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1 Introduction

Hydrodynamics is a classical effective description of macroscopic states of matter with small

deviations from local thermal equilibrium. Hydrodynamics is conventionally formulated

by starting from thermodynamics, and then promoting the constant parameters of global

thermal equilibrium (temperature T , fluid velocity v, etc.) to slowly varying functions in

space and time: T (t,x), v(t,x), etc. The evolution of these hydrodynamic variables is

then determined by the local conservation laws of energy, momentum, and possibly other

conserved quantities such as mass or particle number [1]. Intrinsic to hydrodynamics is

thus a fundamental ambiguity: one must (somewhat arbitrarily) make a choice as to how

to define “local temperature”, “local fluid velocity”, etc., out of equilibrium. For example,

the non-equilibrium “fluid velocity” may be chosen to correspond to the flow of particles,

or to the flow of energy, or to the flow of entropy, etc., with each choice resulting in different

hydrodynamic equations.

In non-relativistic Navier-Stokes equations, the standard convention is to define the

“fluid velocity” through the flow of mass [1]. Relativistic hydrodynamics was presented

originally in two different formulations, one pioneered by Eckart [2] and one by Landau and

Lifshitz [1]; both are still widely discussed. The non-equilibrium conventions differ between

the two formulations. Consequently, the hydrodynamic equations of Eckart and of Landau

and Lifshitz are different, mathematically inequivalent, equations. More generally, the

arbitrariness in adopting different non-equilibrium definitions implies that there is simply

no such thing as “the” equations of hydrodynamics. Still, one expects that conventions

should not be physically relevant, and that different hydrodynamic equations must give

rise to the same physical predictions within the domain of applicability of hydrodynamics.

The standard formulation of relativistic hydrodynamics (as in ref. [1]) uses the following

variables: temperature T , chemical potential µ, and fluid velocity uα. The first two are

scalars, and the latter is a vector. The chemical potential is conjugate to a global conserved

– 1 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
7

U(1) charge, such as the baryon number. The hydrodynamic equations are the conservation

laws for the energy-momentum tensor Tαβ and the corresponding U(1) current Jα,

∇αTαβ = 0 , ∇αJα = 0 , (1.1)

where ∇ denotes the covariant derivative for the spacetime metric gαβ . The conservation

laws have to be supplemented with the constitutive relations which express Tαβ and Jα

in terms of T , µ, and uλ. We will take the constitutive relations Tαβ = Tαβ [T, µ, uλ, gρσ],

Jα = Jα[T, µ, uλ, gρσ] to be local functions of the hydrodynamic variables, the metric, and

their derivatives. The constitutive relations are then written as an expansion in derivatives,

Tαβ = Tαβ(0) [T, µ, u, g] + Tαβ(1) [∂T, ∂µ, ∂u, ∂g] + . . . , (1.2)

Jα = Jα(0)[T, µ, u, g] + Jα(1)[∂T, ∂µ, ∂u, ∂g] + . . . , (1.3)

where the subscript denotes the number of derivatives. For example, Tαβ(2) will have con-

tributions proportional to (∂T )(∂µ), ∂2u, as well as the purely geometric contributions

proportional to the Ricci tensor Rαβ , among others. The constitutive relations which only

take into account Tαβ(0) , Jα(0) are said to correspond to “perfect fluid hydrodynamics”, while

the constitutive relations with terms up to Tαβ(n), J
α
(n) are said to describe “n-th order hy-

drodynamics”. The standard physics of viscosity and heat conductivity is contained within

first-order hydrodynamics. The equations of first-order hydrodynamics are often called the

Navier-Stokes equations.

The first-order relativistic theories of Eckart, and of Landau and Lifshitz, suffer from

two important pathologies: they both predict that the uniform thermal equilibrium state

of a non-gravitating fluid in flat space is unstable [3], and they both predict that signals

propagate faster than light [4]. The most popular remedy to these problems is provided

by the Müller-Israel-Stewart (MIS) theories which introduce extra tensor variables besides

T , uα, and µ into the hydrodynamic equations. See the recent book [5] for a modern

perspective and references. The pathologies of the original hydrodynamic theories of [1, 2]

plus the successful practical applications of the MIS theories in describing the quark-gluon

plasma produced in relativistic heavy-ion collisions [6, 7] have led to a widespread belief

which can be stated as “the relativistic Navier-Stokes equations are unstable and acausal”.

Such a view, however, is misguided: as previously emphasized, there is no such thing

as “the” relativistic Navier-Stokes equations. The freedom of convention1 in defining the

out-of-equilibrium T , uα, and µ means that for the same physical fluid there are infinitely

many different “Navier-Stokes equations”; the theories of [1] and [2] are just two examples.

With some conventions, the Navier-Stokes equations are indeed unstable and acausal; with

others, the Navier-Stokes equations may well be both stable and causal. One may as well

choose a convention that makes physical sense.

1Different conventions correspond to arbitrariness in performing derivative field redefinitions of the

hydrodynamic variables. In the literature on relativistic hydrodynamics, such redefinitions are often

referred to as different “frames”. See e.g. ref. [8] for a discussion of different conventions and how to

translate between them.
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In refs. [8–10] (which we shall call BDNK) it was argued that there exist particu-

larly convenient out-of-equilibrium definitions of the hydrodynamic variables, such that

the equations of first-order hydrodynamics written in terms of these variables are causal,

and the equilibrium state is stable. The BDNK conventions thus define stable and causal

frames for relativistic fluids. The discussion in refs. [9, 10] was only concerned with “un-

charged” fluids, i.e. fluids for which the only hydrodynamic variables are T and uα, and

the only conservation laws are those of energy and momentum. In ref. [8] general hydro-

dynamic field redefinitions were discussed for fluids with a global U(1) charge such as the

baryon number (so called “charged” fluids); however, the stable and causal frames were

only explicitly discussed for uncharged fluids.

The aim of the present paper is to extend the discussion of BDNK to fluids with

a conserved U(1) charge, whose hydrodynamic equations are given by the conservation

laws (1.1). For such fluids, we shall describe a class of stable and causal frames. In

such frames, the relativistic Navier-Stokes equations are stable and causal, correcting the

deficiencies of [1, 2], but without introducing any extra variables besides the standard T ,

µ, and uα. The relation between the familiar Landau-Lifshitz frame and the general frames

is described in the appendix.

2 Constitutive relations

Following ref. [2], we decompose the energy-momentum tensor and the current as

Tµν = Euµuν + P∆µν + (Qµuν +Qνuµ) + T µν , (2.1a)

Jµ = Nuµ + J µ , (2.1b)

where ∆µν ≡ gµν + uµuν projects onto the space orthogonal to u, the vectors Q and J
are transverse to u, and the tensor T is transverse to u, symmetric and traceless. For a

given timelike vector u, the decomposition (2.1) defines the components E , Qµ, T µν , N ,

and J µ in terms of Tµν and Jµ. Using the notation of [8], the most general one-derivative

constitutive relations in a charged fluid may be written as

E = ε+ ε1Ṫ /T + ε2∇λuλ + ε3u
λ∂λ(µ/T ) +O(∂2) , (2.2a)

P = p+ π1Ṫ /T + π2∇λuλ + π3u
λ∂λ(µ/T ) +O(∂2) , (2.2b)

Qµ = θ1u̇
µ + θ2/T ∆µλ∂λT + θ3∆

µλ∂λ(µ/T ) +O(∂2) , (2.2c)

T µν = −ησµν +O(∂2) , (2.2d)

N = n+ ν1Ṫ /T + ν2∇λuλ + ν3u
λ∂λ(µ/T ) +O(∂2) , (2.2e)

J µ = γ1u̇
µ + γ2/T ∆µλ∂λT + γ3∆

µλ∂λ(µ/T ) +O(∂2) . (2.2f)

The dot signifies the derivative along the fluid velocity, i.e. Ṫ ≡ uλ∂λT , u̇α ≡ uλ∇λuα. The

shear tensor is

σµν = ∆µρ∆νσ

(
∇ρuσ +∇σuρ −

2

d
gρσ∇αuα

)
,

where d is the number of spatial dimensions. We will refer to the coefficients εi, πi, θi, νi, γi
as “transport parameters”. There are fifteen transport parameters at one-derivative order,
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plus the shear viscosity η. We will work in the thermodynamic frame where the equilibrium

constitutive relations follow from a partition function which is extensive in equilibrium.2

Then the zero-derivative coefficients ε(T, µ), p(T, µ), n(T, µ) have the standard interpre-

tations of the equilibrium energy density, pressure, and charge density, respectively, and

moreover are related by n = ∂p/∂µ, ε + p − µn = T ∂p
∂T . Further, the same extensivity in

the thermodynamic frame implies θ1 = θ2, and γ1 = γ2.

The bulk viscosity ζ and the charge conductivity σ are given by the following combi-

nations of the transport parameters [8]:

ζ = (p,επ1 − π2) + p,ε(ε2 − p,εε1) +
p,n
T

(π3 − p,εε3) + p,n(ν2 − p,εν1)−
p2,n
T
ν3 , (2.3)

σ = −γ3
T

+
n(Tγ1 + θ3)

T (ε+ p)
− n2θ1

(ε+ p)2
, (2.4)

where the derivatives of the pressure are p,ε ≡ (∂p/∂ε)n, p,n ≡ (∂p/∂n)ε. Clearly, the

transport parameters must be such that both ζ and σ are non-negative. A choice of “frame”

corresponds to a choice of transport parameters. For example, the Landau-Lifshitz frame

of [1] imposes that all one-derivative transport parameters vanish except π2 and γ3. A

stable and causal frame is a choice of the transport parameters such that the hydrodynamic

equations (2.1), (2.2) are causal and predict that the thermal equilibrium state is stable.

In the grand canonical ensemble, the functions ε(T, µ) and n(T, µ) are not independent,

as both are determined by the pressure p(T, µ). In particular, T (∂n/∂T ) + µ(∂n/∂µ) =

∂ε/∂µ. Further, we have the following thermodynamic inequalities:

∂n

∂µ
> 0 , T

∂ε

∂T
+ µ

∂ε

∂µ
> 0 ,

∂ε

∂T

∂n

∂µ
− ∂n

∂T

∂ε

∂µ
> 0 . (2.5)

Denoting the Hamiltonian by H and the conserved particle number operator by N , the

inequalities above follow by demanding that the connected equilibrium functions are non-

negative: 〈N2〉conn > 0, 〈H2〉conn > 0, 〈H2〉conn〈N2〉conn − 〈HN〉2conn > 0. The inequali-

ties (2.5) imply

p,ε +
(∂n/∂µ)

ε+ p
p2,n >

n

ε+ p
p,n ,

∂n

∂µ
>

n2

(ε+ p)v2s
, (2.6)

where vs is the speed of sound, see e.g. [12].

The general constitutive relations (2.2) simplify if the underlying microscopic theory

happens to be conformal. In d+1 spacetime dimensions, conformal symmetry demands [8]:

ε = dp , εi = dπi , π1 = dπ2 , ν1 = dν2 , (2.7)

2The equilibrium partition function is a functional of the external time-independent sources: the metric

gµν and the gauge field Aµ that couples to the U(1) current. Equilibrium fluid velocity is defined to be

aligned with the timelike Killing vector field V which specifies the direction of time, uµ = V µ/
√
−V 2,

to all orders in the derivative expansion. Equilibrium temperature is defined so that the Tolman’s law

T = T0/
√
−V 2 holds, to all orders in the derivative expansion. See ref. [11] for more details. Comparing

Tµν and Jµ obtained by varying the equilibrium partition function with respect to gµν and Aµ with Tµν and

Jµ given by the constitutive relations (2.1), (2.2) and evaluated in equilibrium, one obtains the constraints

stated in the text.
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as well as θ1 = θ2, γ1 = γ2. The equation of state in a conformal theory is p(T, µ) =

T d+1f(µ/T ), with a dimensionless function f(µ/T ) which is determined by the microscopic

dynamics. The inequalities (2.5) imply that the function f(x) must be such that

f ′′ > 0 , ff ′′ >
d

d+ 1
(f ′)2 . (2.8)

The speed of sound in a conformal theory is vs = 1/
√
d, and the bulk viscosity ζ vanishes.

3 Small fluctuations in equilibrium

Let us now look at small fluctuations of the equilibrium state with constant T = T0,

µ = µ0, and v = v0. Taking the fluctuations δT , δµ, δvi proportional to e−iωt+ik·x, the

linearized hydrodynamic equations give rise to polynomial equations in ω and k which

we schematically write as F (ω,k) = 0. Their solutions determine the dispersion relations

ω = ωa(k). We take k to be real; the ωa(k) will be (in general, complex) functions of

k ≡ |k| and (k·v0). The modes with ωa(k→0) = 0 are “gapless”, while the modes with

ωa(k→0) 6= 0 are “gapped”. All genuine hydrodynamic modes (sound waves, shear waves,

heat diffusion) are gapless, reflecting the existence of conserved densities. On the other

hand, the gapped modes, if they are present, should be viewed as parametrizations of

non-hydrodynamic physics.

Hydrodynamic modes. There are d+2 hydrodynamic (gapless) modes: d−1 transverse

shear modes, two sound modes, and one heat diffusion mode. Their dispersion relations

for the fluid at rest (v0 = 0) take the following form at small k, as described for example

in ref. [12]:

ωshear(k) = − iη

ε+ p
k2 + . . . , (3.1)

ωsound(k) = ±vs|k| −
i

2
Γsk

2 + . . . , (3.2)

ωheat(k) = −iDk2 + . . . . (3.3)

The speed of sound is expressed in terms of the equilibrium thermodynamic quantities as

v2s =

(
∂p

∂ε

)
n

+
n

ε+ p

(
∂p

∂n

)
ε

, (3.4)

which can also be written as v2s = (∂p/∂ε)S . The damping coefficient of the sound waves is

Γs =
(2− 2

d)η + ζ

ε+ p
+

σ

(ε+p)v2s

(
∂p

∂n

)2

ε

, (3.5)

determined by the viscosities and the charge conductivity. The heat diffusion coefficient is

D =
σ(ε+p)(∂p/∂ε)2n

v4s(ε+p)(∂n/∂µ)− n2v2s
. (3.6)
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Thermodynamic inequality (2.6) implies that D is positive for positive σ. For the state with

n = 0 in equilibrium, the diffusion constant is related to the conductivity by σ = (∂n/∂µ)D.

The hydrodynamic (gapless) dispersion relations in a moving fluid with v0 6= 0 can be

found by applying a Lorentz boost to the spectral function F (ω,k,v0=0), as described for

example in ref. [8]. If a mode has a quadratic dispersion relation ω = −iDk2 + . . . at small

k in the fluid at rest, then in a moving fluid one finds at small k:

ω = k·v0 − iD
√

1−v2
0

(
k2 − (k·v0)

2
)

+ . . . . (3.7)

The corresponding formulas for the sound mode at v0 6= 0 can be found in ref. [8].

Stability and causality. We will call the a-th mode “stable” if

Im ωa(k) 6 0 , (3.8)

and we will call the a-th mode “causal” if

0 < lim
k→∞

∣∣∣∣Re ωa(k)

k

∣∣∣∣ < 1 . (3.9)

See ref. [13] for a discussion of causality and large-k dispersion relations. The modes are

as follows. The shear-channel fluctuations decouple from the sound-channel fluctuations as

a consequence of rotation invariance, so that F (ω,k) = Fshear(ω,k)d−1Fsound(ω,k). The

function Fshear(ω,k) is a second-order polynomial in ω, which gives rise to one gapless

mode (3.1) and one gapped mode. The function Fsound(ω,k) is a sixth-order polynomial

in ω which gives rise to three gapless modes (3.2), (3.3) and three gapped modes.

For shear-channel fluctuations, the modes of a charged fluid are identical to those of

an uncharged fluid. Demanding stability and causality then gives rise to the constraint [8]

θ1 > η > 0 . (3.10)

Let us now look at sound-channel fluctuations. The spectral function Fsound(ω,k) is

lengthy, and while one could in principle derive the constraints by applying eqs. (3.8), (3.9)

to the roots of Fsound(ω,k) = 0, the constraints are unwieldy, and depend on the equation

of state. The spectral function can be analyzed in various limiting cases in order to derive

various necessary or sufficient conditions for stability and causality.

One set of necessary conditions follows by requiring that the gaps (obtained by solving

Fsound(ω,k=0) = 0) have negative imaginary parts. Demanding that the sound-channel

gaps are stable at v0 = 0 gives the following necessary conditions for the stability of

equilibrium:

ε1ν3 − ε3ν1 > 0 , (3.11)

ν3

(
∂ε

∂T

)
µ/T

+ ε1

(
∂n

∂µ

)
T

− ν1
(
∂ε

∂µ

)
T

− ε3
(
∂n

∂T

)
µ/T

> 0 . (3.12)

Note that T (∂ε/∂T )µ/T = T (∂ε/∂T ) + µ(∂ε/∂µ) > 0, thanks to the thermodynamic in-

equalities (2.5). For example, in a frame with ε3 = ν1 = 0, stability conditions (3.11), (3.12)

will be satisfied for ε1 > 0, ν3 > 0.
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The constraints on the transport parameters arising from the stability of the gaps

in a moving fluid are more involved. With ∆ ≡ −iω, the gaps satisfy a cubic equation

a0∆
3 +a1∆

2 +a2∆ +a3 = 0, with coefficients an that depend on the transport parameters

and on the equation of state. The coefficient a3 is proportional to ( ∂ε∂T
∂n
∂µ−

∂n
∂T

∂ε
∂µ)(1−v20v2s),

hence one can always take a3 > 0. Demanding that the sound-channel gaps are stable, i.e.

Re ∆ < 0, by the Routh-Hurwitz criterion [14] then amounts to a0 > 0, a1 > 0, a1a2 > a0a3.

Another simple set of constraints comes from the high-momentum modes. As k →∞,

the six sound-channel modes have linear dispersion relations ω = ±csk, where c2s satisfies

a cubic equation. The transport coefficients must be constrained by demanding c2s > 0

(stability) and c2s < 1 (causality). If we choose a frame with ε3 = π3 = θ3 = 0, the cubic

equation for c2s factorizes into a product of a linear equation and a quadratic equation:

ν3c
2
s + γ3 = 0 , (3.13)

ε1θ1(c
2
s)

2 − c2s
(
θ1π1 + ε2(θ1+π1) + ε1

(
2d− 2

d
η−π2

))
− θ1

(
2d− 2

d
η−π2

)
= 0 . (3.14)

The first one implies

0 < −γ3/ν3 < 1 . (3.15)

The constraints on the transport coefficients from eq. (3.14) can be obtained as follows.

For a quadratic equation ax2 + bx + c = 0 with a > 0, the conditions that the roots are

real and fall between 0 and 1 amount to the following:

b2 − 4ac > 0 , b < 0 , 0 < c < a , a+ b+ c > 0 . (3.16)

Applying these to eq. (3.14) with

a = ε1θ1 , b = −θ1π1− ε2(θ1+π1)− ε1
(

2d− 2

d
η−π2

)
, c = θ1

(
π2−

2d− 2

d
η

)
(3.17)

gives a set of non-linear constraints among the coefficients ε1,2, π1,2, θ1, and η. Note that

eq. (3.14) is exactly the same equation that determines the propagation speed of the large-

k eigenmodes in an uncharged fluid [8]. Thus in the frame with ε3 = π3 = θ3 = 0, the

causality constraints (3.16), (3.17) on the coefficients ε1,2, π1,2, θ1, and η will be exactly

the same as in uncharged fluids. In order to express the causality constraints in terms of

physical transport coefficients, we need the bulk viscosity (2.3) and the conductivity (2.4)

in the frame with ε3 = π3 = θ3 = 0. From eq. (3.15) one immediately finds

ν3 > σT +
n2Tθ1

(ε+ p)2
− nTγ1
ε+ p

. (3.18)

For example, if we choose a frame in which γ1 = nθ1/(ε+p), then γ3 = −σT , and the

causality constraint (3.15) becomes simply ν3 > σT . Similarly, in order to simplify the

bulk viscosity one could further choose a frame in which ν2 = (p,ε)ν1 + (p,n)ν3/T . Then

the transport parameters νi drop out from the bulk viscosity, and the large-k causality

constraints (3.16), (3.17) take exactly the same form as the corresponding constraints in
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uncharged fluids [8]. Expressed in terms of γs ≡ 2d−2
d η + ζ, the large-k causality con-

straints (3.15), (3.16), (3.17) in this frame become:

ν3 > σT , (3.19)

0 < p,ε(ε2+π1)− (p,ε)
2ε1 − γs < ε1 , (3.20)

ε1
(
p,ε(ε2+π1)− (p,ε)

2ε1 − γs
)
< θ1(ε2+π1) + ε2π1 , (3.21)

(ε1+θ1)
(
p,ε(ε2+π1)− (p,ε)

2ε1 − γs
)

+ ε1θ1 > θ1(ε2+π1) + ε2π1 , (3.22)[
ε1
(
p,ε(ε2+π1)−(p,ε)

2ε1−γs
)
− θ1(ε2+π1)− ε2π1

]2
> 4ε1θ

2
1(p,ε(ε2+π1)−(p,ε)

2ε1−γs).
(3.23)

These causality constraints can be simultaneously satisfied [8].

Stable and causal frames for conformal fluids. The discussion above simplifies for

conformal fluids, where the one-derivative transport parameters satisfy the constraints of

eq. (2.7) due to conformal symmetry. Let us further choose a frame in which π3, θ3, ν1,

and γ1 all vanish, leaving one with five independent transport parameters π2, θ1, η, ν3,

and γ3. The five parameters can be thought of as two genuine transport coefficients η and

σ, and three “relaxation times” corresponding to the relaxation of the energy density (π1),

momentum density (θ1), and charge density (ν3).

As k → 0, the stability conditions (3.11), (3.12) for the gapped modes become ν3π2 >

0, and Tν3 + dλπ2 > 0 where λ ≡ T 2(∂n/∂µ)/(ε+p) > 0 is the dimensionless charge

susceptibility. These are satisfied for ν3 > 0, π2 > 0. The large-k constraint (3.18) becomes

Tν3 > T 2σ + κ2θ1 , (3.24)

where κ ≡ nT/(ε+p) is a dimensionless measure of the equilibrium charge density. Note

that the thermodynamic inequalities (2.5) imply λ > dκ2. In fact, the only information

about the equation of state that is relevant for the linearized analysis of stability and

causality is contained in κ and λ. The large-k constraints (3.20)–(3.23) reduce simply to

π2 >
2d− 2

d
η , 1− 2d

d−1

η

θ1
− 2

d(d−1)

η

π2
> 0 . (3.25)

Restricting to d = 3 space dimensions, the inequalities (3.25) become exactly the same con-

straints found earlier for uncharged conformal fluids in refs. [8, 9]. In order to satisfy them,

it is sufficient to demand π2 >
4
3η, θ1 > 4η. It is a straightforward exercise to check that the

large-k constraints (3.24), (3.25) in d = 3 also ensure that the sound-channel gaps are stable

at all v20 < 1, as long as the equation of state obeys the standard thermodynamic inequali-

ties (2.5). In other words, conditions (3.24), (3.25) ensure that in our chosen frame all small-

k modes are stable, and all large-k modes are stable and causal. Finally, we point out that

the large-k causality alone does not guarantee stability at all k: for example, the causality

conditions (3.9) allow for negative π2, which is ruled out by the small-k stability conditions.

4 Real-space causality

So far, we have looked at the linearized stability of the equilibrium state, and the linearized

causality of the near-equilibrium perturbations in momentum space. In fact, similar to
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what was done in refs. [9, 10], one can study the non-linear causality of charged first-

order hydrodynamics in real space using the quasi-linear character of the hydrodynamic

equations. The hydrodynamic conservation laws are partial differential equations for the

variables T , µ, and uα which satisfies uαu
α = −1. Rather than working with the vector

uα which is constrained by uαu
α = −1, we find it more convenient to work with the

unconstrained vector βα = βuα, where β ≡ (−βαβα)1/2 > 0 is the inverse temperature, β =

1/T . The hydrodynamic equations (1.1) are second-order quasilinear partial differential

equations for UA = (βα, µ/T ) that can schematically be written as

(Mµν)AB ∂µ∂νU
B + (Nµν)ABC ∂µU

B∂νU
C + (Pµ)AB ∂µU

B = 0 , (4.1)

where the indices A,B,C range from 1 to d+2 (again, d is the number of spatial dimen-

sions), and the coefficients Mµν , Nµν , Pµ depend on U , but not on the derivatives of U . We

thus have d+2 differential equations for d+2 unconstrained variables.3 The hyperbolicity

of the equations and the causality of the solutions are determined by the principal part

(Mµν)AB, see e.g. ref. [15], Ch. VI. The characteristic surfaces φ(x) = const. are found from

det [(Mµν)AB ξµ ξν ] = 0 , (4.2)

where the vectors ξµ ≡ ∂µφ(x) are normal to the characteristic surfaces at the point x.

For the hydrodynamic equations (4.1) to be hyperbolic, eq. (4.2) must only have non-zero

real solutions ξ0 = ξ0(ξi). For the equations to be causal, the surfaces swept out by these

normals must lie either outside or on the lightcone ξµξ
µ = 0.

Let us work in a frame with ε3 = π3 = θ3 = 0. The conservation laws can be written as

∇σT σα = T

[
ε1u

αuρuσuλ + ε2u
αuρ∆σ

λ + π1∆
ασuρuλ + π2∆

ασ∆ρ
λ

+θ1(u
αuρ∆σ

λ + uρuσ∆α
λ) + θ2(u

αuλ∆σρ + uρuλ∆ασ)

− η
(

∆αρ∆σ
λ + ∆α

λ∆σρ − 2

d
∆ασ∆ρ

λ

)]
∂ρ∂σβ

λ +O(∂U∂U) +O(∂U) , (4.3)

as well as

∇σJσ = T
[
ν1u

ρuσuλ + ν2u
σ∆ρ

λ + γ1u
ρ∆σ

λ + γ2∆
ρσuλ

]
∂ρ∂σβ

λ

+ [ν3u
ρuσ + γ3∆

ρσ] ∂ρ∂σ(µ/T ) +O(∂U∂U) +O(∂U) , (4.4)

It is then clear that the choice of frame ε3 = π3 = θ3 = 0 ensures (Mµν)α5 = 0, where the in-

dex “5” stands for d+2. The other components of the principal part, i.e. (Mµν)αβ , (Mµν)5α,

3Ref. [10] chooses to work with uα which is not constrained by uαu
α = −1, and instead considers the

projected conservation laws uβ∇αT
αβ = 0, ∆µ

β∇αT
αβ = 0 as independent equations. Even though the

norm of uα is not preserved under time evolution in this approach, the causality can be argued by noting

that the causal structure of the projected equations is the same as the causal structure of the original

equations ∇αT
αβ = 0. We find it conceptually cleaner to work with βµ = uµ/T whose norm is not fixed.

The causality constraints one finds by projecting the energy-momentum conservation laws are the same as

those in section 3.
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and (Mµν)55 can be read off by comparing eqs. (4.3), (4.4) to the general form (4.1); for ex-

ample, (Mµν)55 = ν3u
µuν + γ3∆

µν . Thanks to the vanishing of (Mµν)α5, the determinant

in eq. (4.2) factorizes, and the characteristic surfaces are determined by

[(Mµν)55 ξµξν ]× det [(Mρσ)αβ ξρ ξσ] = 0 . (4.5)

The first factor in eq. (4.5) gives

ν3(u·ξ)2 + γ3(ξ·∆·ξ) = 0 . (4.6)

At a given point in spacetime, passing to a local coordinate system in which uα = (1,0) at

that point, the solutions are ξ0 = ±
√
−γ3/ν3 |ξi|. Demanding that these are real and lie

outside the lightcone gives the same constraint (3.15) we found earlier from the linearized

analysis in momentum space. In d+1 dimensions, the determinant in eq. (4.5) can be

computed by using the following easily derived identity:

det(Auαuβ +B∆α
β + Cuαξβ +Dξαuβ + Eξαξβ)

= Bd−1 [−AB +B(C+D)(ξ·u)−BE(ξ·u)2 + (CD−AE)(ξ·∆·ξ)
]
. (4.7)

Applying this to det
[
(Mρσ)αβ ξρ ξσ

]
, we find B = θ1(ξ·u)2 − η(ξ·∆·ξ), hence there are

characteristic surfaces determined by[
θ1(ξ·u)2 − η(ξ·∆·ξ)

]d−1
= 0 . (4.8)

These correspond to the (d−1) shear-channel modes of section 3. Demanding hyperbolicity

and causality then gives the constraint (3.10) found earlier from the linearized analysis in

momentum space. The remaining characteristic surfaces are found by setting the term in

the square brackets in eq. (4.7) to zero, with A,B,C,D,E extracted from eq. (4.3). We find

θ2

(
2d− 2

d
η−π2

)
(ξ·∆·ξ)2 +

[
ε1

(
2d− 2

d
η−π2

)
+ ε2(θ2+π1) + θ1π1

]
(ξ·∆·ξ)(ξ·u)2

−ε1θ1(ξ·u)4 = 0. (4.9)

The conditions of hyperbolicity and causality will be satisfied for (ξ·u) = cs(ξ·∆·ξ), with cs
real and 0 < c2s < 1. This gives exactly the same equation (3.14) for cs, and consequently

the same causality conditions (3.16), (3.17) we found earlier from the linearized analysis

in momentum space (recall that the formulas in section 3 are written in a thermodynamic

frame with θ2 = θ1). In other words, the real-space analysis of hyperbolicity and causal-

ity gives the same constraints on the transport parameters as the linearized analysis of

section 3.

As in refs. [9, 10], it is straightforward to couple eq. (4.1) to Einstein’s equations. The

latter have no terms with second derivatives of βα or µ/T . Thus, extending the variables

to UA = (βα, µ/T, gµν), the part of the determinant (4.2) describing the metric degrees

of freedom decouples, and the conditions of section 3 give rise to causal Navier-Stokes

equations coupled to dynamical gravity.
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5 Conclusions

We have proposed a class of stable and causal frames for relativistic hydrodynamics with

conservation laws given by eqs. (1.1), and whose constitutive relations contain up to one

derivative of the hydrodynamic variables T , uα, and µ. The stable and causal frames

generalize the frames proposed in BDNK [8–10] to fluids with a global U(1) charge such

as the baryon number. A choice of frame ultimately amounts to a convention specifying

how one chooses to fix the arbitrariness of defining T , uα, and µ beyond the perfect-fluid

approximation. In a causal frame, the Navier-Stokes equations are causal both in flat and

in curved space.

The entropy production for hydrodynamics in the stable and causal frames is exactly

the same as the entropy production in the classic Eckart or Landau-Lifshitz frames [1].

This is because in first-order hydrodynamics the divergence of the entropy current has to

be evaluated on-shell (when the hydrodynamic equations are satisfied), and in the derivative

expansion. Just like in ref. [8], the divergence of the entropy current on-shell and to first

order in derivatives is the same as in [1], and is only determined by η, ζ, and σ.

The procedure that gives rise to the stable and causal Navier-Stokes equations is quite

straightforward, and embodies the spirit of effective field theory. In the standard quantum

field theory, the effective description is constructed by writing down the action in terms

of all possible operators consistent with the symmetry, up to a given dimension, and then

constraining the coefficients of these operators based on the stability of the vacuum and

unitarity. Similarly, in hydrodynamics we write down all possible terms in the constitutive

relations up to a given derivative order, and then constrain the coefficients of these terms

based on the stability of equilibrium and causality.

The most general one-derivative constitutive relations are given by eqs. (2.1) and (2.2).

Using a frame in which ε3 = π3 = θ3 = 0, the hyperbolicity and causality of the equations

are easily demonstrated, provided the remaining coefficients obey the inequalities discussed

in section 3. One can further choose a frame in which the causality constraints look

exactly like the constraints in uncharged fluids, plus a lower bound on the coefficient ν3,

see eqs. (3.19)–(3.23).

We have not performed an exhaustive analysis of stability. While the stability of the

gaps requires the inequalities (3.11) to hold, a full study of stability would require working

with a specific equation of state. Performing such a study would be straightforward. In

conformal theories, it appears that the conditions of stability and causality at large k

combined with the stability at small k also ensure stability at all k, though at the moment

we do not have proof of that. We hope that our observations will stimulate further work

on stable and causal relativistic Navier-Stokes equations, including their applications to

heavy-ion physics and astrophysics.
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A Connection to the Landau-Lifshitz frame

In order to set up the initial value problem for the hydrodynamic equations (1.1) in the

general frame4 (2.2), one needs to specify the initial values of the hydrodynamic variables

T , uα, µ, as well as their initial time derivatives. Setting the mathematical details aside,

one is faced with a physics question: for a given non-equilibrium initial state, one needs to

know how to determine the initial T , uα, µ in that state. This is non-trivial, given that the

very notion of the non-equilibrium hydrodynamic variables is frame-dependent. However,

if one has access to Tµν and Jµ at early times, the question can be answered within the

derivative expansion of hydrodynamics. In order to do so, one can first find T , uα, µ in

the Landau-Lifshitz frame (which is relatively straightforward), and then transform those

expressions to the general frame. We outline this procedure below.

In the Landau-Lifshitz frame, the hydrodynamic variables TL, uαL, µL are related to

the energy-momentum tensor Tµν and the current Jµ in the following way:

TαβuLβ = −ε(TL, µL)uαL , (A.1)

JαuLα = −n(TL, µL) , (A.2)

where the functions ε and n in the right-hand side are given by the equilibrium equation of

state. Recall that Tαβ and Jα are the expectation values of the corresponding microscopic

operators in a given non-equilibrium state, and as such, do not depend on one’s choice

of convention/frame. Thus, for a given Tαβ(x), one can in principle find uαL(x) as the

timelike eigenvector of Tαβ , normalized such that (uL)2 = −1. Then, eqs. (A.1), (A.2) give

ε(TL(x), µL(x)) and n(TL(x), µL(x)), at each x. As the functions ε and n are known from

the equation of state, one can in principle reconstruct TL(x) and µL(x).

Consider now the energy-momentum tensor and the current (2.1). Following ref. [12],

we write E = ε(T, µ)+fE , N = n(T, µ)+fN , where fE and fN are the derivative corrections,

fE = ε1Ṫ /T + ε2∇λuλ + ε3u
λ∂λ(µ/T ) +O(∂2) , (A.3)

fN = ν1Ṫ /T + ν2∇λuλ + ν3u
λ∂λ(µ/T ) +O(∂2) , (A.4)

as well as

Qµ = θ1u̇
µ + θ2/T ∆µλ∂λT + θ3∆

µλ∂λ(µ/T ) +O(∂2) . (A.5)

The hydrodynamic variables T , uα, µ are related to TL, uαL, µL by

T = TL − δT, uα = uαL − δuα, µ = µL − δµ , (A.6)

where δT , δuα, δµ are O(∂). Demanding that Tαβ and Jα are frame-independent, one

finds [12]

δuα =
Qα

ε+ p
, δT =

fE
∂n
∂µ − fN

∂ε
∂µ

∂ε
∂T

∂n
∂µ −

∂n
∂T

∂ε
∂µ

, δµ =
−fE ∂n∂T + fN

∂ε
∂T

∂ε
∂T

∂n
∂µ −

∂n
∂T

∂ε
∂µ

. (A.7)

4Again, we use the unfortunate but a well-established term “frame” to describe conventions of how one

chooses to define hydrodynamic variables beyond perfect fluids.
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The right-hand side can be evaluated in any frame, as the difference only appears at O(∂2).

For example, applying eqs. (A.3)–(A.7) to uncharged fluids, we find

uα = uαL −
1

ε(TL) + p(TL)

(
θ1(TL)u̇αL + θ2(TL)/TL ∆αλ

L ∂λTL

)
+O(∂2) , (A.8)

T = TL −
1

ε′(TL)

(
ε1(TL)ṪL/TL + ε2(TL)∇λuλL

)
+O(∂2) . (A.9)

One can use the above expressions in order to find T , uα, µ in the general frame, if

Tµν and Jµ happen to be known. Given only Tµν(x, t=t0) and Jµ(x, t=t0), one can not

tell whether these single-time values correspond to a physical state that is describable by

hydrodynamics. However, if one has access to Tµν(x, t) and Jµ(x, t) for a range of times

around t0, then the time derivatives of the Landau-Lifshitz variables can be evaluated, the

importance of the derivative corrections at t = t0 can be estimated, and relations such

as (A.8), (A.9) can be used in order to find the general-frame T , uα, µ in that state, within

the derivative expansion. See also ref. [9], section VII C for related comments.
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