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We present a stable and efficient method for the Bloch-mode computation of one-dimensional grating
waveguides. The approach uses the Fourier modal method and the S-matrix algorithm to remove numerical
instabilities. The use of perfectly matched layers provide a high accuracy. Numerical results obtained for
different lamellar grating waveguides and for both TE and TM polarizations illustrate the performance of the
approach. © 2002 Optical Society of America

OCIS codes: 050.1960, 050.1950, 130.2790, 230.7390, 350.5500.
The rigorous coupled-wave analysis1,2 (RCWA) also called
the Fourier modal method, is a well-established numeri-
cal technique for the numerical study of grating-
diffraction problems. It can efficiently solve almost all
one-dimensional grating-stack diffraction problems by the
combinative use of the S matrix or the R matrix.3 Re-
cently, by use of appropriate absorbers in the grating re-
gion, this powerful numerical tool was extended to the
simulation of aperiodic diffraction problems,4 such as
Bragg-grating waveguides,5 grating couplers,5 and photo-
nic crystal waveguides.5–7 The extension was also ap-
plied to the Bloch-mode computation of one-dimensional
grating waveguides.4

It is well established that the resonance anomalies of
grating-waveguide filters, the coupling lengths of grating
couplers, and the stop bands of Bragg waveguide mirrors
and of surface-wave plasmons can be studied through the
complex poles of the determinant of a scattering matrix
that relates the diffracted and the incidence waves (see,
for instance, Ref. 8 and references therein). In general,
the computation of the poles (or, equivalently, the effec-
tive index neff of the leaky mode) requires that one find
the complex root of the determinant of the scattering ma-
trix. This root search involves many iterative calcula-
tions of the determinant and often requires a good-guess
value for the pole.

In contrast, the approach of Ref. 4 does not require any
iteration; it straightforwardly computes the neff value and
the corresponding Bloch mode by solving for an eigen-
problem. However, the transmission matrix (T matrix)
used in Ref. 4 for the eigenproblem is unstable when a
large number N of Fourier harmonics are retained for the
computation or when large grating periods are consid-
ered. Obviously, this drawback greatly restricts the do-
main of application of the approach. For example, Bloch
modes of highly conducting metal grating waveguides
cannot be accurately computed. The purpose of this pa-
per is to employ the S matrix to remove this limitation.
0740-3232/2002/020335-04$15.00 ©
At the same time, we use perfectly-matched-layers (PML)
techniques9,10 to enhance the computation accuracy.

Let us consider the lamellar grating waveguide shown
in Fig. 1. The indices nh , nc , and ns are the refractive
indices of the waveguiding film, the cover, and the sub-
strate, respectively, tg is the groove depth, and tf is the
thickness of the unpatterned film. The grating period
along the z direction is denoted by L. Planes H1 and H2
that are located at z 5 z1 and z 5 z2 , respectively, are
chosen such that z2 2 z1 5 L, w is the artificial wave-
guide period (or the computation-window size) in the x di-
rection, Lc and Ls are the thicknesses of the absorbers for
the cover and for the substrate. This kind of grating
waveguide has many applications. For example, it can
be used as a grating coupler, a Bragg reflector, or a seg-
mented waveguide.

As shown in our previous work,4,5 the extension of the
RCWA to modelize waveguide diffraction problems relies
on an artificial periodization along the x coordinate and
on the introduction of absorbers. The artificial periodiza-
tion along the x coordinate virtually replaces the actual
waveguide isolated in space by a periodic waveguide
structure. Only one period is shown in Fig. 1. The pe-
riod (or the computational box size) is denoted by w. For
the electromagnetic solution of the periodic waveguide ge-
ometry and that of the isolated waveguide structures to
be identical, absorbers have to be incorporated between
the waveguides. These absorbers (represented as rect-
angles in Fig. 1) are used to satisfy the ingoing wave con-
dition at plane x 5 w/2 and x 5 2w/2. As shown in Fig.
1, the absorbers are composed of two independent parts;
one is placed in contact with the cover and the other in
contact with the substrate. Note that the absorber per-
mittivity and permeability depend on the refractive indi-
ces of the cover and substrate only in an analytical way.
As shown in Ref. 5, good absorbers guarantee a good nu-
merical accuracy. We provide results in the following for
simple gradient-index and PML absorbers.
2002 Optical Society of America
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With the inclusion of the absorbers that results in a
modification of the index-distribution profile, the wave-
guide modes and their effective indices are computed by
solving the Helmoltz equation in every uniform section of
the waveguide. For TE polarization, the classical Hel-
moltz equation is

]2Ey

]z2 5 2k0
2eEy 2

]2Ey

]x2 , (1)

where Ey is the y component of the electric field, k0 is the
modulus of the wave vector and e(x) is the relative per-
mittivity distribution of the uniform section of the wave-
guide. A temporal dependence of exp(2jvt) is assumed
throughout the paper. When PML absorbers are consid-
ered, magnetic and anisotropic media have to be consid-
ered and Eq. (1) has to be generalized to5
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]z2 5 2k0
2mxxeEy 2 mxx

]
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mzz
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]x D , (2)

where mxx(x), mzz(x), and e(x) are periodic functions rep-
resenting the generalized relative permeability and per-
mittivity. They are given by mxx(x)5 mzz(x) 5 1 and
e(x) 5 n2(x) outside the PML absorbers, and mzz(x)
5 (1 1 j)g, mxx(x) 5 1/@(1 1 j)g#, and e(x) 5 nc

2(1
1 j)g or ns

2(1 1 j)g inside the PML absorbers. n(x) is
the transverse refractive-index distribution of a uniform
section of the grating waveguide, and g is a parameter
that can be chosen for optimal purpose. The (1 1 j) fac-
tors in the generalized relative permeability and permit-
tivity are introduced to absorb both propagating and eva-
nescent waves in the PML absorbers.5 The TM-
polarization case can be similarly treated in terms of the
symmetric properties5 of e ↔ m and E ↔ H.

Because the structure is periodic in the x coordinate,
Eq. (1) or Eq. (2) can be solved with RCWA. The electro-
magnetic field quantities are first expanded in Fourier se-
ries. For the electric field, we have

Ey 5 (
m 5 2`

`

Sm~z !exp~ jmKx !, (3)

Fig. 1. Grating-waveguide structure considered in this paper.
Lc and Ls are the two absorber thickness, w is the artificial pe-
riod along the x direction. For the problem of Ref. 11—nc 5 1,
nh 5 A3, ns 5 A2.3, tg 5 l, tf 5 l/p for TE waves and tf
5 l/2 for TM—the groove and ridge lengths are l/4 (L 5 l/2).
where K 5 2p/w, j2 5 21 and Sm is the unknown nor[p-
malized amplitude of the mth space-harmonic field.
Then Eq. (1) or Eq. (2) is solved as an eigenproblem1,2,5 in
the Fourier basis to compute the modes in every uniform
section of the waveguide. Thus in each section, the elec-
tromagnetic field Ey is looked for as a superposition of
modes

Sp~z ! 5 (
m

Wm$um exp@2k0lmz# 1 dm exp@k0lmz#%,

(4)

where u and d are column vectors whose elements are the
amplitudes of the modes propagating backward (in the 2z
direction) and forward (in the z direction), respectively.
In Eq. (4), Wm represents the Fourier coefficient of mode
m and lm is the propagation constant of mode m.

We denote by d1 and u1 the column vectors whose ele-
ments are the amplitudes of the forward- and the
backward-propagating modes at plane H1 . Similarly, d2
and u2 are those corresponding to plane H2 . For such a
grating waveguide, the T matrix and the S matrix con-
nect d1 , u1 , d2 , and u2 by the following equations,3

S d2

u2
D 5 TS d1

u1
D , (5)

S d2

u1
D 5 FS11S12

S21S22
G S d1

u2
D , (6)

where T is the T matrix, S11 , S12 , S21 , and S22 are the
four submatrices of the S matrix. Both the T matrix and
the S matrix can be computed by solving for the eigen-
problems associated with the two uniform sections of the
grating waveguide and by matching the electromagnetic-
field quantities at the two interfaces between the two uni-
form sections.3 Since the Bloch mode is a pseudoperiodic
function of the z variable, the Bloch-mode column-vector
coefficients satisfy d2 5 bd1 and u2 5 bu1 , where b de-
notes the factor exp(2ik0neffL). Substituting these rela-
tions into Eqs. (5) and (6) yields the following eigenprob-
lem equations, respectively:

TS d1

u1
D 5 bS d1

u1
D , (7)

FS11 0
S21 21G S d1

u1
D 5 bF I 2S12

0 2S22
G S d1

u1
D . (8)

In the T-matrix approach of Ref. 4, the eigenvalue b and
consequently neff are directly determined by solving for
Eq. (7) as a standard eigenproblem. The method suffers
from the well-known numerical instabilities3 of the T ma-
trix. Instead, in the S-matrix approach presented here,
the eigenvalues b are directly determined by solving for
Eq. (8) as a generalized eigenproblem without any insta-
bility as evidenced in the following numerical results.

To clearly understand the advantage of the S-matrix
approach, we numerically investigate the lamellar
grating-waveguide problem studied by Chang et al.11

The grating-waveguide parameters are given in the Fig. 1
caption. The neff values obtained with the two ap-
proaches are shown in Table 1 for TE (electric field paral-
lel to the y direction) and, TM (magnetic field parallel to
the y direction) polarizations. For the computation, the
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numerical parameters are chosen such that Ls 5 Lc 5 l
and w 5 6l. In this example, the absorbers are com-
posed of gradient-index film stacks with complex
refractive-index distributions that vary parabolically
from ns 1 0j to ns 1 1j for the substrate absorber and
from nc 1 0j to nc 1 1j for the cover absorber. Note
that the values al in Table 3 of Ref. 11 is 2p times the
imaginary parts of neff . From Table 1, one concludes
that the T-matrix approach is unstable for large N values
(for example, when N 5 301, no numerical results are ob-
tained). On the other hand, the S-matrix approach is
perfectly stable.

As pointed out by Refs. 4 and 5, the absorber quality
also has an important influence on the accuracy of the
computational results. Good absorbers are required for
high performance. Through numerical experiments, we
find that the computed effective indices, especially their
imaginary parts, are somewhat sensitive to the value of
w. For example, for TM waves, neff converges to 1.609
1 0.00074j for w 5 6l but converges to 1.609
1 0.00064j for w 5 5l; for TE waves, neff converges to
1.583 1 0.0024j for w 5 6l but converges to 1.582
1 0.0018j for w 5 5l. To further improve the accuracy
of the approach, we now use PML absorbers. In prin-
ciple, PML allow us to fulfill exactly the incoming-wave
condition in the cover and in the substrate. The effective

Table 1. neff Values Obtained with the T-Matrix
and S-Matrix Approachesa

N T Matrix S Matrix

TE Modeb

21 1.578 1 0.0021 j 1.578 1 0.0021 j
41 1.582 1 0.0024 j 1.582 1 0.0024 j
61 1.583 1 0.0024 j 1.583 1 0.0024 j
81 1.583 1 0.0024 j 1.583 1 0.0024 j

161 1.579 1 0.0035 j 1.583 1 0.0024 j
301 — 1.583 1 0.0024 j

TM Modec

21 1.605 1 0.00062 j 1.605 1 0.00062 j
41 1.608 1 0.00072 j 1.608 1 0.00072 j
61 1.609 1 0.00073 j 1.609 1 0.00073 j
81 1.609 1 0.00073 j 1.609 1 0.00073 j

151 1.608 1 0.00188 j 1.609 1 0.00074 j
301 — 1.609 1 0.00074 j

a The absorbers are gradient-index films.
b The value obtained in Ref. 8 corresponds to 1.583 1 0.0022 j.
c The value obtained in Ref. 8 corresponds to 1.609 1 0.00075 j.

Table 2. neff Values Obtained with the S-Matrix
Approach and with Perfectly Matched-Layers

N TE Mode TM Mode CPU Times (s)

11 1.574 1 0.0007 j 1.604 1 0.00102 j 0.1
21 1.582 1 0.0020 j 1.609 1 0.00078 j 0.3
31 1.582 1 0.0023 j 1.609 1 0.00065 j 0.5
41 1.582 1 0.0023 j 1.609 1 0.00071 j 1
61 1.582 1 0.0023 j 1.609 1 0.00072 j 2.5

301 1.582 1 0.0023 j 1.609 1 0.00072 j 269
indices computed with PML are shown in Table 2 for TE
and TM polarizations. The corresponding CPU times,
which are nearly independent of the polarization, are
given in the third column (we use the Matlab version 6.0
and a Pentium III 500-MHz computer). The parameters
chosen for the computation are Ls 5 Lc 5 l/2, w 5 3l,
and g 5 5. A comparative inspection of Tables 1 and 2
clearly evidences the beneficial impact of the PML. In
addition, through numerical experiments, we found that
the neff values are nearly insensitive to the period w.
Concretely, for w > 3l, neff always converge to 1.609
1 0.00071j for TM waves and 1.582 1 0.0023j for TE
waves; two values that are in excellent agreement with
those of Ref. 11. High accuracy and fast convergence are
achieved.

In the above example, the scattered light in the cover is
due to the radiation of a single backward harmonic wave.
To further test the accuracy of the method, let us now con-
sider the segmented-waveguide structure of Ref. 12 (see
Table 1 in Ref. 12 for details concerning the structure), for
which more than ten harmonic waves are radiated in the
cover and in the substrate. This example allows for a
thorough testing of the influence of the absorbers on the
accuracy of the method since the Bloch mode strongly ra-
diates and thus interacts with the absorbers. For the
computation, the parameters are chosen such that Ls
5 Lc 5 l, w 5 7 mm, and g 5 5. Again we achieve a
fast convergence. For example, when 61 Fourier har-
monic waves are retained, the computed effective index is
neff 5 1.86026 1 j1.333 3 1026 for TM polarization and
for a fill factor of 0.5. This value compares well with the
‘‘exact’’ value 1.8602665 1 j1.3409 3 1026 we obtained
using the rigorous coupled-wave analysis with 301 Fou-
rier harmonics and searching for the pole of the
determinant.8 For the computation of the complex pole,
we used a Padé algorithm, and the root search was per-
formed with only a few iterations starting from the
initial-guess value provided by the proposed method.
Again an excellent agreement is achieved.

The algorithm presented in this communication for the
Bloch-mode computation of one-dimensional grating
waveguides is unconditionally stable. Although mainly
one grating geometry was investigated in this work, we
recently applied the method successfully to different grat-
ing geometries, such as two-dimensional segmented
waveguides, grating couplers,5 Bragg gratings,5 and
photonic-crystal waveguides6 and to three-dimensional
photonic-crystal waveguides with one line missing. The
method provides highly accurate results and a fast con-
vergence rate; and a fourth-digit accuracy was achieved
with a CPU time ,1 s for simple dielectric waveguides
such as the one considered in Fig. 1.
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crosystèmes of the Centre National de la Recherche Sci-
entifique. Qing Cao is pleased to acknowledge a fellow-
ship from the Ministère de la Recherche Française.



338 J. Opt. Soc. Am. A/Vol. 19, No. 2 /February 2002 Cao et al.
REFERENCES
1. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gay-

lord, ‘‘Formulation for stable and efficient implementation
of the rigorous couple-wave analysis of binary gratings,’’ J.
Opt. Soc. Am. A 12, 1068–1076 (1995).

2. Ph. Lalanne and G. M. Morris, ‘‘Highly improved conver-
gence of the coupled-wave method for TM polarization,’’ J.
Opt. Soc. Am. A 13, 779–784 (1996).

3. L. Li, ‘‘Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings,’’ J.
Opt. Soc. Am. A 13, 1024–1035 (1996).

4. Ph. Lalanne and E. Silberstein, ‘‘Fourier-modal methods
applied to waveguide computation problems,’’ Opt. Lett. 25,
1092–1094 (2000).

5. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, ‘‘Use
of grating theories in integrated optics,’’ J. Opt. Soc. Am. A
18, 2865–2875 (2001).

6. M. Palamaru and Ph. Lalanne, ‘‘Photonic crystal
waveguides: out-of-plane losses and adiabatic modal con-
version,’’ Appl. Phys. Lett. 78, 1466–1468 (2001).

7. Ph. Lalanne and H. Benisty, ‘‘Out-of-plane losses of two-
dimensional photonic crystal waveguides: electromagnetic
analysis,’’ J. Appl. Phys. 89, 1512–1514 (2001).

8. E. Popov, ‘‘Light diffraction by relief gratings: a macro-
scopic and microscopic view,’’ Prog. Opt. 31, 139–187 (1993).

9. J. P. Berenger, ‘‘A perfectly matched layer for the absorption
of electromagnetic waves,’’ J. Comput. Phys. 114, 185–200
(1994).

10. C. M. Rappaport, ‘‘Interpreting and improving the PML ab-
sorbing boundary condition using anisotropic lossy map-
ping of space,’’ IEEE Trans. Magn. 32, 968–974 (1996).

11. K. C. Chang, V. Shah, and T. Tamir, ‘‘Scattering and guiding
of waves by dielectric gratings with arbitrary profiles,’’ J.
Opt. Soc. Am. 70, 804–812 (1980).

12. L. Li and J. J. Burke, ‘‘Linear propagation characteristics of
periodically segmented waveguides,’’ Opt. Lett. 17, 1195–
1197 (1992).


