
 

 

Stable and Accurate Artificial Dissipation 
Ken Mattsson, Magnus Svärd and Jan Nordström 

The self-archived postprint version of this journal article is available at Linköping 

University Institutional Repository (DiVA): 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68576 
  

  

N.B.: When citing this work, cite the original publication. 

The original publication is available at www.springerlink.com: 
Mattsson, K., Svärd, M., Nordström, J., (2004), Stable and Accurate Artificial 
Dissipation, Journal of Scientific Computing, 21, 57-79. 
https://doi.org/10.1023/B:JOMP.0000027955.75872.3f 

Original publication available at: 
https://doi.org/10.1023/B:JOMP.0000027955.75872.3f 
Copyright: Springer (part of Springer Nature) (Springer Open Choice Hybrid 
Journals) 
http://www.springer.com/gp/products/journals 

 
 

 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68576
https://doi.org/10.1023/B:JOMP.0000027955.75872.3f
http://www.springer.com/gp/products/journals
http://twitter.com/?status=OA Article: Stable and Accurate Artificial Dissipation http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68576 via @LiU_EPress %23LiU


Stable and Accurate Artificial Dissipation

Ken Mattsson,1 Magnus Svärd,2 and Jan Nordström3

1 Department of Scientific Computing, Information Technology, Uppsala University,
P.O. Box 337, S-751 05 Uppsala, Sweden. E-mail: ken@tdb.uu.se

2 Department of Information Technology, Uppsala University, Uppsala, Sweden.
3 Computational Aerodynamics Department, Aeronautics Division, The Swedish Defence

Research Agency, SE-172 90 Stockholm, Sweden, and Department of Information 
Technology, Uppsala University, Uppsala, Sweden.

Stability for nonlinear convection problems using centered difference schemes
require the addition of artificial dissipation. In this paper we present dissipation
operators that preserve both stability and accuracy for high order finite differ-
ence approximations of initial boundary value problems.
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1. INTRODUCTION

For nonlinear convection problems it is well known that centered differ-
ence schemes require the addition of artificial dissipation to absorb the
energy of the unresolved modes. This is usually accomplished by adding
dissipation operators, constructed by high order undivided differences, see
[12] and [4]. However, artificial dissipation may lead to an unstable
method unless an energy estimate can be obtained.

For linear initial boundary value problems, stable and accurate
approximations are obtained if: (i) The derivatives are approximated
with high order accurate, central finite difference operators that satisfy a
summation by parts (SBP) formula and (ii) The boundary conditions
are implemented with specific boundary procedures, that preserve the SBP
property, see [2] and [13]. In this paper we consider the Simultaneous
Approximation Term (SAT) method [2, 1]. An SBP operator is essentially



a centered difference scheme with a specific boundary treatment. High
order accurate SBP operators for the first derivative where first developed
in [7, 8] and later in [15].

We aim for a dissipation operator with the following four properties.

1. It should efficiently reduce spurious oscillations in the solution.

2. It should preserve the accuracy of the numerical method.

3. The scheme augmented with a dissipation operator should not
require significantly more computational work than the original scheme.

4. The stability properties of the numerical approximation, should
not be destroyed when the artificial dissipation is added.

The basic idea is to design the artificial dissipation operator to approximate
the highest possible even degree derivative within the same stencil as the
base central approximation of the first (and second) derivative SBP opera-
tor (note that the width of the first and second derivative SBP-operators
are the same) and modify it at the boundary such that an energy estimate
can be obtained without reducing the design order of accuracy. Note that
the artificial dissipation operator can be combined with the first derivative
operator to construct upwind schemes. However, the dissipation operator
can be used in any SBP-scheme, also for non-hyperbolic problems.

The dissipation operator constructed in this paper is independent of
the specific initial boundary value problem. The analysis of the full
problem, i.e., the artificial dissipation operator together with the discretized
nonlinear partial differential equation will not be considered here. The rest
of the paper will proceed as follows. In Sec. 2 we introduce some concepts
and definitions. In Sec. 3 we discuss the well known requirements 1–3
above. The more difficult problem related to the stability (requirement 4)
is discussed in Sec. 4. We proceed, in Sec. 5, to discuss the new dissipation
operators and compare them with previously used operators. In order to
verify the predicted properties of the dissipation operators, a number of
numerical calculations are presented in Sec. 6. In Sec. 7, we combine the
first derivative SBP operators and the new artificial dissipation operators
to construct 3rd and 5th order accurate upwind schemes, which are used
to compute solutions to the two-dimensional Euler equations. In Sec. 8
conclusions are drawn. The explicit form of the difference operators are
presented in [10].

2. DEFINITIONS

Let the inner product for real valued functions u, v ¥ L[a, b] be
defined by (u, v)=>b

a uv dx. The domain (a [ x [ b) is discretized using N



equidistant grid points,

xj=a+(j − 1) h, j=1, 2,..., N, h=
b − a
N − 1

.

The numerical approximation at grid point xj is denoted vj. We denote the
discrete solution vector vT=[v1, v2,..., vN]. The derivative ux is approxi-
mated with a finite difference approximation H−1Q v, where H−1Q satisfy
the SBP property, i.e., Q+QT=B=diag( − 1, 0,..., 0, 1) and H is a sym-
metric positive definite matrix.

The derivative uxx is approximated with a finite difference approxima-
tion H−1(−M+BS) v, which satisfy the SBP property, i.e., M is positive
semidefinite (a matrix M ¥ Rn × n is positive semidefinite if xTMx=
xT(M+MT

2 ) x \ 0 for all x ¥ Rn) and BS is an approximation of the first
derivative operator at the boundary, to design accuracy, see [3] and [11].
All operators are given in [10]. To simplify notations we denote the deri-
vative dpu/dxp by upx. Let Dp be a consistent difference approximation of
dp/dxp. Denote the corresponding undivided difference operator of order p
by D̃p=hpDp. The tilde sign emphasizes that there is no h dependence. We
define an inner product for the discrete real valued vector-functions
u, v ¥ Rn by (u, v)H=uTHv and a norm ||v||2

H=vTHv. The matrices and
vectors

e0 =[1, 0,..., 0]T, E0=diag([1, 0,..., 0])

eN=[0,..., 0, 1]T, EN=diag([0,..., 0, 1])
(1)

will frequently be used in subsequent sections.

3. ACCURACY, SPURIOUS OSCILLATIONS, AND EFFICIENCY

In this section we discuss dissipation operators in the absence of
boundaries. The dissipation operator should efficiently reduce spurious
oscillations in the solution (property 1 in Sec. 1). If we disregard the
problem with boundaries, a continuous dissipation operator is essentially a
derivative of even order. The action of a derivative of order n on a pure
Fourier mode e i wx, result in (iw)n e i wx. The second derivative for example
gives − w2e i wx, hence we get energy reduction (i.e., dissipation) for all
modes except w=0. Consider the same Fourier mode on a grid over
[ − 1, 1] with grid spacing h. The Fourier mode defined on the grid is given
by ûT=[e i wx1, e i wx2,..., e i wxN], assuming periodicity (û1=ûN). It is conve-
nient to introduce a scaled wavenumber k=wh, where k ¥ [0, p].



The Fourier mode for the wavenumber k=p, is ûT=[1, −1, 1,..., −1, 1]
(the highest frequency that can exist on the grid).

A centered, second order accurate undivided difference operator of
order n, applied to a Fourier mode result in D̃n û=(2i)n û sinn( k

2 ). In Fig. 1
the amplitude |(2i)n sinn(k

2)| is plotted as a function of wavenumber k for
even values of n. It is obvious that high order differences of even order
damp high frequencies more efficient than low order differences. On the
other hand low order differences damp low frequencies more efficiently.

Remark. Applying a centered difference operator of odd order to the
p-mode result in D̃n[1, −1, 1,..., −1, 1]T=[0, 0,..., 0]T. Hence, the p-mode
is not modified (not ’’seen’’) with a centered difference approximation in a
pure convection problem.

The primary purpose of a dissipation operator is to absorb the energy
of the unresolved modes (property 1 in Sec. 1), essentially frequencies
close or equal to k=p. A dissipation operator based on a high derivative
of even order is more efficient than a low order derivative, see Fig. 1. On
the other hand centered difference approximations of high derivatives
require wide difference stencils, which increase the computational work.

A centered difference scheme approximating either d
dx or d2

dx2 to 2pth
order accuracy in the interior will include p neighbor points on each side.
A centered, second order accurate difference approximation of d2n

dx2n include n
neighbor points on each side. To avoid more computational work and
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2 )| as a function of wavenumber k for derivatives of
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preserve the accuracy of the numerical method, it is therefore optimal to
use a centered, second order accurate undivided difference operator of
order 2p (denoted D̃2p) for a 2pth order accurate method, as a basis for the
artificial dissipation operator (properties 1 and 3 in Sec. 1).

D̃2p applied to a smooth function G yield h2p(G(2p) x+O(h2)). Hence,
D̃2p is of order O(h2p). The only property (property 4 in Sec. 1) left to
consider is stability, which require that we also include the boundary
treatment. The contents of this section about requirements 1–3 are well
known but serve as a background for the discussion of requirement 4 in the
next section.

4. STABILITY

Consider the semidiscrete approximation

vt=H−1Rv, v(0)=f, (2)

of a linear initial boundary value problem in one space dimension. Here the
spatial operator H−1R includes the boundary conditions. The energy
method leads to vTHvt+vT

t Hv=d
dt ||v||2

H=vT(R+RT) v. Most of the rele-
vant continuous problems have a non-growing solution energy. To get a
non-growing solution energy also for the corresponding discrete problem
R must be negative semidefinite, since this imply that vT(R+RT) v [ 0.
With the addition of an artificial dissipation term (−H−1 S) v on the right
hand side in (2), the spatial operator becomes H−1(R − S). A sufficient
condition for stability (property 4 in Sec. 1) is that (R − S) is negative
semidefinite. However, to separate the analysis of the dissipation operator
from the original problem we specifically require that S is positive semi-
definite.

Consider a centered difference scheme that is 2pth order accurate in
the interior. A suitable artificial dissipation is based on the continuous
operator (−1)p − 1 “

p

“xp (b “
p

“xp), where b=b(x) is a positive continuous func-
tion. As an example we study the 4th order case. The energy method on
ut=−(buxx)xx results in

1
2

d
dt

||u||2=−(buxx)x u|1
0+buxxux |1

0 − F
1

0
bu2

xx dx.

If b(0)=bŒ(0)=b(1)=bŒ(1)=0, b \ 0 we get an energy decay, i.e., dissi-
pation. The last term in the energy estimate is the dissipation we are



looking for. The operator generating that dissipative term in the discrete
case is − H̃−1D̃T

2 BD̃2. The observations above led us to construct the dissi-
pation operators directly as

A2p=−H̃−1D̃p
TBpD̃p,

in the 2pth order case, where Dp=h−pD̃p is a consistent approximation of
dp/dxp with minimal width, Bp is positive semidefinite, and H=hH̃ is the
norm used in the construction of the 2pth order accurate schemes [7, 8,
15]. The energy method applied to vt=A2pv yields,

d
dt

||v||2
H=vTHA2nv+(HA2nv)T v=−h(D̃pv)T (Bp+BT

p )(D̃pv) [ 0.

We now have a stable dissipation (property 4), the only remaining question
is how to choose Bp such that properties 1–3 in Sec. 1 are preserved. To
simplify the following analysis we need some notations and definitions.
Consider the (N × N)-matrix Dp=h−pD̃p, a consistent approximation of
dp/dxp. We denote the element on row i and column j in Dp by di, j. Since
Dp is a consistent approximation of dp/dxp we have

C
N − 1

j=0
di, j(j − i)0=0

C
N − 1

j=0
di, j(j − i)1=0

x

C
N − 1

j=0
di, j(j − i)p=p!

, i=0...N − 1. (3)

Using 00=1 as a definition, we introduce the following notations,

er=[0 r, 1 r,..., (N − 1) r]T, r ¥ (0,...N − 1)

0 =[0,..., 0]T

1 =[1,..., 1]T

s0=[a0,..., as − 1, 0,..., 0, as − 1,..., a0]T

s1=[b0,..., bs − 1, p!,..., p!, bs − 1,..., b0]T,

(4)



where s is a fixed integer and ai, bi, i=0...s − 1 are constants. All vectors
introduced are of size N × 1. The vector er is the discrete version of the
polynomial x r. The consistency condition (3) can by using (4) be written

Dpe0=0

x

Dpep − 1=0

Dpep=1(p!).

(5)

According to [6] one can lower the accuracy of a 2pth order accurate
difference scheme by one order at a finite number of points and still obtain
2pth order convergence. There is a variety of SBP operators approximating
d/dx and d2/dx2 to a certain accuracy, constructed with different norms,
see [15] and [3]. With a diagonal norm, at most pth order accuracy can
be achieved at the boundary, resulting in a globally (p+1)th order
accurate approximation of the original problem. In the diagonal norm case,
it suffices that Dp is a consistent approximation of dp/dxp and that Bp is
the unit matrix times a positive constant. That yields a dissipation operator
of order O(hp) at the boundaries and of order O(h2p) in the interior.

The full norm case with the higher accuracy demands is more compli-
cated. With a full norm H (the upper and lower part of the norm consist of
a 2p by 2p block), a (2p − 1)th order accurate boundary closure will result
in a globally 2pth order accurate approximation. Hence, to preserve the
overall accuracy of the scheme, A2p must be at least of order O(h2p − 1) at the
boundaries and of order O(h2p) in the interior.

Lemma 4.1. It is not possible to construct an operator Dp which is a
consistent approximation of dp/dxp, such that DT

p e0=0.

Proof. We define the scalar ri, j=ei
T Dpej. The accuracy conditions

(5) lead to r0, p=e0
T Dpep=1T · 1(p!)=N(p!). Suppose that DT

p e0=0, then
rT

0, p=ep
TDT

p e0=ep
T · 0=0. This contradicts the fact that ri, j=rT

i, j, since
ri, j is a scalar. i

The simplest form of A2p is obtained with Bp as the identity matrix.
However, as a consequence of Lemma 4.1 the operator D̃p

TD̃p can be at
most of order O(hp) at the boundaries implying an overall accuracy of
(p+1)th order. To improve the accuracy at the boundary, a natural
modification would be to consider the positive semidefinite operator
D̃p

TBpD̃p (assuming that Bp is positive semidefinite). This further explains
the specific form of the dissipation operator.



Theorem 4.2. Assume that Dp=h−pD̃p is a consistent approximation
of dp/dxp and that D̃p

TBpD̃p is of order O(h2p) in the interior. Then it is not
possible to preserve 2pth order of accuracy using a Bp independent of h, N.

Proof. Assume that D̃p
TBp D̃p is of order O(h2p) in the interior and

that Bp is constant. Let ri, j=ei
TDT

p Bpej. Preservation of overall 2pth order
of accuracy of D̃p

TBpD̃p, require DT
p Bp to be at least of order p − 1 at the

first s points and p elsewhere. This means that

DT
p Bpen=0, n=0 · · · p − 2

DT
p Bpep − 1=s0

DT
p Bpep=s1.

Hence r0, p=e0
TDT

p Bpep=1T · s1. Further, rT
0, p=ep

TBT
p Dpe0=ep

TBT
p 0=0.

However, 1T · s1=2 ; s − 1
i=0 bi+(p!) ;N − s − 1

i=s 1=0, where bi and s are con-
stants. The first sum is bounded, independent of N, while the last sum is
unbounded as N increases, i.e., 2 ; s − 1

i=0 bi+(p!) ;N − s − 1
i=s 1 ] 0, which con-

tradicts ri, j=rT
i, j. i

Theorem 3.2 implies that Bp must be a non-constant matrix to obtain
the desired order of accuracy at the boundaries. The interior accuracy
requirement of 2p means that Bp must be diagonal for a minimal width. We
choose Bp to be diagonal everywhere, although there are other choices. All
of them, however, require an explicit dependence of h. With this choice, let
the diagonal of Bp be the restriction onto the grid of a piecewise smooth
function, that increase from a low level up to a higher constant level, over a
fixed portion of the domain. This construction clearly creates a Bp that
depends on N, h.

By Taylor expansion it is trivial to show that in order to preserve 2pth
order accuracy it suffice that we increase Bp from O(hp − 1), starting at the
end points (boundary points) and that derivatives up to order p − 2 vanish
at the boundaries and at the transition points (where Bp becomes constant).
This is due to the fact that one can lower the accuracy by one order at the
boundaries and still maintain the internal order of accuracy, see [6].

Remark. Although the size of Bp is reduced at the boundaries, the
amount of dissipation at the boundaries (proportional to O(h2p − 1)) is
actually larger than inside the domain (proportional to O(h2p)).

In order to quantify the dissipation operators we will introduce the
following definition.
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Fig. 2. Example of Bp in the 6th order case (i.e., B3), with continuous first derivative.
According to Definition 4.3 this correspond to A6(1/20, 2, 1).

Definition 4.3. Let A2p(n, r, s)=−H̃−1D̃p
TBpD̃p denote the dissipa-

tion operator for a 2pth order accurate method where

n : Fraction between the number of points in the transition region
and the total number of points in Bp.

r : The value at the end points in Bp is h r.

s : The interior of Bp equals s.

For example, A6(1/20, 2, 1) is a 6th order accurate dissipation, where
the diagonal of B3 is shown in Fig. 2. In the transition region, which
occupy five percent of the total region, we use a 3rd order polynomial that
increase from h2 to one, such that the first derivative is zero at the transi-
tion points and at the boundaries.

Summing up, we now conclude that properties 1–4 constitute a
coherent concept.

5. EXPLICIT ARTIFICIAL DISSIPATION OPERATORS

In this section we give the explicit forms of frequently used operators
and discuss the relation to the new operators derived above.

5.1. Second Order Accurate Dissipation

The artificial dissipation operator is given by the matrix
A2=−H̃−1D̃1

TB1D̃1, where B1=diag(0, c,..., c), H=hH̃ the 2nd order



diagonal norm, c a positive number and 1
h D̃1 a consistent approximation of

d/dx,

D̃1=| − 1 1 0 0 0 0
− 1 1 0 0 0 0

0 − 1 1 0 0 0
z z

} , A2=c r − 2 2
1 − 2 1

z z z

s .

By using Taylor expansions it is easily shown that A2 preserve 2nd order
accuracy.

5.2. Fourth Order Accurate Dissipation

The artificial dissipation operator is given by A4=−H̃−1 D̃2
TB2D̃2,

where D2= 1
h2 D̃2 and

D̃2=|1 − 2 1 0 0 0
1 − 2 1 0 0 0
0 1 − 2 1 0 0

z z z z

} .

D2 is a consistent approximation of d2/dx2 and H=hH̃ is the 4th order
norm. In [4] a semidefinite dissipation operator

Aa=| − 1 2 − 1
2 − 5 4 − 1

− 1 4 − 6 4 − 1
z z

} (6)

based on h4(D+D−)2 is presented. The dissipation operator (6) is symmetric
andnegativesemidefinite. In factAa=−D̃2

TBD̃2,whereB=diag(0, 1,..., 1, 0).
It is second order accurate at the first 2 boundary points. Globally this give
a 3rd order accurate operator. However, using Aa as artificial dissipation
will not result in an energy estimate based on the 4th order norm, since
(HAa)+(HAa)T have positive eigenvalues. In [4], two other boundary
modifications are also presented, they are:

Ab=| 0 0 0 0
1 − 3 3 − 1

− 1 4 − 6 4 − 1
z z

} , Ac=| 0 0 0 0
0 0 0 0

− 1 4 − 6 4 − 1
z z

} . (7)



These operators preserve 4th order accuracy, but will not result in an
energy estimate in the 4th order norm.

5.3. Sixth Order Accurate Dissipation

The artificial dissipation operator is given by A6=−H̃−1D̃3
TB3D̃3,

where D3=h3D̃3 and

D̃3=|
− 1 3 − 3 1 0 0
− 1 3 − 3 1 0 0
− 1 3 − 3 1 0 0

0 − 1 3 − 3 1 0
z z z z

} .

D3 is a consistent approximation of d3/dx3 and H=hH̃ is the 6th order
norm. An example of a 6th order accurate dissipation is given by
A6(1/20, 2, 1) (see Definition 4.4), where the diagonal of B3 is shown in
Fig. 2. Another boundary modification that preserve 6th order accuracy is
given by,

Ad=|
0 0 0 0 0 0
0 0 0 0 0 0

− 1 5 − 10 10 − 5 1
1 − 6 15 − 20 15 − 6 1

z z z

} . (8)

However, using Ad as artificial dissipation will not result in an energy
estimate based on the 6th order norm, since (HAd)+(HAd)T have positive
eigenvalues.

5.4. Eighth Order Accurate Dissipation

The artificial dissipation operator is given by A8=−H̃−1D̃4
TB4D̃4,

where D4=h4D̃4 and

D̃4=|
1 − 4 6 − 4 1 0
1 − 4 6 − 4 1 0
1 − 4 6 − 4 1 0
0 1 − 4 6 − 4 1

z z z z

} .



D4 is a consistent approximation of d4/dx4 and H=hH̃ is the 8th order
norm. An example of a 8th order accurate dissipation is given by
A8(1/20, 3, 1) (see Definition 4.3). In [12] a semidefinite dissipation
operator

Ae=| − 1 4 − 6 4 − 1
4 − 17 28 − 22 8 − 1

− 6 28 − 53 52 − 28 8 − 1
4 − 22 52 − 69 56 − 28 8 − 1

− 1 8 − 28 56 − 70 56 − 28 8 − 1
z z z

} , (9)

is presented. The dissipation operator (9) is symmetric and negative semi-
definite. In fact Ae=−D̃4

TBD̃4, where B=diag(0, 0, 1,..., 1, 0, 0). The
operator is 4th order accurate at the first 4 boundary points and 8th order
in the interior. Globally this give a 5th order accurate operator. However,
this operator will not result in an energy estimate on the 8th order norm.

Remark. Generally speaking, the ‘‘old’’ dissipation operators fail to
meet properties 1–4 due to either: (i) No scaling with the norm is done. (ii)
The accuracy at the boundaries are to low. (iii) Non-symmetric operators
are used.

6. NUMERICAL RESULTS

6.1. A Linear Problem

Consider the hyperbolic system

ut+Aux=0 0 [ x [ 1, t \ 0

L0u=0 x=0, t \ 0
, A=r1 0

0 − 1
s, u=ru (0)

u (1)
s ,

L1u=0 x=1, t \ 0

u(x, 0)=f(x) 0 [ x [ 1, t=0

(10)

where L0=[1, −1], L1=[ − 1, 1] are the boundary operators. The energy
method leads to ||u||2

t =0, i.e., the energy is constant. It can be shown,



see [9], that the continuous spectrum consist of s=2npi, n ¥ Z. With
initial data f(x)=[sin mpx, −sin mpx]T, where m ¥ N, the exact solution
to (10) is u(x, t)=[sin mp(x − t), −sin mp(x+t)]T, x ¥ [0, 1].

When analyzing system of equations it is convenient to introduce the
Kronecker product,

C é D=r c0, 0 D · · · c0, q − 1 D
x x

cp − 1, 0D · · · cp − 1, q − 1D

s
where C is a p × q matrix and D a m × n matrix. A useful rule for
Kronecker products is (A é B)(C é D)=(AC) é (BD).

The semidiscrete approximation of (10) can be written

vt+[A é H−1Q] v=ylel é H−1[L0 é E0] v+yrer é H−1[L1 é EN] v

v(0)=f,
(11)

where vT=[v(0)
0 , v (0)

1 ,..., v (0)
N , v (1)

0 , v (1)
1 ,..., v (1)

N ], el=[1, 0]T, er=[0, 1]T.
E0, EN are defined in (1). Applying the energy method by multiplying (11)
with vT(I2 é H) (where I2=diag([1, 1])), adding the transpose and
making use of Q+QT=B, the choice yl=yr=−1 leads to

d
dt

||v||2
H=−(v (0)

0 − v (1)
0 )2 − (v (0)

N − v (1)
N )2,

where vT
0 =[v(0)

0 , v (1)
0 ], vT

N=[v(0)
N , v (1)

N ] have been used. Hence the boundary
implementation introduce a small damping to the system and in [9] it is
shown that Re lmax=0, i.e., the eigenvalue to

[A é H−1Q − yre0 é H−1L0 é E0 − yre1 é H−1L1 é EN],

with largest real part is zero with yl=yr=−1.
Consider (11) with an artificial dissipation term, (I2 é − H−1S) v,

added to the right hand side. An energy estimate require that S is positive
semidefinite, which is true for the dissipation operators constructed in this
paper, since S=D̃p

TBpD̃p=ST, where Bp is symmetric and positive semi-
definite.

To verify that the numerical approximations with the addition of arti-
ficial dissipation have the predicted order of accuracy, we calculate the
convergence rate

q=log 1 ||u − vh1||h
||u − vh2||h

2;log 1h1

h2

2 , (12)



Table I. log(l2-error) and Convergence Rate, 4th Order Case with Full Norm. Here
A4=A4(1/10, 1, 1), See Definition 4.3. Ab and Ac Are Given in (7)

N S q(S) Ab q(Ab) Ac q(Ac) A4 q(A4)

50 − 2.97 0.00 − 2.65 0.00 − 2.66 0.00 − 2.66 0.00
100 − 4.19 3.99 − 3.86 3.96 − 3.87 3.94 − 3.88 3.99
200 − 5.40 4.00 − 5.07 3.98 − 5.07 3.97 − 5.09 4.00
400 − 6.61 4.00 − 6.27 3.99 − 6.28 3.99 − 6.30 4.00

where u is the analytic solution and vh1 the corresponding numerical solu-
tion with step size h1. ||u − vh1||h is the l2-error. The results for the 4th (full
norm) and the 8th order diagonal norm case are presented in Tables I
and II, where N denote the number of grid points. For accuracy com-
parison the result with no dissipation added is also presented, denoted by S.
The solutions are advanced to t=0.1 by using the standard 4th order
Runge–Kutta method.

Remark. Note that that the use of the operators: Ab, Ac, Ad, and Ae

preserve the overall accuracy of the scheme, but does not lead to an energy
estimate. This does not necessarily mean that the overall scheme is
unstable, this is determined by the discrete spectrum (given by the eigen-
values to the matrix representation of the spatial discretization, including
the homogenous boundary conditions, see for example [9]). For this par-
ticular problem the use of Ab, Ac, and Ad did not introduce any eigenvalues
to the right of the imaginary axis.

To verify that the numerical approximations have the correct asymp-
totic time growth, long time integrations are considered. The computatio-
nal result for the 8th order (diagonal norm) case is shown in Fig. 3. The
result with no dissipation added is also shown. Another possibility to
predict the asymptotic time growth is to compute the discrete spectrum, to
verify that no eigenvalues are located to the right of the imaginary axis.

The solution at t=3000 is shown in Fig. 4. For comparison also the
analytic solution is shown.

Table II. log(l2-error) and Convergence Rate, 8th Order Diagonal Norm Case. With A8, Ae

as Dissipation, See (9)

N S q(S) A8 q(A8) Ae q(Ae)

50 − 3.49 0.00 − 3.53 0.00 − 3.51 0.00
100 − 5.01 4.97 − 5.30 5.82 − 5.28 5.80
200 − 6.48 4.85 − 7.05 5.75 − 6.85 5.19
400 − 7.97 4.91 − 8.70 5.48 − 8.27 4.68
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Fig. 3. Problem (11), l2-error as a function of t with Ae, A8 as dissipation. N=50. Also
included is the case with no dissipation.
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Table III. The Utmost Right Real Part of the Spectrum for the 8th Order Case as a
Function of Grid Points N. In the Continuous Case the Value Is Zero

N Without Ae A8

50 2.2032e −14 0.00086603 4.7652e −15

100 2.0955e −14 0.00021944 − 3.2378e −14

200 1.521e −14 6.0402e −05 4.4409e −15

Clearly we get an unacceptable time growth using Ae as dissipation.
The l2-error at t=3000 is approximately 5 compared to 0.05 using A8 as
dissipation and 0.02 with no dissipation added. The result is due to the fact
that Ae introduce eigenvalues with positive real part, see Table III.

As a last test we initiate the calculations with a smooth sinus wave,
add a small disturbance and advance the solution to t=1. The calculations
are done with and without dissipation for the 4 and 6th order case, see
Fig. 5. Here we use the same dissipation operators (A4(1/10, 1, 1),
A6(1/10, 2, 1)), as presented in Tables I and II. Clearly the new dissipation
operators removes the disturbances efficiently.

Remark. The SBP operator and the dissipation operator can be
combined to an upwind and a downwind difference operator. We intro-
duce an upwind operator D+=H−1(Q+S), and a downwind operator
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Fig. 5. Numerical solution with non-smooth initial data at t=1. 4th and 6th order case.
Top subfigures with the addition of dissipation and lower subfigures without dissipation. The
dashed lines correspond to v (0) and the solid lines correspond to v (1) in (11).



D− =H−1(Q − S). The hyperbolic term and the dissipation term can then
be combined to

[A é H−1Q] v+[I2 é H−1S] v=rD+

− D−

s v.

The 4th order accurate centered (internal) difference scheme approximating
the first derivative is given by 1

12h [1, −8, 0, 8, −1]. The corresponding dis-
sipation scheme for D̃4 is given by [1, −4, 6, −4, 1]. If 1

12h [ − 1, 8, 0, −8, 1]
is combined with 1

12h [1, −4, 6, −4, 1] we get 1
12h [2, −12, 6, 4, 0] (i.e., the

internal scheme of D+), recognized as the standard 3rd order upwind
scheme.

6.2. A Nonlinear Problem

The dissipation constructed in this paper is not designed to treat shock-
problems. However, it is interesting to see how the new dissipation opera-
tors work in the presence of nonlinear phenomena. We consider the initial
boundary value problem,

ut+u ux=Euxx − 1 [ x [ 1, t \ 0

u(−1, t)+bux(−1, t)=gl(t), u(1, t)+sux(1, t)=gr(t)

u(x, 0)=f(x),

(13)

with exact initial and boundary data from the Cauchy problem,

u(x, t)=−a tanh 1a
x − ct

2E
2+c − . [ x [ ., t \ 0. (14)

The linearized problem (13) has an energy estimate if

s \ −
2E

u
,

b+E

u
[

E

u
, (15)

for u > 0.
The semidiscrete approximation of (13) can be written

vt+
1
2 H−1Qv2=EH−1(−M+BS) v

− H−1(yle0{(I − bBS) v − gl(t)}+yreN{(I+sBS) v − gr(t)})

v(0)=f,

(16)



where e0, eN are given in (1). If we put gl(t)=gr(t)=0, replace 1
2 H−1Qv2

with uH−1Qv where u is constant, and apply the energy method on (16) we
obtain an energy estimate if condition (15) for well-posedness is fulfilled
and yl=− E

b , yr=
E
s .

We compute numerical approximations to (13) using the analytic
solution (14) as initial and boundary data, choosing the parameters a=1
and c=2. When E tend to zero we get a moving shock. To examine how
the new dissipation operators work in the presence of nonlinear phenom-
ena we choose E=1 · 10−10. Without dissipation, the numerical solution to
(13) for the 8th order diagonal case becomes unstable, when the shock is
close to the outflow boundary (x=1). This happens at t=0.5. If we add
Ae given by (9) as dissipation, the situation does not improve much.
However, if we instead add the new dissipation A8=H̃−1Ae, the shock
propagates through the boundary without problem, see Fig. 6. The solu-
tions are advanced using the standard 4th order Runge–Kutta method.
Recall that the numerical approximation of (10), with the addition of Ae as
artificial dissipation, introduced eigenvalues with positive real part, see
Fig. 3 and Table III.

7. APPLICATIONS

In order to test the dissipation operators in a more realistic setting, we
consider the numerical computation of solutions governed by the 2-D Euler
equations. We are particularly interested in the performance of the dissipa-
tion operator in a multi block setting where the ‘‘reduction of Bp’’ close to
the interface might cause problems. In the first case we consider the prop-
agation of a vortex convected through an empty domain, where an analytic
solution exists. In the second case we consider the computation of steady
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Fig. 6. l2-error as a function of t. Numerical solution to (13), for the 8th order case,
E=1 · 10−10 and N=100. Notice the blowup at t 4 0.45, left figure.



state solutions around a NACA0012 airfoil. The dissipation operator, here
denoted A=−H−1S (where S is symmetric and positive semidefinite), is
now combined with the first derivative SBP operator D1=H−1Q, to an
upwind (D+=H−1(Q+S)) and a downwind (D− =H−1(Q − S)) difference
operator. In the 4th order case we use A=A4(8/100, 0, 1/(12 h)) (see
Definition 4.4), to get a 3rd order upwind scheme. In the 6th order case we
use A=A6(8/100, 1, 1/(60 h)), to get a 5th order upwind scheme. The
internal amount of dissipation is scaled to cancel the first term in the
difference scheme for D1 (see the remark on p. 13).

7.1. Vortex in Free Space

The numerical computations are done on a rectangle divided into two
blocks. The vortex is introduced into the computational domain by using
the analytic solution as boundary and initial data. The vortex model is
presented in [5]. It satisfies the two-dimensional Euler equations, under
the assumption of isentropy. In [14] it is shown that the solution is steady
in the frame of reference moving with the freestream. The scaled vortex has
the velocity field

vG=
Er
2p

exp 11 − r2

2
2 , (17)

where E is the non-dimensional circulation, which determine the strength of
the vortex and (r, G) are the polar coordinates.

In the first test the vortex with strength E=1 is imposed as initial data
at the center of the block interface. In Fig. 7 the solution is advanced to
t=1 by using a 4th order (five stage low storage) Runge–Kutta method,
using 100 × 100 grid points, for the 5th order upwind case is shown. The
convergence rate q given by (12) is shown in Table IV.

In the second test we induce a rather strong vortex, E=20 at x=0.
Fig. 8 show the numerical results with and without the addition of artificial
dissipation. The calculations (4 and 6th order accurate) using non-dissipa-
tive schemes are stopped a short moment before calculation of the vortex
breaks down at x=14, due to nonlinear instability. The calculations using
the dissipative upwind schemes propagate the vortex without any problem,
even after reaching the internal boundary at x=20.

No problems could be detected at the interface. The amount of dissi-
pation is clearly sufficient. Remember that the penalty treatment at the
interface introduce extra dissipation.
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Fig. 7. Pressure contour, 5th order upwind at t=1, 100 × 100 grid points.

7.2. Steady State Calculations

Finally we consider a steady state calculation using the Euler equa-
tions around a NACA0012 airfoil. The computational domain is split into
12 blocks, see Fig. 9. Again, the main question is, does the derived opera-
tors work close to interfaces in this truly nonlinear setting?

The test case was run at a Mach number of 0.63 at an angle of attack
of 2 degrees, see Fig. 10. At these conditions, the flow is completely
subsonic.

Clearly the boundary treatment which includes the use of the new dis-
sipation operators leads to smooth solutions at the block interfaces. The
smoothness is probably enhanced by the additional dissipation from the
penalty treatment at the interfaces.

Table IV. log(l2-error) and Convergence Rate q, Tested for a Vortex in Free Space. 3rd and
5th Order Upwind

N l2(3rd) q l2(5th) q

50 − 4.89 − 6.02
100 − 5.84 3.15 − 7.63 5.32
150 − 6.38 3.08 − 8.53 5.14
200 − 6.76 3.05 − 9.16 5.05
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Fig. 8. Pressure contour. Comparing the stability properties for a truly nonlinear problem,
with and without the addition of artificial dissipation.

Fig. 9. The computational domain, divided into 12 blocks, around a NACA0012 airfoil. The
right subfigure is a close up.
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Fig. 10. Mach number contour. Steady state, NACA0012. Mach 0.63 at 2 degree angle. 3rd
order upwind. Note the smooth solution at the block interfaces (marked by straight solid
lines).

8. CONCLUSIONS

The main objective was to design artificial dissipation to add to high
order accurate SBP operators, such that a simple, stable and accurate
scheme is maintained and at the same time efficiently reduce spurious
oscillations in the solution.

To obtain simplicity and efficiency, the artificial dissipation was
chosen to approximate the highest possible even degree derivative within
the same stencil as the base central approximation of the first derivative
SBP operator. To preserve accuracy without widening the difference
stencil, we have shown that the dissipation operator must involve a non-
constant matrix that will depend on the number of grid points. To guaran-
tee stability the artificial dissipation was multiplied by the inverse of the
norm of the corresponding first derivative SBP operator.

The numerical calculations show that the new dissipation operators
work well. It has also been shown that artificial dissipation may lead to an
unstable method unless an energy estimate can be obtained.
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