628.

Interlacing the roots of the real and the imaginary part
occurs for Kp = 0.6, if and only if the following inequalities
are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Kd > 5.7015Ki+0.7472

Kd < 0.7043Ki + 1.5338

Kd > 0.0449Ki−4.8233

Kd < 0.0163Ki+7.8957

Kd > 0.0083Ki−11.0373

Kd < 0.005Ki+14.1628.

The boundaries of these regions are illustrated in Fig. 11.

Fig. 11 Region boundaries of Example 4 (Kp = 0.6)

An enlargement of Fig. 11 is shown in Fig. 12.

Fig. 12 Stability region of Example 4 (Kp = 0.6)

The stability region is defined by only two boundaries

⎧⎪⎨
⎪⎩

Kd = m1Ki + b1

and

Kd = m2Ki + b2

because we have the following inequalities:

⎧⎪⎨
⎪⎩

bj < bj+2, for j = 2, 4, 6, · · ·
bj > bj+2, for j = 1, 3, 5, 7, · · ·
mj < mj+2, for j � 1.

As pointed out in Examples 2, 3 and 4, the inequalities
given by (30) represent half planes in the space of Ki and
Kd. Their boundaries are given by lines with

Kd = mjKi + bj for j = 1, 2, 3, · · · . (31)

We now state an important technical lemma that allows us
to develop an algorithm for solving the PID stabilization
problem. This lemma shows the behavior of the parameter
bj , j = 1, 2, 3, · · · , for different values of the parameter Kp

inside the range proposed by Theorem 4.
Lemma 1. If − a0

K
< Kp < 1

K
(a1

α
L

sin(α) − cos(α)(a0 −
α2

L2 )), where α is the solution of the equation tan(α) =
α(2+a1L)

(α2−a1L−a0L2)
in the interval [0, π], then:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − bj < bj+2, for j = 2, 4, 6, · · ·
2 − bj > bj+2, for j = 1, 3, 5, 7, · · ·
3 − mj > mj+2, for j � 1 and lim

j→∞
mj = 0

4 − b1 > −a1

K
.

(32)

Proof. From equations (26) we have m(zj) = L2

z2
j

, 0 <

zj < zj+2 ⇒ L2

z2
j

> L2

z2
j+2

for j � 1 then m(zj) > m(zj+2)

and limj→∞m(zj) = 0. �
Remark 1. As we can see from Fig. 1, the odd

roots of δi(z), i.e., for j = 3, 5, 7, · · · , verify zj ∈[
(2j − 3)π

2
, (j − 1)π

]
and are getting closer to (2j − 3)π

2

as j increases, so we have limj→∞ cos(zj) = 0 and
limj→∞ sin(zj) = −1.

Moreover, since cosine function and sine function are
monotonically increasing between (2j − 3)π

2
and (j − 1)π,

we have

{
cos(z3) > cos(z5) > cos(z7) > · · ·
sin(z3) > sin(z5) > sin(z7) > · · · ⇒

{
cos(zj) > cos(zj+2) > 0

sin(zj+2) < sin(zj) < 0.

Remark 2. As we can see from Fig. 1, the even
roots of δi(z), i.e., for j = 2, 4, 6, · · · , verify zj ∈[
(2j − 3)π

2
, (j − 1)π

]
and are getting closer to (2j − 3)π

2

as j increase, so we have limj→∞ cos(zj) = 0 and
limj→∞ sin(zj) = 1.

Moreover, since cosine function and sine function are
monotonically decreasing between (2j − 3)π

2
and (j − 1)π,
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we have

{
cos(z2) < cos(z4) < cos(z6) < · · ·
sin(z2) < sin(z4) < sin(z6) < · · · ⇒

{
cos(zj) < cos(zj+2) < 0

0 < sin(zj) < sin(zj+2).

The change of b(zj) can be found with graphical ap-
proach. Given a stabilizing Kp value inside the admissible
range by using Theorem 4; the curve of δi(z) is plotted to
obtain its roots denoted by zj = 1, 2, 3, · · · , the curves of

−a1
z
L

cos(z) and sin(z)( z2

L2 −a0) are plotted as well in order
to understand the behavior of b(zj) (Fig. 13).

Fig. 13 Plots of δi(z) (dotted line), sin(z)( z2

L2 − a0) (thick solid

line) and −a1
zj

L
cos(zj) (thin solid line)

As far as the odd roots of δi(z) are concerned, the cor-

responding sin(z)
(

z2

L2 − a0

)
is decreasing by large magni-

tude sin(zj)(
z2

j

L2 − a0) → −∞ as j → +∞, and for the even

ones, the corresponding sin(z)
(

z2

L2 − a0

)
is increasing by

large magnitude sin(zj)

(
z2

j

L2 − a0

)
→ +∞ as j → +∞.

However, compared to the change of sin(zj)

(
z2

j

L2 − a0

)
,

the difference between the values of −a1
zj+2

L
cos(zj+2) and

−a1
zj

L
cos(zj) is much smaller than both odd and even j.

Thus, the b(zj) has the similar change rules as sin(zj)(
z2

j

L2 −
a0).

We can affirm that:
1) bj > bj+2 and bj → −∞ as j → +∞ for odd values of

j.
2) bj < bj+2 and bj → +∞ as j → +∞ for even values

of j.
Remark 3. Let us prove that b(zj) > − a1

K
for j =

1, 3, 5, 7, · · · , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 ∈
[
0 ,

π

2

]

z3 ∈
[
3π

2
, 2π

]

z5 ∈
[
7π

2
, 4π

]

...

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2 ∈
[π

2
, π

]

z4 ∈
[
5π

2
, 3π

]

z6 ∈
[
9π

2
, 5π

]

...

i.e., zj verifies
⎧⎪⎪⎨
⎪⎪⎩

z1 ∈
[
0 ,

π

2

]
and

zj ∈
[
(2j − 3)

π

2
, (j − 1)π

]
, for j � 2.

For z1, we have cos(z1) > 0 and sin(z1) > 0.
Case 1. a0 < 0 and a1 > 0.
We suppose

b(z1) < −a1

K
⇒

L

Kz

[
−a1

z1

L
cos(z1) + sin(z1)(

z2
1

L2
− a0)

]
< −a1

K
⇒

− a1
z1

L
cos(z) + sin(z1)(

z2
1

L2
− a0) < −a1

z1

L
⇒

a1
z1

L
(1 − cos(z1)) + sin(z1)(

z2
1

L2
− a0) < 0

which is wrong because we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1
z1

L
(1 − cos(z1)) > 0

and

sin(z1)

(
z2
1

L2
− a0

)
> 0

so b(z1) > − a1
K

.

Case 2. a0 > 0 and a1 < 0.

For z1, we have cos(z1) > 0, sin(z1) > 0, and in this case,
we notice that z1 < L

√
a0.[

−a1
z1

L
cos(z1) + sin(z1)

(
z2
1

L2
− a0

)]
>

− a1
z1

L
cos(z1) > −a1

z1

L
⇒

L

Kz1

[
−a1

z1

L
cos(z1) + sin(z1)

(
z2
1

L2
− a0

)]
> −a1

K
⇒

b(z1) = b1 > −a1

K
.

Case 3. a0 < 0 and a1 < 0.[
−a1

z1

L
cos(z1) + sin(z1)

(
z2
1

L2
− a0

)]
>

− a1
z1

L
cos(z1) > −a1

z1

L
⇒

L

Kz1

[
−a1

z1

L
cos(z1) + sin(z1)

(
z2
1

L2
− a0

)]
> −a1

K
⇒

b(z1) = b1 > −a1

K
.

We conclude that

b(z1) > −a1

K
. (33)

By using (32) and (33), the stability region defined by (30)
can be reduced to the following boundaries:

⎧⎪⎨
⎪⎩

Kd > m1Ki + b1

Kd < m2Ki + b2

Kd > −a1

K
.

(34)
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In view of Theorem 4, we propose an algorithm to deter-
mine the set of all stabilizing PID parameters for an unsta-
ble second order delay system.

Algorithm 2. For determining PID parameters for un-
stable second order delay system:

1) Choose Kp in the interval suggested by Theorem 4;
2) Find the roots zj of δi(z);
3) Compute the parameters mj and bj , j = 1, 2, associ-

ated with the zj previously found;
4) Determine the stability region in the plane (Ki, Kd)

using Fig. 7 (Theorem 4);
5) Go to step 1.
Example 5. Finally, let us use the results of this section

to determine the entire set of PID parameters to stabilize
the unstable delay system which is presented in Example 2.
The range of Kp values specified by Theorem 4 is given by

−0.5 < Kp < 0.2314.

By sweeping over this range and using the algorithm pre-
sented earlier, we obtain the stabilizing set of (Kp, Ki, Kd)
values sketched in Fig. 14.

Example 6. Consider an unstable process as given by
Huang and Chen[32]

G(s) =
e−0.939s

(5s − 1)(2.07s + 1)
=

0.0966

e−0.939s
s2 + 2.93s − 0.0966.

We present a comparison of different methods for design of
PID controllers for unstable second order delay system.

Fig. 14 The stabilizing region of (Kp, Ki, Kd) values for the PID

controller in Example 2

By using our approach, the entire set of PID parameters
stabilizing G(s) is obtained by the following figure.

We observe that the PID tuning values of some existing
methods in Table 1 are included in the stability region given
by Fig. 15.

Table 1 Performance comparison

Method Kp Ki Kd

Huang and Chen[32] 6.186 0.8628 9.1058

Huang and Lin[33] 3.954 0.7975 8.2006

Poulin and Pomerleau[12] 3.050 0.4036 6.3135

Lee et al.[34] 7.144 1.0688 11.8233

Fig. 15 The stabilizing region of (Kp, Ki, Kd) values for the PID

controller

1) Method of Huang and Chen[32]: Kp = 6.186, Ki =
0.8628, Kd = 9.1058.

These PID tuning parameters are included in the stabil-
ity region in the (Ki, Kd) plane for a fixed Kp = 6.186 (see
Fig. 16).

2) Method of Huang and Lin[33]: Kp = 3.954, Ki =
0.7975, Kd = 8.2006.

These PID tuning parameters are included in the stabil-
ity region in the (Ki, Kd) plane for a fixed Kp = 3.954 (see
Fig. 17).

3) Method of Poulin and Pomerleau[12]: Kp =
3.050, Ki = 0.4036, Kd = 6.3135.

These PID tuning parameters are included in the stabil-
ity region in the (Ki, Kd) plane for a fixed Kp = 3.050 (see
Fig. 18).

4) Method of Lee et al.[34]: Kp = 7.144, Ki =
1.0688, Kd = 11.8233.

These PID tuning parameters are included in the stabil-
ity region in the (Ki, Kd) plane for a fixed Kp = 7.144 (see
Fig. 19).

Fig. 16 Stability region in (Ki, Kd) plane for a Kp = 6.186

Fig. 17 Stability region in (Ki, Kd) plane for a Kp = 3.954
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Fig. 18 Stability region in (Ki, Kd) plane for a Kp = 3.050

Fig. 19 Stability region in (Ki, Kd) plane for a Kp = 7.144

5 Conclusion

In this work, we proposed an extension of Hermite-
Biehler theorem to compute the region of stability for un-
stable second order delay system controlled by PI and PID
controllers. Firstly, the procedure is based on determining
the range of proportional gain value Kp for which a solution
to PID stabilization problem exists. Then, it is shown that
for a fixed Kp inside this range, the stabilizing integral Ki

and derivative gain Kd values lie inside a region with known
shape and boundaries.
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