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Stabilizing Vehicle Lateral Dynamics With Considerations
of Parameter Uncertainties and Control Saturation

Through Robust Yaw Control

Haiping Du, Nong Zhang, and Guangming Dong

Abstract—This paper presents a robust yaw-moment controller design
for improving vehicle handling and stability with considerations of param-
eter uncertainties and control saturation. The parameter uncertainties
dealt with are the changes of vehicle mass and moment of inertia about the
yaw axis and the variations of cornering stiffnesses. The control saturation
considered is due to the physical limitations of actuators and tires. Both
polytopic and norm-bounded approaches are used to describe parameter
uncertainties, and a norm-bounded approach is applied to handle the
saturation nonlinearity. The conditions for designing such a controller are
derived as linear matrix inequalities (LMIs). A nonlinear vehicle model
is utilized to validate the effectiveness of the proposed approach. The
simulation results show that the designed controller can improve vehicle
handling and stability, regardless of the changes in vehicle mass and
moment of inertia and the variations of road surfaces and saturation
limitations.

Index Terms—Control saturation, parameter uncertainty, vehicle lat-
eral dynamics, yaw moment control.

I. INTRODUCTION

The control of ground-vehicle lateral dynamics to improve driver
satisfaction and safety has become increasingly important. Combining
electronic control systems with the existing hardware to maximize
the system performance is increasingly regarded as a good way to do
it. Strategies like vehicle dynamics control [1], [2], antilock braking
systems [3], [4], active steering control [5], [6], direct yaw-moment
control, etc., have been developed to allow the driver to keep control
of the vehicle when the vehicle is at the physical limit of adhesion
between the tires and the road. In particular, the yaw-moment control
is proved to be one of the most promising means of chassis control,
which could considerably enhance vehicle handling and active safety
during severe driving maneuvers [7]. Various control methodologies,
such as optimal control [8], fuzzy logic control [9], internal model
control [10], flatness-based control [11], etc., have been proposed in
the literature, and a recent review on vehicle chassis control schemes
can be found in [12].

Vehicle load is one parameter that is easily varied due to the change
of the number of passengers or the payload. Vehicle-load variation will
accordingly change the vehicle mass, the moment of inertia, and the
center of gravity (CG) location, which directly affect vehicle lateral
dynamics and vehicle stability. Although the vehicle mass uncertainty
could be dealt with by a μ-synthesis robust control approach [13],
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Fig. 1. Two degree-of-freedom model of vehicle dynamics.

a high-order controller design made its implementation complicated.
Other parameter uncertainties that affect vehicle lateral dynamics
may come from tire–road conditions. Since the yaw-moment control
obviously relies on the tire lateral force and the tire force strongly
depends on tire vertical load, which is very sensitive to vehicle motion
and environmental conditions, the tire cornering stiffness inevitably
obtains uncertainties that need to be coped with. On the other hand,
due to the physical limitations of actuators and tires, not every required
yaw moment can ideally be generated. As a consequence, the control
saturation aspect should be considered in the controller design process
to make the implementation of controller more practical. In spite of
their significance, it is noticed that not much effort has been made to
consider vehicle load variation, tire cornering stiffness uncertainties,
and control saturation problems in one research, which motivates our
current study.

In this paper, a robust yaw-moment controller is designed for a two-
degree-of-freedom (2DOF) vehicle lateral dynamics model with con-
siderations of vehicle load variation, cornering stiffness uncertainty,
and control saturation. The control objective is to stabilize the closed-
loop system with optimal performance on sideslip angle and yaw rate
in the presence of parameter uncertainties and control saturation. The
conditions for designing such a controller are derived as linear matrix
inequalities (LMIs). Numerical simulations performed on a nonlinear
vehicle model are used to validate the control performance of the
designed controller.

The notation used throughout this paper is standard. For a real
symmetric matrix W , the notation of W > 0 (W < 0) is used to
denote its positive (negative) definiteness. I is used to denote the
identity matrix of appropriate dimensions. To simplify the notation, ∗
is used to represent a block matrix that is readily inferred by symmetry.

II. DESCRIPTION OF UNCERTAIN VEHICLE DYNAMICS MODEL

In this paper, a bicycle model of vehicle dynamics, as shown in
Fig. 1, is used for controller design. The vehicle has mass m and
moment of inertia Iz about the yaw axis through its CG. The front

0018-9545/$26.00 © 2010 IEEE
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and rear axles are located at distances lf and lr , respectively, from the
vehicle CG. The front and rear lateral tire forces Fyf and Fyr depend
on slip angles αf and αr , respectively, and the steering angle δ changes
the heading of the front tires.

The vehicle’s handling dynamics in the yaw plane can be repre-
sented with states of sideslip angle β and yaw rate r as

mvβ̇(t) =Fyf (t) + Fyr(t) − mvr(t)

Iz ṙ(t) = lfFyf (t) − lrFyr(t) + Mz(t) (1)

where Mz(t) is the external yaw moment, and v is the vehicle velocity
that is assumed to be a constant in the study.

With low lateral acceleration, the tires operate in the linear region,
and the lateral forces at the front and rear can be related to slip angles
by the cornering stiffnesses of the front and rear tires as

Fyf (t) =Cαfαf (t)

Fyr(t) =Cαrαr(t) (2)

where Cαf and Cαr are the cornering stiffnesses for the front and rear
tires, respectively. The front and rear slip angles are defined as

αf (t) = δ(t) − lfr(t)

v
− β(t)

αr(t) =
lrr(t)

v
− β(t). (3)

Substituting (2) and (3) into (1), equation (1) is expressed in state-
space form as

ẋ(t) = Ax(t) + B1w(t) + B2u(t) (4)

where

x(t) = [β(t), r(t) ]T

w(t) = δ(t), u(t) = Mz(t)

A =

[
−Cαf +Cαr

mv
−1 − lf Cαf−lrCαr

mv2

− lf Cαf−lrCαr

Iz
− l2

f
Cαf +l2rCαr

Izv

]

B1 =

[ Cαf

mv
lf Cαf

Iz

]
, B2 =

[
0
1
Iz

]
.

As the varying vehicle mass m is actually bounded by its minimum
value mmin and its maximum value mmax in a real operation, it is not
difficult to represent the uncertain vehicle mass by

1/m = M1(ξ1)ms max + M2(ξ1)ms min

where ξ1 = 1/m, ms max = 1/mmin, ms min = 1/mmax, and
M1(ξ1) and M2(ξ1) are defined as

M1(ξ1) =
1/m − ms min

ms max − ms min

M2(ξ1) =
ms max − 1/m

ms max − ms min

. (5)

Similarly, the uncertain moment of inertia Iz is bounded by its
minimum value Imin and its maximum value Imax so that it can be
represented by

1/Iz = N1(ξ2)Is max + N2(ξ2)Is min

where ξ2 = 1/Iz , Is max = 1/Iz min, Is min = 1/Iz max, and N1(ξ1)
and N2(ξ2) are defined similar to (5).

By defining hi(ξ) = Mk(ξ1)Nj(ξ2), where i = 1 ∼ 4, k = 1, 2,
j = 1, 2, it obtains hi(ξ) � 0 and

∑4

i=1
hi(ξ) = 1, and the system in

(4) with varying vehicle mass and moment of inertia can be expressed
in polytopic form as

ẋ(t) =

4∑
i=1

hi(ξ) [Aix(t) + B1iw(t) + B2iu(t)] (6)

where matrices Ai, B1i, and B2i, i = 1, 2, 3, 4 are obtained by replac-
ing 1/m and 1/Iz in matrices A, B1, and B2, with ms max and ms min

and Is max and Is min, respectively.
When the lateral acceleration is high, the tire forces are no longer

linearly proportional to the slip angles due to the tire saturation prop-
erty. That is, the cornering stiffness used in the linear tire model should
be varied when the road friction changes or when the nonlinear tire
domain is reached. Taking cornering stiffness variations into account,
the linear tire model could correct the cornering stiffness via the
uncertain variables ΔCαf and ΔCαr as [14]

Fyf (t) = (Cαf + ΔCαf )αf (t)

Fyr(t) = (Cαr + ΔCαr)αr(t). (7)

If the slip angle is controlled to be small enough so that it is always
located in the linear region, then using (7) could reflect most of the road
friction conditions. Considering the cornering stiffness uncertainties in
the model, we get

ẋ(t) =

4∑
i=1

hi(ξ)[(Ai+ΔAi)x(t)+(Bi+ΔBi)w(t)+B2iu(t)]

= (Ah+ΔAh)x(t)+(B1h+ΔB1h)w(t)+B2hu(t) (8)

where Ah =
∑4

i=1
hi(ξ)Ai, B1h =

∑4

i=1
hi(ξ)B1i, and B2h =∑4

i=1
hi(ξ)B2i. ΔAh =

∑4

i=1
hi(ξ)ΔAi, and ΔAi represents the

uncertainty caused by the uncertain variables ΔCαf and ΔCαr

on matrix Ai. When a norm-bounded approach is used, ΔAi

can be expressed as ΔAi = HFEi, where H and Ei are known
constant matrices with appropriate dimensions, and F is an un-
known matrix function bounded by F T F � I . Hence, ΔAh =∑4

i=1
hi(ξ)HFEi = HFEh, where Eh =

∑4

i=1
hi(ξ)Ei. Simi-

larly, ΔB1h =
∑4

i=1
hi(ξ)ΔB1i, and ΔB1i represents the uncer-

tainty caused by the uncertain variables ΔCαf and ΔCαr on matrix
B1i, and ΔB1i = H1F1E1i, where H1 and E1i are known con-
stant matrices with appropriate dimensions, and F1 is an unknown
matrix function bounded by F T

1 F1 � I . Accordingly, ΔB1h =∑4

i=1
hi(ξ)H1F1E1i = H1F1E1h, where E1h =

∑4

i=1
hi(ξ)E1i.

Furthermore, the yaw moment should be bounded in a real applica-
tion due to some physical constraints resulting from both the actuation
system and the tire–road conditions. Taking ū(t) as the bounded yaw
moment, the system in (8) is expressed as

ẋ(t) = (Ah + ΔAh)x(t) + (B1h + ΔB1h)w(t) + B2hū(t)

= (Ah + ΔAh)x(t) + (B1h + ΔB1h)w(t)

+ B2h
1 + ε

2
u(t) + B2h

(
ū(t) − 1 + ε

2
u(t)

)
(9)

where ū(t) = sat(u(t)), sat(u(t)) is a saturation function of control
input u(t), and 0 < ε < 1.
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III. ROBUST CONTROLLER DESIGN

The yaw-moment controller is constructed as

u(t) = Kx(t) (10)

where K is the state feedback gain matrix to be designed. To realize
good handling and stability, the sideslip angle and the yaw rate are
defined as two control outputs, i.e.,

z1(t) =β(t) = [1 0]x(t) = C1x(t)

z2(t) = r(t) = [0 1]x(t) = C2x(t). (11)

Generally, the desired sideslip angle is given as zero, and the
desired yaw rate is defined in terms of vehicle speed and steering input
angle as [15]

rd(t) =
v

l(1 + kusv2)
δ(t) (12)

where l = lf + lr , and kus is a stability factor. To make a good
compromise between sideslip angle and yaw rate, the control
objective is defined as minimizing the sideslip angle β(t)(z1(t))
subject to the yaw rate r(t) (z2(t)) being smaller than a given number.
To make the controller adequately performing for a wide range of
maneuvers, the L2 gain is chosen as the performance measure for
z1(t), which is defined as

‖Tz1w‖∞ = sup
‖w(t)‖2 �=0

‖z1(t)‖2

‖w(t)‖2

(13)

where ‖z1(t)‖2
2 =

∫ ∞
0

zT
1 (t)z1(t)dt, ‖w(t)‖2

2 =
∫ ∞
0

wT (t)w(t)dt,

and the performance measure

‖z2(t)‖∞ < γ ‖w(t)‖2 (14)

is required for z2(t), where γ > 0 is a given smaller number, and

‖z2(t)‖∞ = supt∈[0,∞)

√
zT
2 (t)z2(t).

The controller design is given in the following theorem.
Theorem 1: For the given scalars γ > 0, ρ > 0, 1 > ε > 0, and

ulim > 0, where ulim is control input limit, and matrices H , H1,
Ei, and E1i, i = 1, 2, 3, 4, the system in (9) with the controller in
(10) is quadratically stable, and the L2 gain ‖Tz1w‖∞ defined by
(13) is less than γ, and ‖z2(t)‖∞ < γ‖w(t)‖2 if there exist matrices
Q > 0 and Y and scalars ε1 > 0, ε2 > 0, and ε3 > 0 satisfying
the LMIs [

Ξ11 Ξ12

∗ Ξ22

]
< 0 (15)

[ (
ulim

ε

)2
I Y

Y T Qρ−1

]
� 0 (16)

[
Q QCT

2

C2Q I

]
> 0 (17)

where

Ξ11 =

[
Λ Y T QCT

1

∗ −ε−1
1

(
2

1−ε

)2
I 0

∗ ∗ −I

]

with Λ=QAT
i +AiQ+(1+ε/2)[Y T BT

2i+B2iY ]+ε−1
1 B2iB

T
2i+

ε−1
2 HHT +ε−1

3 H1H
T
1

Ξ12 =

[
B1i 0 QET

i

0 0 0
0 0 0

]

Ξ22 =

[−γ2I ET
1i 0

∗ −ε−1
3 I 0

∗ ∗ −ε−1
2 I

]

where i = 1, 2, 3, 4. Moreover, the controller gain can be obtained as
K = Y Q−1.

Proof: Let us define a Lyapunov function for the system in (9) as

V (x(t)) = xT (t)Px(t) (18)

where P is a positive definite matrix.
By differentiating (18), we obtain

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t). (19)

By using [16] and a norm-bounded approach presented in [17],
together with (9) and (10), we have

V̇ (x(t)) � xT (t)Θx(t) + wT (t)BT
1hPx(t) + xT (t)PB1hw(t)

+ ε3w
T (t)ET

1hE1hw(t) + ε−1
3 xT (t)PH1H

T
1 Px(t) (20)

where Θ = AT
h P + PAh + (B2h(1 + ε/2)K)T P + PB2h(1 +

ε/2)K + ε1(1 − ε/2)2KT K + ε−1
1 PB2hBT

2hP + ε2E
T
h Eh +

ε−1
2 PHHT P .

Adding zT
1 (t)z1(t) − γ2wT (t)w(t), γ > 0 to two sides of (20)

yields

V̇ (x(t)) + zT
1 (t)z1(t) − γ2wT (t)w(t) �

[
x(t)

w(t)

]T

Π

[
x(t)

w(t)

]
(21)

where Π is defined as

Π =

[
Π11 PB1h

BT
1hP −γ2I + ε3E

T
1hE1h

]
(22)

with Π11 = AT
h P + PAh + CT

1hC1h + ε2E
T
h Eh + (B2h(1 +

ε/2)K)T P + PB2h(1 + ε/2)K + ε1(1 − ε/2)2KT K +
ε−1
1 PB2hBT

2hP + ε−1
2 PHHT P + ε−1

3 PH1H
T
1 P .

Let us consider Π < 0. Then, V̇ (x(t)) + zT
1 (t)z1(t) −

γ2wT (t)w(t) � 0, and the L2 gain defined in (13) is less than
γ with the initial condition x(0) = 0. When the disturbance is
zero, i.e., w(t) = 0, it can be inferred from (21) that if Π < 0, then
V̇ (x(t)) < 0, and the system in (9) with the controller in (10) is
quadratically stable.

Premultiplying and postmultiplying (22) by diag(P−1 I) and
its transpose, respectively, and defining Q = P−1, Y = KP−1, the
condition Π < 0 is equivalent to

Ξ =

[
Ξ11 B1

BT
1 −γ2I + ε3E

T
1hE1h

]
< 0 (23)

where Ξ11 =QAT
h +AhQ+(1+ε/2)Y T BT

2h+(1 + ε/2)B2hY +
ε1(1−ε/2)2Y T Y + ε−1

1 B2hBT
2h + QCT

1hC1hQ + ε2QET
h EhQ +

ε−1
2 HHT + ε−1

3 H1H
T
1 . By the Schur complement, the

definitions Ah =
∑4

i=1
hi(ξ)Ai, B1h =

∑4

i=1
hi(ξ)B1i, B2h =∑4

i=1
hi(ξ)B2i, Eh =

∑4

i=1
hi(ξ)Ei, and E1h =

∑4

i=1
hi(ξ)E1i,

and the facts hi(ξ) � 0 and
∑4

i=1
hi(ξ) = 1, Ξ < 0 is equivalent

to (15).
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TABLE I
PARAMETER VALUES OF THE CASE STUDY VEHICLE

Fig. 2. Sideslip angle responses under J-turn maneuver with different vehicle
masses.

By referring to [18] and [19], respectively, conditions (16) and (17)
can be obtained without much difficulty, whose proofs are omitted here
for brevity.

To make the sideslip angle as small as possible, the following
optimization problem is applied:

min γ subject to LMIs (15)−(17). (24)

This is a convex optimization problem that can efficiently be solved by
means of Matlab LMI Toolbox software.

IV. SIMULATION RESULTS

In this section, a yaw-plane 2DOF vehicle dynamics model with
nonlinear Dugoff tire model is used to validate the effectiveness of
the proposed controller. The parameters used for the vehicle model
are listed in Table I. The robust controller is designed using the previ-
ously proposed approach, where 20% variations on vehicle mass and
moment of inertia are considered, respectively, and 50% variation on
cornering stiffness is assumed. A J-turn maneuver, which is produced
from the ramp steering input (the maximum degree is 6◦), is used
to testify the vehicle lateral dynamics performance. In the following
simulations, if it is not mentioned, then the nominal values for m and
Iz are as given in Table I, the saturation limit ulim = 3000 Nm, and
the road friction coefficient μ = 0.9 will be used.

We first check the vehicle lateral dynamic performance in terms of
the change of vehicle mass. Both vehicle dynamics with and without
controller are checked to show the effects of the proposed controller.
Figs. 2 and 3 show the simulation results of sideslip angle and yaw

Fig. 3. Yaw-rate responses under J-turn maneuver with different vehicle
masses.

Fig. 4. Sideslip angle responses under J-turn maneuver with different mo-
ments of inertia.

rate under J-turn maneuver with four different vehicle masses. From
Figs. 2 and 3, we observe that the sideslip angle and yaw rate responses
of the controlled system are all better than the uncontrolled system,
regardless of the change of vehicle mass. In particular, the sideslip
angles are all close to the reference value, i.e., zero degree (i.e., desired
sideslip angle), and the yaw rates are all smaller than the corresponding
uncontrolled system responses.

We now check the vehicle lateral dynamic performance in terms of
the change of moment of inertia. Fig. 4 shows the simulation result
of sideslip angle under J-turn maneuver with four different moments
of inertia. The simulation result of yaw rate is omitted here to save
space. We can observe from Fig. 4 that the sideslip angle responses
of the controlled system are all better than the uncontrolled system,
regardless of the change of moment of inertia.

The robustness of the controller to the cornering stiffness uncertain-
ties is checked by changing the road surface. Fig. 5 shows the response
of sideslip angle under J-turn maneuver with four different road
frictions. It is observed from Fig. 5 that the sideslip angle responses of
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Fig. 5. Sideslip angle responses under J-turn maneuver with different road
surfaces.

Fig. 6. Sideslip angle responses under J-turn maneuver with different satura-
tion limitations.

the controlled system are all close to the reference value, even with the
variation on road friction. On the contrary, the sideslip angle responses
of the uncontrolled system largely vary. Since the sideslip angle can
be controlled in a very small range, the corrected linear tire model
could cover most of the road conditions, and the robust controller can
make the vehicle lateral dynamics insensitive to the variation in road
conditions.

Similarly, the actuator saturation limit is varied to check the con-
troller’s performance with different capacities. For every actuator-
saturation limit, the controller will be redesigned. The sideslip
angle responses are plotted in Fig. 6, respectively, for saturation limit
changing from 1500 to 3000 Nm. It can be seen from this figure
that the sideslip angles of the controlled systems are all close to
their references. However, different saturation limits will make the
controller show different performances. A high saturation limit enables
a large yaw moment being applied to the vehicle so that the vehicle-
handling performance is improved.

V. SUMMARY

A robust yaw-moment controller has been designed in this paper.
The parameter uncertainties on vehicle mass, moment of inertia,
cornering stiffness, and control saturation are considered in the con-
troller design process, which makes the controller more robust and the
implementation more practical. The control objective is to stabilize the
closed-loop system with optimal performance on sideslip angle and
yaw rate subject to parameter uncertainties and control saturation. By
derivation, the controller design is formalized as a convex optimization
problem with solving LMIs. Simulation results are used to validate the
performance of the designed controller.
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