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Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the

intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude

oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods

synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes

which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of

earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear

systems driven near to criticality.
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While the frictional motion of a single block is often

considered to be wholly deterministic, close examination

reveals surprising variability. Stick-slip friction is one ex-

ample. Although models [1] predict well-defined stick-slip

frequencies, intervals between successive stick-slip events

have relatively broad distributions [2].

Consider two blocks, as in Fig. 1(a), that are pressed

together with a normal force, FN . When a shear force, FS,

is applied to the edge of one of the blocks, the onset of

motion in this ‘‘simple’’ frictional system is surprisingly

complex. The nonuniform stress profile produced by FS

excites a sequence of rupture fronts; successive failure of

the discrete contact ensemble that forms the interface

between the blocks. Initiating well before the onset of

macroscopic motion, each rupture propagates from the

loaded edge and arrests prior to traversing the entire inter-

face [3–6]. Such avalanchelike collective motion occurs in

many forced physical systems where numerous discrete

degrees of freedom are spatially coupled [7], in the vicinity

of a phase transition. In friction each contact is near its

rupture threshold.

The onset of motion is mediated by three distinct types

of collective modes: rapid subsonic and supersonic rup-

tures as well as ‘‘slow’’ rupture fronts [8,9], nearly 2 orders

of magnitude slower. Once initiated, the rupture velocities

are coupled to the local ratio of shear/normal stress at the

interface [9].

Interfaces [9] are locally much stronger than previously

thought, sustaining local stress ratios a few times larger

than the static friction coefficient without succumbing to

motion. On the other hand, earthquakes can be triggered

by small perturbations generated by either tidal forcing

or other very remote earthquakes [10]. These questions

motivated studies of slip onset in rock samples separated

by a granular layer, upon application of sinusoidal pertur-

bations to FS [2,11,12]. Extending previous work on

the effects of oscillatory modulation of FN on reducing

dynamic friction [13], the results suggested nontrivial

dependencies on the phase [11], amplitude and frequency

of the perturbation [2,12].

In experiments and in a simple model, we show that the

random intervals between stick-slip events can be stabi-

lized by adding a low amplitude oscillatory component to

FS. Moreover, a well-defined phase relation exists between

the forcing function and the frictional onset with the phase

locking related to a forced transition between slow to fast

rupture modes.

Our experiments [Fig. 1(a)] were performed in ambient

(20%–40%) humidity on optically flat interfaces composed

of two PMMA blocks, a slider and a base, that were

roughened to about 1 �m rms. The slider had (x, y, z)
dimensions of (150, 6, 70) mm in the sliding, transverse

and normal loading directions, respectively. The base

blocks had (x, y, z) dimensions of (230, 30, 30) mm. A

constant and uniform normal force, 1000<FN < 5000 N
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FIG. 1 (color online). Schematic views of the experimental

system (a) and model (b). Typical stick-slip motion in

experiments (c) and model (d) with no modulation of Fs.

Parameter values used in the model: FN ¼ 4000 N, Kd ¼
4� 107 N=m, M ¼ 11:5 kg, V0 ¼ 10�4 m=s, K ¼ 108 N=m,

�r ¼ 0:005 s, NS ¼ 20, N ¼ 70, � ¼ 6462 s�1, fs ¼ 1:37 N,
�fs ¼ 6:9� 10�3 N, k ¼ hkii ¼ 5� 106 N=m, � ¼ 1 �m.
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was imposed at the start of each experimental run. FS was

applied to the slider’s trailing edge via a stiff load cell

(Kister 9602A) in series with a piezoelectric actuator

(Piezomechanik Gmbh) and a translational stage moving

at constant velocity, V0. A ramped and modulated loading

force, FL¼Kd½V0tþ�cosð2�t=TÞ�, was imposed, where

Kd ’ 109 N=m is the system stiffness, 0:001< T < 3 s
and � are the oscillation period and amplitude. The real

contact area, Aðx; tÞ, was continuously measured, as in [8].

We model the experiments [Fig. 1(b)] by a slider of

mass M interacting with an immobile rigid substrate. The

slider is pushed from its trailing edge via a spring with a

force FS ¼ Kd½V0tþ �cosð2�t=TÞ � Xt�, where Xt is the

position of the trailing edge. The slider is composed of N
rigid blocks coupled by springs of rigidity, Kint, so that

Kint ¼ ðN � 1Þ K, where K is the slider rigidity. Friction

is described in terms of interactions between each block

and the substrate through an array of surface contacts.

Each contact is modeled as a spring of elastic constant

ki connecting the block and the substrate, where i ¼
1; 2; . . . ; Ns, and Ns is the number of contacts. While a

contact is intact, its spring elongates or shortens with the

velocity of the corresponding block, producing a force

fi ¼ kiliðtÞ inhibiting the motion, where liðtÞ is the spring
length. A contact breaks when fi exceeds a threshold fsi.
Contacts reattach in an unstressed state, after a delay time

tr taken from the distribution PðtrÞ ¼ e�tr=�r=�r, where �r
is a characteristic time of contact formation. The thresh-

olds fsi are chosen from a Gaussian distribution of mean fs
and standard deviation �fs. We consider fsi to be pro-

portional to the area Ai of a given contact, while the

transverse rigidity ki is proportional to its size, ki /
ffiffiffiffiffi

Ai

p
.

Therefore, the distributions of ki and fsi are coupled by

ki ¼ kðfsi=fsÞ1=2, where k ¼ hkii. When a contact reat-

taches, new values of fsi and ki are assigned to it.

Artificial vibrations of the blocks are avoided by introduc-

ing a viscous damping force, f� ¼ �m� _xj, where xj is the

coordinate of the center of mass of the jth block of mass

m ¼ M=N.

Both the experiments and model are in the stick-slip

regime of friction (Fig. 1). Under these loading conditions

[3,6] large, system sized, stick-slip events are the culmi-

nation of a complex history of precursory rupture events

that initiate at the system’s trailing edge and arrest within

the interface. The resulting slip generates discrete sequen-

ces of small sharp drops in FSðtÞ (Fig. 1) well below its

peak values.

In the model, the shear stress accumulated at the trailing

edge decays exponentially along the slider, with a corre-

sponding deformation:

�xj ¼ xj � x0j ¼ �x1 exp½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ks=Kint

q

ðj� 1Þ� (1)

where x0j is the equilibrium position of block j, �x1 is

the displacement of the block at the trailing edge and

Ks ¼ kNS. As FS increases, the stress grows until it

reaches the threshold for rupture of surface contacts at

the first block. The experiments and simulations show

that frictional sliding is stochastic in both the period be-

tween consecutive slip events (Fig. 2) and the size of the

stress drops following each stick-slip event. The double

peaked structure of the model’s stick-slip interval distribu-

tion [Fig. 2(d)] reflects contributions of stick-slip events

with different numbers of precursors.

What is the origin of the stochasticity of the frictional

dynamics? The model has two sources of stochasticity:

(i) a diversity of surface contacts characterized by distri-

butions of rupture forces, stiffnesses and reattachment

times, and (ii) nonlinearity of interactions between the dri-

ven spatially extended slider and the surface. Figure 2(d)

demonstrates that a broad distribution of stick times is

retained even when all contacts are identical. Thus, the

stochastic response is mainly due to the nonlinearity.

System nonlinearity leads to stochasticity only when the

nonuniformly stressed region involves more than one

block, i.e., N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kint=Ks

p

[see Eq. (1)].

Once small harmonic perturbations are introduced to

the shear loading, this picture changes significantly. Even

relatively small perturbations can cause the interval, �,
between successive stick-slip events to phase lock to the

perturbation frequency. This is clearly demonstrated in the

histograms of � for both experiments and simulations

presented in Fig. 2. When a control signal is applied, the

intervals between slip events are no longer randomly dis-

tributed around a mean value of �0. Instead, � phase locks

to the driving frequency, 2�=T, attaining only integer

values of T. The model also provides partial synchroniza-

tion of stress drops, which is not clearly evident in the

experiments. Phase locking occurs, in both experiments

and model, not only for �, but also for the intervals between
successive precursors (see the supplemental material,

Ref. [14]).

In the results presented in Fig. 2, T was the same order

as �. Phase locking also occurs for control frequencies that
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FIG. 2 (color online). Histograms of � in experiments (left

panels) and the model (right panels), when (a),(d) no external

control is imposed, and for small-amplitude sinusoidal perturba-

tions with external frequencies of 2 Hz (b), 1 Hz (c), 29 Hz (e),

58 Hz (f). The red dashed curve in (d) is a histogram calculated

for identical surface contacts, when the system’s nonlinearity is

the only source of stochasticity. The model parameter values

used are as in Fig. 1.
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are much higher than the typical stick-slip frequency, �0.
Figure 3 demonstrates that locking can occur at integer

values n such that � ¼ nT. The optimal modulation period,

T, for synchronization of the stick-slip events is defined by
the condition nT ¼ �0, where �0 is the mean stick-slip

interval value in the absence of perturbations. This optimal

period is given by Eq. (A2) in the supplemental material

[14]. Once n is set, further increase (decrease) of T during a

given experiment will ‘‘drag’’ � to respectively higher

(lower) values, within the initial distribution of stick-slip

intervals.

Let us now define the phase, � of stick-slip motion

relative to the forcing by the temporal shift, �t, from the

peak of the force modulation, �cosð2�t=TÞ, that is closest
to the slip event (see inset in Fig. 3). Thus, � ¼ 2��t=T,
and it lies in the interval (� �, �). When the synchroni-

zation in Figs. 2 and 3 takes place, the system locks to a

well-defined value of � for each set of system parameters.

A value � ¼ �min corresponding to a minimal possible

value of the loading force, FL, at the slip event is set by the

condition that this force should be higher than the preced-

ing maximum in the loading curve. This yields:

�min þ � cosð�minÞ � �max þ � cosð�maxÞ (2)

where � ¼ ð2��Þ=ðTV0Þ is a dimensionless parameter

representing the ratio between the external harmonic con-

trol and the uniform background loading rate, and �max is

the phase corresponding to the maximum loading force

that is defined by sinð�maxÞ ¼ 1=�. For values �< 1, the
loading force changes monotonically with time and har-

monic oscillations do not influence the stick-slip pattern.

For � � 1 Eq. (2) predicts asymptotic behavior, �min �
�2ð�=�Þ1=2. These predictions are verified by both the ex-
periments and simulations presented in Figs. 3(d) and 3(e):

(i) � is indeed a relevant parameter that controls the fric-

tional response to harmonic perturbations; (ii) A minimum

value of � ’ 1 exists, below which no phase locking is

observed; (iii) When control is applied a well-defined

‘‘backbone’’ exists, below which the onset of stick-slip

motion will (nearly) never occur; (iv) This backbone is

described by: � / ���1=2. The data for stick-slip events

are strongly clustered above this curve. The phases

of the vast majority of the non-phase-locked data are,

however, above the backbone. This may imply that a

weaker sort of stochastic phase locking still persists. The

� / ���1=2 scaling is, however, wholly consistent with

previous measurements [11] in a granular system where

strong phase locking was observed.

The behavior described in Fig. 3 occurs for values of �
that span approximately 3 orders of magnitude, where

phase locking ranges from 1<�< 1000. Even for values

of � ’ 1000we are still applying a small perturbation. One

way to see this is to compare the size of the applied

perturbation over a single forcing period, �FS ¼ Kd�,
to the value of Fm

S needed to initiate stick-slip motion.

Over the entire range of the data presented in Fig. 3, we

have 0:002< �FS=F
m
S < 0:05 in experiments and 0:05<

�FS=F
m
S < 0:1 in simulations. Thus, despite strong effects

on stick-slip dynamics (strong locking is easily attained for

a 1% forcing amplitude), the perturbations are decidedly

small. We note that these perturbations have a negligible

effect on the average friction force.

To clarify the synchronization mechanism of stick-slip

events, we compare in Figs. 4(b) and 4(d) 2D maps of the

fraction of attached contacts in the slider as functions of x
and t in both the absence and presence of harmonic per-

turbations. The simulations show that the main effect of the

perturbations on the detachment dynamics is the elimina-

tion of slow fronts. This effect is also observed experimen-

tally in the contact area measurements [Figs. 4(a) and 4(c)],

by driving the system at sufficiently large frequencies to

enable us to capture their effect on the front dynamics.

What is taking place? Slow fronts arise [9] when the

ratio of shear/normal stress is, locally, close to a critical,

threshold value. An approximate 20% increase in this
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FIG. 3 (color online). Once phase locking occurs, � becomes

an integer multiple, n, of the forcing period, T. (a) A typical

experiment for large n and T � �0 (�0 is the, unperturbed, mean

stick-slip interval). Stick-slip intervals, �, as a function of T for

experiments (b) and the model (c) over a broad range of loading

conditions. The data all fall on well-defined lines of � ¼ nT for

different integer values of n. Examples are highlighted by solid

lines. Plots of � vs � for experiments (d) and the model (e).

Experiments: 1< V0 < 200 �m=s, 2<�< 100 �m, 0:1<
2�=T < 500 Hz. Phase locking is seen by the data clustering

above a well-defined ‘‘backbone.’’ At low values of � ¼
ð2��Þ=ðTV0Þ (shaded region), no phase locking occurs and

��<�<� occur with equal probability. As � is increased,

correlated events appear with the initial phase of�� for small �
and saturate to zero for � � 1. Red curves in (d) and (e)

correspond to �min � �2ð�=�Þ1=2. Blue dots are averaged

values of � for given values of �.
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stress ratio is sufficient to trigger a transition to rapid

rupture fronts. When applying stress to the system’s

trailing edge, its spatial distribution is highly nonuniform.

Near the edge, as Eq. (1) indicates, the effect of the

modulating component of FS is therefore highly amplified

and a 4%–5% overall modulation could easily be amplified

to a 20% modulation near the edge. Thus, near the critical

stress ratio, slow fronts are arrested/inhibited for �<�min

while rapid fronts may be triggered for �>�min. If the

stress modulations are sufficiently rapid, slow fronts could

not propagate long before rapid rupture is nucleated. We

surmise that this is what is occurring in Fig. 4.

In summary, we have shown how small oscillatory

perturbations can synchronize the periods between con-

secutive slip events. We identified one of the relevant

dimensionless parameters and showed how it functionally

affects the locking phase. We proposed a model, based on

these results, that explains the experimental observations

and elucidates the mechanism for phase locking. This

picture may bear relevance to remote triggering of earth-

quakes. A fault which is susceptible to external triggering

is most probably already close to criticality, perhaps ap-

proaching or within a state of slow, aseismic, rupture [15].

If the fault is subjected to nonuniform loading, a small

amplitude, rapid stress oscillation radiated from a large

faraway earthquake could be sufficient to trigger rapid,

seismic, events, analogous to the one shown in Fig. 4.

Our results may have interesting ramifications beyond

frictional systems. Our system is an example of a broad

class of systems described by a large ensemble of non-

linearly coupled discrete variables that produce rich and

complex collective behavior [7]. Thus, understanding how

to excite and manipulate the collective modes involved in

the stability of a simple rough frictional interface may

provide insight into this general class of systems.
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FIG. 4 (color online). Space-time maps of the measured real

contact area (a),(c) and fraction of attached contacts in the model

(b),(d) when no control is applied (left panels) and in the

presence of oscillatory perturbations (right panels). Hotter

(colder) colors indicate increased (decreased) contact area in

(a),(c). (b),(d) The bars to the right of the maps set up a

correspondence between the colors and the percent of detached

contacts.
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