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Stable 1-norm error minimization based linear

predictors for speech modeling
Daniele Giacobello, Member, IEEE, Mads Græsbøll Christensen, Senior Member, IEEE,

Tobias Lindstrøm Jensen, Member, IEEE, Manohar N. Murthi, Member, IEEE,

Søren Holdt Jensen, Senior Member, IEEE, and Marc Moonen, Fellow, IEEE

Abstract—In linear prediction of speech, the 1-norm error
minimization criterion has been shown to provide a valid al-
ternative to the 2-norm minimization criterion. However, unlike
2-norm minimization, 1-norm minimization does not guarantee
the stability of the corresponding all-pole filter and can generate
saturations when this is used to synthesize speech. In this paper,
we introduce two new methods to obtain intrinsically stable
predictors with the 1-norm minimization. The first method is
based on constraining the roots of the predictor to lie within the
unit circle by reducing the numerical range of the shift operator
associated with the particular prediction problem considered. The
second method uses the alternative Cauchy bound to impose
a convex constraint on the predictor in the 1-norm error
minimization. These methods are compared with two existing
methods: the Burg method, based on the 1-norm minimization of
the forward and backward prediction error, and the iteratively
reweighted 2-norm minimization known to converge to the 1-
norm minimization with an appropriate selection of weights.
The evaluation gives proof of the effectiveness of the new
methods, performing as well as unconstrained 1-norm based
linear prediction for modeling and coding of speech.

I. INTRODUCTION

Linear Prediction (LP) is widely used in a diverse range

of speech modeling based algorithms (e.g., coding and recog-

nition [1]). The traditional approach is to find the prediction

coefficients by minimizing the 2-norm of the prediction error,

i.e., the difference between the predicted and observed signal.

This works well when the excitation signal is i.i.d. Gaussian

[2]; however, when this assumption is not satisfied, problems

arise. This is the case for voiced speech where the pitch
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excitation is sparse and pulse-like. In this case, an alternative

approach based on the 1-norm minimization of the prediction

error has shown to offer a better modeling thanks to its ability

to decouple the pitch excitation from the vocal tract transfer

function [3].

The improved modeling of 1-norm minimization also ha

shown to be beneficial in speech coding. In particular, when

seeing the 1-norm as a convex relaxation of the 0-norm,

the minimization process offers a residual that is sparser,

providing tighter coupling between the multiple stages of

time-domain speech coders and thereby enabling a more

efficient coding [4]–[6]. Nevertheless, unlike those obtained

through 2-norm minimization, the predictors obtained through

1-norm minimization are not intrinsically stable [7], [8] and,

in applications such as coding, having unstable filters may

generate saturations in the synthesized speech. In particular,

as noted in [3] for a large set of data, the percentage of unstable

filters in voiced speech is around 10%.

The predictor stability problem in 1-norm LP has been

tackled already in [8] by introducing the Burg method for all-

pole parameters estimation based on 1-norm minimization of

the forward and backward error. In this approach, however, the

sparsity is not preserved [3]. In this paper, we will introduce

two novel methods to obtain intrinsically stable predictors

with the 1-norm minimization. The first method is based on

modifying the shift operator that generates the observation

matrix from the analyzed speech segment [9], reducing the

numerical range of this matrix [10]. This allows us to restrict

the zeros of the predictor polynomial to lie within the unit

circle. A similar approach has been used in weighted LP [11],

[12] to modify the weighting function to guarantee stable

solutions. The second method uses the alternative Cauchy

bound [13], [14] to impose a constraint on the predictor in

the 1-norm error minimization.

The paper is organized as follows. In Section II, we provide

a brief review of LP based on the p-norm. In Section III, the

core of the paper, we introduce our two new methods to obtain

intrinsically stable predictors with the 1-norm minimization

and also review the existing ones. In Section IV, we compare

the spectral modeling and coding performances of the resulting

predictors. In Section V, we provide a complexity analysis

and possible efficient solutions for the method presented, as

initially introduced in [15] for the 1-norm LP. Finally, Section

VI concludes the paper.
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II. FUNDAMENTALS OF LINEAR PREDICTION

The problem considered in this paper is based on the

following speech production model, where a sample of speech

x(n) at time n is written as a linear combination of K past

samples:

x(n) =
K
∑

k=1

akx(n− k) + e(n), (1)

where {ak} are the coefficients of the predictor

A(z) = 1 +

K
∑

k=1

akz
−k, (2)

and e(n) is the driving noise process (also referred to as pre-

diction residual or excitation). The speech production model

(1) in matrix form becomes:

x = Xa+ e. (3)

The problem considered in this paper is associated with finding

the prediction coefficient vector a ∈ R
K from a set of

observed real samples x(n) for n = 1, . . . , N so that the

prediction error is minimized [16]:

â = argmin
a

‖x−Xa‖pp, (4)

where

x = [ x(N1) . . . x(N2) ]
T
, (5)

X =







x(N1 − 1) · · · x(N1 −K)
...

...

x(N2 − 1) · · · x(N2 −K)






, (6)

and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p)
1

p

for p ≥ 1. The starting and ending points N1 and N2 can be

chosen in various ways assuming that x(n) = 0 for n < 1
and n > N [17]. We will consider the case N1 = 1 and N2 =
N +K, which for p = 2 is equivalent to the autocorrelation

method:

â = argmin
a

‖x−Xa‖22 = (XT
X)−1

X
T
x, (7)

where R = X
T
X is the autocorrelation matrix.

The case we consider here is when p = 1, which corre-

sponds to minimizing the sum of absolute values:

â = argmin
a

‖x−Xa‖1. (8)

This formulation is relevant particularly in LP of voiced speech

signals where the prediction residual is usually modeled by an

impulse train. The 1-norm, intended as a convex relaxation

of the 0-norm, will offer an approximate solution to the

minimization of the cardinality, i.e., the sparsest prediction

residual:

â = argmin
a

‖x−Xa‖0. (9)

This translates into the ability of the predictor to preserve the

structure of the underlying sparse pulse-like excitation. The

spectral envelope will benefit from this by avoiding the over-

emphasis on peaks generated in the effort to cancel the voiced

speech harmonics [3], [8].

The 1-norm minimization criterion is also equivalent to

the Maximum-Likelihood (ML) estimator when the prediction

error is assumed to be i.i.d. Laplacian:

âML = argmax
a

f(x|a) = argmax
a

{exp(−‖x−Xa‖1)}. (10)

A multivariate Laplacian distribution can be seen as generated

by an autoregressive (AR) model excited by a sequence of i.i.d.

univariate Laplacian samples [18]–[20]. However, a rigorous

proof cannot be obtained since the Laplacian distribution

does not have a closed form solution [21]. This conjecture

statistically justifies the use of the 1-norm in modeling the

excitation, given that it is well known that a multivariate

Laplacian distribution offers a better model for a speech signal

segment [22].

The minimization problem in (8) does not allow for a closed

form solution and so a linear programming formulation is

required [16]. In particular, interior point methods [23] have

been proven to solve the minimization problem efficiently [15].

III. METHODS FOR OBTAINING STABLE PREDICTORS

A. Reducing the numerical range of the shift operator

First of all, we consider a known general framework for

linear prediction, successfully implemented in [11] and [12]

for the analysis of voiced speech. The columns of the matrix

obtained concatenating x and X, as defined in (6)

[x|X] = [x0 x1 . . . xK ] ∈ R
(N+K)×(K+1) (11)

can be generated via the formula:

xk+1 = Bxk, (12)

where

x0 = [x1 x2 . . . xN 0 . . . 0]T ∈ R
N+K , (13)

and B is a a noncirculant shift matrix of size (N+K)×(N+
K):

B =













0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
0 0 1 0













. (14)

Applied to x, B shifts the elements down by one position and

eliminates the last element. In other words, B is a nilpotent

operator of power n = N +K, i.e., BN+K = 0.

Let us now consider the p-norm LP problem (4), where

the column [x|X] are constructed using the formula in (12)

where B is generalized to any matrix in R
(N+K)×(N+K). It

has been shown that, in this case, the roots {zi} of the monic

polynomial solution to the p-norm LP problem (4) belong to

the numerical range ηp(B) of the matrix B, which, in turn,

belongs to an open circular disk ρ(B) of radius 2‖B‖2 and

center in the origin [9]. It is then clear that the roots of the

predictor, obtained by solving (8), with B as defined in (14),

will be contained in a closed circle of radius 2‖B‖2 = 2. This
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result can be generalized for any shift matrix B with nonzero

entries different from the unity:

B =













0 0 · · · 0

B2,1
. . .

. . .
...

...
. . .

. . . 0
0 0 BN+K,N+K−1 0













. (15)

In this case, the radius of the circle ρ(B) that contains the

numerical range η1(B) is calculated as:

2‖B‖2 = 2max |Bi+1,i|. (16)

We will then change the nonzero values of B (and subse-

quently the construction of [x|X]) in order to reduce the

radius of the circle containing η1(B) to be equal or less

than one, therefore guaranteeing the stability of the linear

predictor. In particular, having max |Bi,j | ≤ 1/2 will be

sufficient for stability. We can also consider a more general

formulation of the LP scheme, where we apply a weighting

vector w ∈ R
N+K
+ on the analyzed speech signal segment.

The effect of the weighting can be moved into the shift matrix

and the analyzed speech segment by defining:

B̃ =













0 0 · · · 0

w2/w1
. . .

. . .
...

...
. . .

. . . 0
0 0 wN+K/wN+K−1 0













, (17)

and

x̃0 = [w1x1 w2x2 wNxN 0 . . . 0]T . (18)

Constructing all the other columns of the new matrix [x̃|X̃]
using the relation in (12), the minimization problem (8) then

becomes:

min
a
‖x̃− X̃a‖1. (19)

According to (16), the circle containing the numerical range of

[x̃|X̃] and, in turn, the roots of the predictor will have radius:

ρ(B̃) = 2max
wn+1

wn
. (20)

We can then construct a weighting vector that stabilizes the

predictor. In [11] and [12], the weighting vector is chosen

based on the short-time energy (STE):

wn =

√

√

√

√

M−1
∑

i=0

x2
n−i−1 (21)

where M is the length of the STE window. The STE window

tends to more heavily weight those parts of the speech signal

that consist of samples of large magnitude, providing a robust

signal selection especially for the analysis of voiced speech.

In order to achieve intrinsically stable solutions, we can then

simply define the entries of the matrix B̃ in (17) as:

B̃i+1,i =

{

(wi+1/wi) if (wi+1/wi) ≤ 1/2,
1/2 if (wi+1/wi) > 1/2.

(22)

Finally, we can solve our modified 1-norm problem in (19)

obtaining an intrinsically stable predictor. Clearly, the window,

Algorithm 1 Iteratively Reweighted 2-norm Minimization

Inputs: speech segment x

Outputs: predictor âi, residual r̂i

i = 0, initial weights W
i=0 = I

while halting criterion false do

1. âi ← argmin
a
‖Wi(x−Xa)‖22

2. Wi+1 ← diag
(∣

∣x−Xâ
i
∣

∣+ ǫ
)−1/2

3. i← i+ 1
end while

and thus the weights, can be chosen ad libitum; we will use

the STE windowing that provides important signal selection

properties to retrieve the underlying spiky structure of the

speech signal, as done in [12].

B. Constrained 1-norm minimization

We will now consider another method to constrain the roots

of the predictor within the unit circle. Let us consider the

univariate polynomial A(z) in (2). According to [24], the

alternative Cauchy bound states that all zeros of (2) lie in

the disk:

|z| ≤ λ, where λ = max

{

1,

K
∑

k=1

|ak|
}

. (23)

This bound, a refinement of the famous Cauchy bound [13],

gives precious hints on how to modify the formulation of (8)

to guarantee a stable predictor. In particular, we can rewrite

the problem as:

minimize
a

‖x−Xa‖1
subject to ‖a‖1 < 1

(24)

where the constraint ‖a‖1 < 1, according to (23), provides

a sufficient (not necessary) condition for the zeros of (2) to

belong to the open unit disk, and can be easily incorporated

in the linear program to solve (8) [16].

C. Iteratively Reweighted 2-norm minimization [25]

Now let us consider some previously proposed methods for

obtaining stable solutions. A known method to obtain a stable

predictor based on 1-norm minimization is based on iteratively

reweighted 2-norm minimization [25]. The algorithm is shown

in Algorithm 1. It is guaranteed to output a stable predictor

since the only difference to the original formulation is the

projection in the weighted domain by the matrix W
i, leaving

x and X untouched, as discussed in Section III-A. In [25], a

proof that ‖r̂i+1‖2 ≤ ‖r̂i‖2 (where r̂
i = x−Xâ

i) is provided,

meaning that this is a descent algorithm. In Algorithm 1, the

halting criterion can be chosen as either a maximum number

of iterations or as a convergence criterion. The parameter

ǫ > 0 is used to avoid problems when a component of r̂ goes

to zero. The weighting with the square root of the inverse

of the amplitude of the residual increases the influence of

the small values in the residual while the influence of the

large residual values decreases, which is consistent with the

Laplacian probability density functions (8).
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Algorithm 2 1-norm Burg Method

Inputs: speech segment x

Outputs: reflection coefficients {ki}
Initialize forward f0 = x and backward b0 = x error

for i = 1, . . . ,K do

1. ki ← argminki
‖fi−1 + kibi−1‖1 + ‖kifi−1 + bi−1‖1

update forward error

2. fi(n)← fi−1(n) + kibi−1(n− 1)
update backward error

3. bi(n)← kif(n)i−1 + bi−1(n− 1)
end for

D. Burg method based on 1-norm minimization [8]

The Burg method based on 1-norm minimization was first

proposed in [8]. This method stands as a generalization of the

Burg method where the reflection coefficients of the lattice

filter are obtained by minimizing the 1-norm of the forward

and backward prediction error instead of the 2-norm. The

algorithm is shown in Algorithm 2. Once the K reflection

coefficients are found, the prediction polynomial and the

prediction error can be easily calculated. This method is

also guaranteed to provide a stable predictor since all the

reflection coefficients obtained have amplitude less than one.

A simple proof is shown in [8]. This method is, however,

suboptimal due to the decoupling of the main K-dimensional

minimization problem (8) in K one-dimensional minimization

sub-problems.

IV. PERFORMANCE ANALYSIS

In this section, we analyze and compare the performance of

the stable predictors obtained with the methods presented in

the previous section with traditional 2-norm LP and 1-norm

LP. An overview of the methods compared and the acronyms

used through the section are shown in Table I. In the case of

1-norm LP, a stability check takes place once the predictor

is obtained and the stabilization is performed through pole

reflection when the predictor is unstable. Notice that pole

reflection is the only way to obtain an amplitude response for

the stabilized predictor that is exactly the same as the one of

the unstable predictor. In all other methods, no stability check

has to be performed.

A. Modeling Performance

In this section, we analyze the modeling performance of

the predictors in the case of voiced speech. The experimental

analysis was done on 5,000 segments of length N = 40 (5 ms)

of clean voiced speech coming from several different speakers

with different characteristics (gender, age, pitch, regional

accent) taken from the TIMIT database, downsampled to 8

kHz.

1) Spectral Envelope Modeling: As a reference, we used

the envelope obtained through a cubic spline interpolation

between the harmonics peaks of the logarithmic periodogram.

This method was presented in [26] and provides an ap-

proximation of the vocal tract transfer function, “cleaned”

TABLE I
DESCRIPTION OF THE DIFFERENT PREDICTION METHODS COMPARED IN

OUR EVALUATION.

METHOD DESCRIPTION

LP2

Traditional 2-norm minimization (7) with 10Hz band-
width expansion (γ = 0.996) and Hamming window-
ing.

LP1

Unconstrained 1-norm minimization (8). Stability is
imposed by pole reflection if unstable. No windowing
is performed.

STW

Stable 1-norm minimization through reduction of the
numerical range of the shift operator (19). The weigths
in (17) and (18) are chosen from the STE (21).

CT1
Constrained 1-norm minimization as shown in (24).
No windowing is performed.

BU1

Burg method based on the 1-norm minimization of
forward and backward error (as shown in Algorithm
2). No windowing is performed.

RW2

Reweighted 2-norm minimization (as shown in Algo-
rithm 1). No bandwidth expansion is performed. No
windowing is performed.

TABLE II
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS IN

THE UNQUANTIZED CASE SDm AND QUANTIZED CASE SDq FOR

DIFFERENT PREDICTION ORDERS K . A 95% CONFIDENCE INTERVALS IS

GIVEN FOR EACH VALUE.

METHOD K SDm SDq

LP2
10 1.97±0.03 2.95±0.09
12 1.98±0.05 2.72±0.12

LP1
10 1.78±0.01 2.53±0.02
12 1.61±0.01 2.31±0.04

STW
10 1.71±0.02 2.47±0.01
12 1.52±0.01 2.19±0.09

CT1
10 1.88±0.01 2.64±0.01
12 1.65±0.01 2.22±0.01

BU1
10 1.91±0.06 2.71±0.09
12 1.84±0.11 2.59±0.10

RW2
10 1.83±0.01 2.51±0.02
12 1.69±0.03 2.37±0.05

from the fine structure belonging to the pitch excitation. We

then calculated the log spectral distortion (SD) between our

reference envelope Sint(ω) and the estimated model of the

all-pole model corresponding to the inverse of the predictor

S(ω,a) as:

SDm =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω,a)]
2
dω.

(25)

In general, the linear predictors obtained through 1-norm

minimization provide smoother all-pole models of the vocal

tract and are therefore more robust to quantization. We also

compared the log spectral distortion between our reference

envelope Sint(ω) and the quantized LP model S(ω, â):

SDq =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω, â)]
2
dω.

(26)

The quantizer used is the one presented in [27], with the

number of bits fixed at 20 for the different prediction orders.

A critical analysis of the results in Table II shows how 1-

norm based LP (LP1) offers substantially better modeling of
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Fig. 1. Figures of typical properties of the spectrum for the methods
considered using prediction order K = 10. The top pane illustrates an
example of the spectral difference between LP1 and LP2 for a voiced segment
of speech for which the spectrogram is shown. The bottom pane demonstrating
the differences between LP1 and the different approaches for intrinsically
stable solution listed in Table I.

the envelope than traditional 2-norm LP (LP2). All the other

methods achieve a performance similar to LP1, but STW

offers even better modeling performance, thanks also to the

choice of weights. It should be noted that CT1 increases its

performances considerably from order K = 10 to K = 12.

This is a direct consequence of the stringent constraint on

the prediction coefficients (‖a‖1 < 1), requiring a larger K to

model all the spectral information as well as the other methods.

Examples of the spectral envelopes for the different methods

are shown in Figure 1. The top pane clearly illustrates some

of the shortcomings of the 2-norm minimization approach, as

the overemphasis on peaks of the underlying pitch excitation

causes the envelope to have a sharper contour than desired

with poles close to the unit circle. The bottom pane shows

the similarity in performance of the stable methods presented.

It can be seen that BU1 and RW2 have a slightly different

behavior. The Burg method, in particular, can suffer from

spectral line-splitting when there is a mismatch between the

true order of the system and the order of the Burg algorithm

[28]. In this particular case, a pole is not located around the

first formant. Instead, two poles are estimated around it, which

makes for a fading spectral lobe. A similar effect happens

in RW2, where the spectral lobe around the first formant is

unusually wide. This is an effect of the ill-conditioning of

the autocorrelation matrix (XT
X)−1 in Step 1 of Algorithm

1 after a few reweighting iterations. The eigenvalues might

tend to cluster towards certain locations of the autocorrelation

matrix, thus generating a higher spread in the eigenvalues

and a peakier behavior in the envelope. This can also be

seen in the difference between LP1 and RW2 in the higher

frequencies [29].

2) Shift Invariance: Linear predictors obtained with the

1-norm minimization criterion are well documented to be

robust to small shifts of the analysis window [3]. In speech

analysis, this is a desirable property, since speech, and voiced

speech in particular, is assumed to be short-term stationary.

The shortcomings of the LP2 method are a direct consequence

of the coupling between the vocal tract transfer function and

TABLE III
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH

SHIFT OF THE ANALYSIS WINDOW s = 1, 2, 5, 10, 20.

METHOD SD1 SD2 SD5 SD10 SD20

LP2 0.138 0.159 0.233 0.478 1.342

LP1 0.005 0.010 0.017 0.021 0.039

STW 0.003 0.008 0.015 0.023 0.032

CT1 0.007 0.013 0.024 0.036 0.082

BU1 0.015 0.077 0.135 0.191 0.401

RW2 0.006 0.059 0.161 0.199 0.515

the underlying pitch excitation that standard LP introduces in

the estimate [30]. To analyze the invariance of the LP methods

to window shifts, we took the same 5,000 frames of clean

voiced speech mentioned above and we expanded them to the

left and to the right with 20 samples, giving a total length

N = 80. In each frame of length N = 80 we defined a

M = 40 samples rectangular window for all methods and we

shifted the window by s = 1, 2, 5, 10, 20 samples. The average

log spectral difference of the 10th order LP estimate between

S0(ω) and Ss(ω):

SDs =

√

1

2π

∫ π

−π

[10 log10 S0(ω)− 10 log10 Ss(ω,a)]
2
dω,

(27)

was analyzed. The average differences obtained for the

methods in Table I are shown in Table III. The results

obtained indicate clearly that the 1-norm based predictors’

robustness to small shifts in the analyzed window is still

maintained. While the decay in performance for increasing

shift in the analysis window is comparable for all methods,

the stable predictors still retain better performance. Also in

this case, the change in the frequency response in traditional

LP is clearly given by the pitch bias in the estimate of the

predictor, particularly dependent on the location of the spikes

of the pitch excitation.

3) Pitch Independence: The ability of the linear predictors

obtained with the 1-norm minimization criterion to decouple

the pitch excitation from the vocal tract transfer function is

reflected also in the ability to have estimates of the envelope

that are not affected by the pitch. In this experiment, the

envelope was calculated using a 10th order predictor obtained

with LP1. The underlying pitch excitation is then modeled

with an impulse train with different spacing. We then filtered

this synthetic pitch excitation through the obtained LP filter

and analyzed the synthetic speech applying the different LP

methods in Table I. The analysis is divided into three subsets:

high-pitched Tp ∈ [16, 35] (f0 ∈ [228Hz, 500Hz]), mid

pitched Tp ∈ [36, 71] (f0 ∈ [113Hz, 222Hz]), and low pitched

Tp ∈ [72, 120] (f0 ∈ [67Hz, 111Hz]). The shortcomings of

LP2 can be particularly seen in high-pitched speech, as shown

in the results of Table IV. Because high-pitched speakers have

fewer harmonics within a given frequency range, modeling

of the spectral envelope is more difficult and particularly

problematic for traditional LP. The stable methods are much

less affected by the underlying pitch excitation, which results

in an improved spectral modeling.
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TABLE IV
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH

DIFFERENT UNDERLYING PITCH EXCITATION. A 95% CONFIDENCE

INTERVAL IS GIVEN FOR EACH VALUE.

METHOD low mid high

LP2 0.81±0.14 1.12±0.29 1.32±0.59

LP1 0.05±0.00 0.11±0.00 0.14±0.01

STW 0.03±0.01 0.04±0.01 0.03±0.03

CT1 0.09±0.01 0.08±0.03 0.19±0.04

BU1 0.23±0.02 0.16±0.10 0.28±0.09

RW2 0.11±0.03 0.12±0.07 0.27±0.09

B. Coding Performance

The second objective is to adopt the presented methods

in the speech coding context. The experimental analysis was

conducted on about one hour of clean speech (both voiced

and unvoiced) coming from several different speakers with

different characteristics (gender, age, pitch, regional accent)

taken from the TIMIT database, re-sampled at 8 kHz. We

propose three different experiments to evaluate the coding

performance of the presented methods. In the first and second

experiment we evaluate the sparsity of the residual induced

by the choice of the prediction method and the consequent

improvement in coding efficiency. In the third experiment, we

explore the noise robustness of the LP estimators based on the

1-norm criterion, as noted and analyzed in [3] for coding and

[50] for general modeling purposes.

1) Experiment 1: A 10th order predictive analysis was

first done on a segment of speech of N = 40. Then a

multipulse encoding procedure [31] was performed to code

T pulses in the residual, with T = 5 and T = 10. Multipulse

encoding was used to obtain a sparse residual, rather than a

pseudo-random one, as obtained through algebraic codes, to

better match the characteristics of the output of the 1-norm

minimization. In Table V, we present the results in terms of

segmental SNR and number of bits necessary to encode the

prediction vector â within the well-known 1 dB distortion [32]

using the method presented in [27]. Since most of the residual

samples are not identically zero1, as an addition to the coding

results, we provide three measures widely known throughout

the literature to be more robust and effective than the 0-norm

in measuring sparsity [34]. Considering ri = xi −Xiai, the

linear prediction residual of a given unquantized predictor for

the i-th considered segment of speech, we calculated the Hoyer

criterion [35]:

ξHi (ri) =
N

N −
√
N

(

1− ‖ri‖1√
N‖ri‖2

)

, (28)

the pq-mean [36]:

ξpqi (ri) =
1

N
1

p
− 1

q

(‖ri‖p
‖ri‖q

)

, 1 ≤ p < q, (29)

and the Gini index [37]:

ξGi (ri) = 1− 2

N
∑

n=1

r̂n,i
‖ri‖1

(

N − n+ 1
2

N

)

, (30)

1Except for LP1 where at least K values will be zero, we cannot estimate
a priori the number of zeros that will result in the optimization [33].

TABLE V
COMPARISON BETWEEN THE CONSIDERED PREDICTORS â

TRANSPARENTLY ENCODED WITH B BITS ADOPTED IN A MULTIPULSE

ENCODING SCHEME WITH T PULSES. RESULTS ARE GIVEN IN TERMS OF

SEGMENTAL SNR WITH 95% CONFIDENCE INTERVAL. THE AVERAGE

SPARSITY OF THE RESIDUAL CALCULATED WITH THE HOYER MEASURE

ξH(·), THE pq-MEAN ξpq(·), AND THE GINI INDEX ξG(·) IS ALSO SHOWN.

METHOD T B(â) SSNR ξH(·) ξpq(·) ξG(·)

LP2
5 19 14.1±3.2

0.33 0.25 0.16
10 19 19.1±2.9

LP1
5 18 15.3±2.1

0.57 0.73 0.81
10 18 20.1±1.7

STW
5 17 14.9±1.6

0.51 0.63 0.75
10 17 20.6±0.9

CT1
5 15 13.9±1.9

0.49 0.61 0.72
10 15 19.2±1.5

BU1
5 19 14.2±0.9

0.47 0.59 0.71
10 19 19.4±0.4

RW2
5 21 15.2±1.2

0.55 0.67 0.74
10 21 20.9±1.7
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Fig. 2. Box plot of Mean Opinion Score obtained with POLQA calculated
for the LP methods presented in Table I when implemented in the AMR-
NB speech codec. LP1no represented the non-stabilized version of LP1. The
reference is the traditional AMR with LP analysis performed with LP2.

where r̂i is the version of ri indexed in non-decreasing order

(r̂n,i ≤ r̂n+1,i). We then averaged over all the T segments

of speech for a given prediction method and determined the

different sparsity measures ξ(·) = 1
T

∑T
i=1 ξi(ri), where ξ ∈

(0, 1) (ξ → 1 only for r→ 0, the null vector). For ξpqi (·),
we used p = 2 and q = 4, which is a normalized version

of the kurtosis, a well known measure for the peakedness of

a distribution [38], and therefore another good measure for

sparsity [39].

The best coding performance was achieved by RW2, con-

sistently with the “guidance” in the reweighting algorithm

based on the square root of the inverse of the residual

amplitude. However, it also required a larger number of bits

to transparently encode the predictor. As mentioned in the

introduction, BU1 does not preserve the sparsity of the residual

and the coding characteristics of the 1-norm, giving similar

performance to the LP2. The methods we have introduced

seem to offer a good coding performance. The very smooth

spectrum obtained with CT1 allows considerably fewer bits

than any other method to achieve transparent coding of the

prediction coefficients, achieving a performance comparable

to LP2 and BU1. STW performs slightly worse than RW2,
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but with a significant saving in the bit budget of the predictor.

The sparsity measures ξ(·) follow the experimental results

pretty closely, confirming the validity of the SNR resulting

from MPE encoding as a measure of sparsity. The Gini index

offers the best discriminative properties for sparsity measures,

as noted in [34].

2) Experiment 2: In the second experiment, we evaluate

the performance of the different methods in an actual speech

coder. In particular, we substitute the linear predictive analysis

stage in the Adaptive Multi-Rate Narrow-Band (AMR-NB)

encoder in its 12.2 kbps configuration [40], with the presented

methods2. The main advantage of AMR-NB is that it is a

multimodal coder, working on different rates from 12.2 kbps

to 4.75 kbps, with the possibility of changing rate during

the voice transmission by interacting with the channel coder

[41]. The AMR codec is based on the Algebraic Code-Excited

Linear Prediction (ACELP) paradigm [42], the most used

approach for speech coding even for most recently developed

codecs, e.g., OPUS and SILK [43] and thus the results

presented in this section easily generalize to any speech codec

based on the ACELP paradigm.

In our experiment, we replaced the calculation of the LP

coefficients, obtained through efficiently solving (7), with the

LP methods listed in Table I. Notice that LP2 in this case

is the unmodified AMR encoding. The AMR encoder uses

38 bits per frame (20 ms) to encode 2 sets of Line Spectral

Frequencies (LSFs) calculated on the first and third subframe

(5 ms). To demonstrate how the instability of LP1 can be

detrimental to the synthesized speech, thus justifying the need

for the stabilized methods, we also included the non-stabilized

1-norm LP (LP1no). Given that the AMR transforms the LP

coefficients in LSFs to quantize the LP coefficients, to obtain

the results for LP1no we coded the stable predictor LP1 and

then reproduced the instability at the decoder by reflecting

the poles with original magnitude greater than one. This was

done because the LSF have an inherent stability control, the

interlacing property; thus LSF cannot be calculated if the

predictor is unstable [44].

We calculated the Mean Opinion Score (MOS) [45] obtained

with POLQA [46], the latest ITU-T standard for objective

speech quality assessment (the successor of PESQ [47]). We

considered roughly 500 samples of clean speech of length

5 seconds (around 40 minutes).

The results presented in Figure 2 show a significant overlap

of the 5-95 percentile regions and the interquartile ranges of

STW and LP1, suggesting no statistical difference between

the two distributions. The mean and median values of the

scores obtained with CT1 and STW are both significantly

higher than the AMR with LP2. Notice that the instability

of LP1no generates saturations in the decoded speech, thus

greatly degrading the codec performance. The instability, while

on average around 3% for the analyzed set (since it includes

both voiced and unvoiced speech), also corrupts the state of

several future decoded frames, hence the net difference in per-

2While AMR-NB is arguably a “old” codec, it is still widely used in speech
communications, especially given the delay in adoption of wideband codec
caused by the increased usage of bandwidth hungry smartphones and the
explosion of cellular phone usage in emerging markets.
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Fig. 3. Mean Opinion Score obtained with POLQA calculated for the LP
methods presented in Table I when implemented in the AMR-NB speech
codec for varying SNRs (white noise).

formance with its stabilized version. The low performance of

RW2 compared to the other methods seems to bring different

conclusions from what is presented in Table V. However, it

should be noted that RW2 requires more bits for quantization,

thus suggesting that the 19 bits allocated in the AMR payload

are probably not sufficient for transparent quantization. This

presents a practical problem for the comparison of the different

methods, as we would need to optimize and apply different

bit-rates for the different methods. For example, a better trade-

off between the bits necessary to encode the predictor and

the residual should be addressed. However, the experiment

done and its results outline, without loss of generality, higher

modeling properties of the proposed predictors over the state-

of-the-art methodology.

3) Experiment 3: In the third experiment, we evaluate

the setup of the previous experiment for noise robustness.

It is well known throughout the literature that LP1 is more

robust than LP2 for analysis and coding of speech, e.g., [12],

[48]. In this section, we compared the stable solutions for

different SNRs. We considered white noise only, as it is more

appropriate for this type of experiment and does not corrupt

the spectral features of the speech signal. Noise and speech

were mixed at SNRs ranging from -5 to 25 dB following

the ITU-T Recommendation P. 835 [49] where the reference

signal was always scaled to an ideal average active level of

approximately -26 dBov to avoid clipping in the mixed signals.

The MOS scores calculated using POLQA are the median

values calculated over all the utterances. Notice that the clean

condition scores are the median values of Figure 2. The results

clearly show the improvement in quality and a slightly slower

decay for the STW, LP1, and CT1. It is interesting to see that

STW achieves an improvement of 0.5 in MOS over traditional

AMR and 0.1 over LP1. This suggests that the windowing

performed in STW helps in noisy conditions, as noted in [50],

and can actually improve the performance of LP1.

V. SOLUTIONS AND COMPLEXITY

The higher complexity burden of linear prediction based

on the 1-norm minimization is well known throughout the

literature [3]. In particular, the traditional linear prediction

solution LP2 in (7) can be solved using O((N + K)K)
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floating point operations using the Levinson-Durbin algorithm

[2]. This is one order lower than solving one iteration for the 1-

norm problem using interior-point methods. However, efficient

solutions based on hand-tailoring solvers to the given problem

have proven to be successful in bringing the complexity down

to acceptable levels [15]. In this section, we introduce efficient

solvers for the methods considered in the paper and analyze

their complexity.

A. 1-norm error minimization

It is well-known that solving the least 1-norm problem

(8) using interior points methods corresponds to solving a

small number of weighted least-squares problems with the

same coefficient matrix and weights that change each iteration

[16, §11.8.2]. The number of iterations is, in the worst case,

also a function of K, but this is often neglected because in

practice the dependency is very small if any [51, §14.1]. Via

direct methods this then has the complexity O(K2(N +K)).
This can be exploited in hand-tailored algorithms to produce

fast solvers, e.g., [15]. If a stable solution is necessary, a

stability check performed by determining the roots of the LP

polynomial significantly adds on the complexity. Furthermore,

no simple modification can be made to the efficient process of

estimating the LP coefficients and the following calculation of

the LSF [52] [53] in a speech coder, as they are all based on

the assumption of the roots of the polynomial being contained

in the unit circle. This also justifies the need for intrinsically

stable solutions.

B. Reducing the numerical range of the shift operator

Complexity-wise, solving (19) has the same complexity of

LP1. However, the calculation of the STE weighting (21)

and the shift matrix (17) to generate (19), increases the

complexity to O(K2(N + K) + NK). Nonetheless, this is

still a significantly lower increase in computational overhead

compared to stabilizing through pole reflection, as mentioned

in Section V-A.

C. Constrained 1-norm minimization

Solving the constrained 1-norm minimization can be

achieved by solving a number of linear systems with the

coefficient matrix:

XTD1X +D2 + νd3d
T
3 , (31)

where D1 ∈ R
N+K×N+K , D2 ∈ R

K×K , ν ∈ R
1 and

d3 ∈ R
K×1 changes in each iteration (D1 and D2 are

diagonal matrices). This is the same as what is required for

solving the unconstrained minimization problem, see [15,

Eqn. (2)], plus a rank-1 term. The complexity for forming

and solving these linear systems of equations are then

O(K3 + K2(N + K)). This is the same complexity as in

[15] and similar practical performance is expected.

D. Burg method based on 1-norm minimization

The optimization step 1 in Algorithm 2 can be computed in

closed form. For notation, let us consider α = [f ;b] and β =
[b; f ]. The convex problem can then be written as mink ‖kα+
β‖1 with the optimality condition:

M
∑

i=1

αi∂‖k⋆αi + βi‖1 ∋ 0 (32)

where M = 2(N +K) and

∂‖x‖1 =







[−1; 1] if x = 0
−1 if x < 0
1 if x > 0

(33)

is the subgradient of ‖x‖1. The optimum can be computed

by considering that the left-hand side of (33) only changes at

points where there is a shift in the sign of ∂‖ · ‖1. Then a

solution satisfies k⋆ ∈ K = {−βi/αi |αi 6= 0, i = 1, . . . ,M}.
It is then possible to test the candidates k ∈ K and evaluate

either the optimality condition or compute and compare the

objectives with a total complexity of O(M2). Another algo-

rithm first computes vi = −βi/αi (if αi = 0 this term can be

removed from the optimization problem). If any vi = vj , with

i 6= j, remove element i and scale αj ← 2αj and βj ← 2βj

(such that all vi are unique). Then sort the values such that

vI(j) < vI(j+1). (34)

Let

F (j) =

M
∑

i=1,i 6=I(j)

αisgn(vI(j)αi + βi) . (35)

Notice that at k = vI(j) ∈ K

M
∑

i=1

αi∂‖vI(j)αi + βi‖ = F (j) + αI(j)∂‖0‖. (36)

The optimality criteria at a candidate point in K is then

|F (j⋆)| ≤ |αI(j⋆)|, k⋆ = vI(j
⋆) ∈ K . (37)

Instead of evaluating F (j) for all j via (37), it is possible to

use the recursive formula

F (j + 1) = F (j)− αI(j+1)sgn(vI(j)αI(j+1) + βI(j+1))

+ αI(j)sgn(vI(j+1)αI(j) + βI(j)), (38)

for j = 1, . . . ,M−1. It is then possible to evaluate and check

the optimality condition |F (j)| ≤ |αI(j)| for all j = 1, . . . ,M
with complexity O(M logM). Since this is a linear program,

general algorithms for solving linear programs are also ap-

plicable, but the method listed above is preferable due to

its simplicity. The method is summarized in Algorithm 3.

The total complexity of the 1-norm Burg method is then

O(K(N +K) log(N +K)).

E. Iteratively Reweighted 2-norm minimization

The iteratively reweighted 2-norm minimization has the

per iteration floating-point complexity O(K2(N + K))
using direct methods. Empirically we have observed that 4-5

reweighting schemes are sufficient to reach convergence, thus

the complexity is in the same order as LP1.
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Algorithm 3 Solving The Subproblem In 1-norm Burgs

Method (Algorithm 2)

Inputs: speech segment f ,b ∈ R
M/2×1

Output: k⋆

α = [f ;b], β = [b; f ]
vi = −βi/αi (assume unique vi and αi 6= 0)

Calculate an index table I for sorting vi ascending

Calculate F (1) via Equation (35)

if |F (1)| ≤ |αI(1)| then

Return k⋆ = vI(1)
end if

for j = 2, . . . ,M do

Calculate F (j) via Equation (38)

if |F (j)| ≤ |αI(j)| then

Return k⋆ = vI(j)
end if

end for

VI. CONCLUSIONS

In this paper, we have presented two new methods for

intrinsically finding stable predictors based on 1-norm error

minimization. The methods introduced, one based on the

reduction of the numerical range of the shift operator and

one based on constrained 1-norm minimization, have both

shown to offer a valid alternative to the original 1-norm

linear prediction, preserving the properties of the 1-norm

error minimization criterion. In particular, the experimental

analysis has shown that both methods offer attractive model-

ing and coding performance without any significant increase

in complexity. The two methods have also been shown to

offer slightly better modeling performance compared to the

Burg method based on the 1-norm minimization and the 2-

norm reweighted minimization method. For all the considered

methods, a thorough experimental analysis has shown that the

properties that make 1-norm based linear prediction appealing

for both analysis and coding of speech are preserved without

too much degradation. These properties, shift invariance and

pitch invariance, derive from the more efficient decoupling

between the pitch harmonics and the spectral envelope and

an overall better modeling of the speech production process.

Furthermore, the application of the proposed predictors by

modifying the linear prediction step to currently deployed

state-of-the-art codecs, showed improved quality for clean con-

ditions and a slower decaying of performance for decreasing

SNR.
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