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Abstract

Representation of Generalized Additive Models using penalized regression splines allows GAMs to

be employed in a straightforward manner using penalized regression methods. Not only is inference

facilitated by this approach, but it is also possible to integrate model selection/ smoothing parameter

selection into model fitting in a computationally efficient manner using well founded criteria such as

GCV. The current fitting and smoothing parameter selection methods for such models are usually ef-

fective, but do not provide the level of numerical stability to which users of linear regression packages,

for example, are accustomed. In particular the existing methods can not deal adequately with nu-

merical rank deficiency of the GAM fitting problem, and it is not straightforward to produce methods

which can do so, given that the degree of rank deficiency can be smoothing parameter dependent. In

addition, models with the potential flexibility of GAMs can also present practical fitting difficulties

as a result of indeterminacy in the model likelihood: data with many zeros fitted by a model with a

log link are a good example. In this paper it is proposed that GAMs with a ridge penalty provide

a practical solution in such circumstances, and a multiple smoothing parameter selection method

suitable for use in the presence of such a penalty is developed. The method is based on the pivoted
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QR decomposition and the Singular Value Decomposition, so that with or without a ridge penalty

it has good error propagation properties and is capable of detecting and coping elegantly with nu-

merical rank deficiency. The method also allows mixtures of user specified and estimated smoothing

parameters and the setting of lower bounds on smoothing parameters. In terms of computational

efficiency the method compares well with existing methods. A simulation study compares the method

to existing methods, including treating GAMs as mixed models.

Keywords: Generalized additive model; GAM; Generalized additive mixed model; spline; SS-

ANOVA; generalized cross validation; GCV; REML; ridge regression; regularization; stable com-

putation; multiple smoothing parameter estimation; Penalized Quasi-Likelihood; PQL.
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A generalized additive model (GAM, Hastie and Tibshirani, 1986, 1990) is a generalized linear model

(GLM, McCullagh and Nelder, 1989) where the linear predictor is specified as a sum of smooth functions

of some or all of the covariates. For example,

E(Yi) ≡ µi, g(µi) = ηi ≡ X∗
iβ

∗ + f1(x1i) + f2(x2i) + f3(x3i) + . . .

where response variable Yi ∼ ‘an exponential family distribution’; g is a monotonic link function; X∗
i is

the ith row of X∗, the model matrix for the strictly parametric part of the model, with corresponding

parameter vector β∗, and the fj are smooth functions of the covariates xj (an fj may be a function

of more than one covariate). To avoid over fitting, such models are estimated by penalized maximum

likelihood estimation, for example by maximizing:

l(η)− 1

2

∑

j

θj

∫

[f ′′
j (x)]

2dx

where l is the log likelihood of the linear predictor and the terms in the summation are measures of the

wiggliness of the component functions of the GAM, serving to penalize models with overly complicated

component functions (the particular form of the penalty is just an example, there are numerous alternative

possibilities). The θi are smoothing parameters controlling the tradeoff between fit and smoothness. In

practice the penalized likelihood is maximized by penalized iteratively reweighted least squares (P-IRLS).

For example, given the likelihood above, at the kth P-IRLS iteration the following penalized sum of squares

would be minimized with respect to η to find the (k + 1)th estimate of the linear predictor, η[k+1]:

‖W[k](z[k] − η)‖2 +
∑

j

θj

∫

[f ′′
j (x)]

2dx. (1)

W[k] and z[k] are iterative weights and pseudodata respectively, and are given by W
[k]
ii = 1/

√

g′(µ
[k]
i )2V

[k]
i

and z
[k]
i = η

[k]
i +g′(µ

[k]
i )(yi−µ

[k]
i ), where V

[k]
i is proportional to the variance of Yi according to the current

estimate µ
[k]
i . The obvious extra difficulty introduced by the use of the penalized likelihood approach is

that the smoothing parameters, θi, have to be estimated.

GAMs have become popular due largely to the work of Hastie and Tibshirani (1986, 1990) and the

availability of well designed software implementing their approach in S-PLUS. Hastie and Tibshirani min-
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imized (1) by modified backfitting (Buja et al., 1989), in which the component functions can be estimated

using no more than simple linear scatterplot smoothers and standard least squares methods. However,

θi estimation and reliable confidence interval calculation is difficult to integrate into this approach. Par-

allel to the GAM work of Hastie and Tibshirani the Smoothing Spline ANOVA (SS-ANOVA) work of

Gu and Wahba, in particular, (Gu and Wahba, 1993; Wahba et al. 1995; Wahba, 1990; Gu, 2002) has

provided a mathematically elegant theory for function estimation, including GAMs. The SS-ANOVA

approach operates by finding the functions minimizing (1) out of all reasonable candidate functions. Gu

and Wahba (1991) developed well founded smoothing parameter selection methods for these models, as

well as confidence intervals with good coverage probabilities (see e.g. Wahba, 1990, Gu, 2002), but this

appealing generality comes at high computational cost — the methods generally require the estimation

of one parameter per datum so that the computational cost scales as the cube of the number of data (but

see Gu and Kim, 2002).

In response to the high computational cost of the SS-ANOVA approach, the problems with inference

and smoothing parameter selection in the Hastie and Tibshirani GAM methods, and following early work

by, for example, Wahba (1980) and Parker and Rice (1985), several authors have suggested representing

GAMs using penalized regression splines. Essentially all that is required is to choose a relatively low

rank basis for representing each component function of the GAM, so that it becomes a parametric model,

with a single model matrix, and one quadratic penalty on the parameter vector for each wiggliness

penalty on the original likelihood. Hastie and Tibshirani (1990), Hastie (1996), Marx and Eilers (1998)

and Wood (2000, 2003) have all discussed using penalized regression splines for GAM modelling, with

Wood (2000) also providing an efficient smoothing parameter selection method for these models, based

on the approach used in Gu and Wahba’s (1991) SS-ANOVA specific method. In the Generalized case

the method applies Generalized Cross Validation (GCV, Craven and Wahba, 1979) or similar criteria to

estimate the smoothing parameters for each problem (1) of the P-IRLS, an approach termed ‘performance

iteration’ by Gu (1992) who introduced it in the generalized spline smoothing case.

Efficient smoothing parameter selection methods are important for practical GAM modelling. It is
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possible, for example, to perform smoothing parameter selection by direct grid search optimization of

criteria such as GCV or AIC, but if the model has more than two or three terms this is usually so

computationally expensive as to preclude the kind of careful model building and checking required in

most applied contexts. Yet if GAMs are to be used for more than purely exploratory analysis then

smoothing parameter selection is a key component of model selection.

Wood (2000) (and Gu and Wahba, 1991, in the SS-ANOVA context) provides an efficient method for

smoothing parameter selection, but leaves some significant practical problems un-resolved. A key problem

relates to the fitting of GAMs by P-IRLS. It is well known (e.g. McCullagh and Nelder, 1989) that IRLS

can fail to converge in cases where the expected value of a response does not correspond to a finite value

of the linear predictor in a GLM. Perhaps the simplest example is provided by Poisson regression with

a log link. Consider the case of a response observation yi = 0 of a Poisson random variable with mean

µi and linear predictor Xiβ, where Xi is the ith row of a model matrix and β a parameter vector. β is

estimated by IRLS, but at any iterate of this algorithm, we have that the pseudodata for next iterate is:

zi = Xiβ +
1

µi
(0− µi) = Xiβ − 1

that is, the target value for the linear predictor at the next iterate is one less than its current value. This

situation is not likely to encourage convergence. In the GLM case such inherently divergent tendencies

are usually countered by the need for a relatively inflexible GLM model structure to fit the non-zero data

points as well, but with a model structure as flexible as a GAM such stabilization often fails to occur. In

most such cases, while the IRLS pseudodata is suggesting every wider divergence of the linear predictor,

the IRLS weights are becoming progressively smaller. This feature suggests that for practical purposes

either a simple ridge penalty or lower bounds on the smoothing parameters could stabilize the iteration.

However the inclusion of such fixed penalties changes the GAM fitting problem so that the Wood (2000)

and Gu and Wahba (1991) approaches are no longer applicable.

A second class of problems relate to the basic numerical stability of the GAM fitting and smoothing

parameter estimation method, even supposing that the IRLS method is convergent. Very wide divergence
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in the magnitude of iterative weights, near co-incidence of covariate values, poor relative scaling of the

covariates of a multi-dimensional smooth, an unfortunate choice of basis to represent a smooth term

or simple colinearity or concurvity problems can all lead to numerical rank deficiency of the model

matrix of the GAM: the methods of Wood (2000) and Gu and Wahba (1991), while functioning perfectly

well on “well behaved” fitting problems do not deal well with these rank deficient cases. However, in

penalized regression contexts, effective treatment of numerical rank deficiency, beyond simple co-linearity

or concurvity, can be difficult when the smoothing parameters are not known in advance. This is because

the penalties tend to act as regularization terms on the model fit, with the result that the degree of

ill-conditioning (near rank deficiency) can be smoothing parameter dependent: this presents obvious

difficulties when trying to produce an effective smoothing parameter estimation method.

Finally, during practical model building it is often desirable to be able either to put lower bounds

on some smoothing parameters, or to supply the values for some smoothing parameters while estimating

others. This is particularly important if fully automatic smoothing parameter selection has resulted in

one or more model terms clearly over-fitting: it is always important to be able to over-ride automatic

model selection. Another quite common reason for wanting to fix or bound smoothing parameters is

when smooth terms are in some sense hierarchical: some terms being present in the model only in order

to explain variability that can not be explained by the covariates that are really of interest (smooth

functions of spatial location are the obvious example). In such circumstances it is often of interest to

explore model fits in which these ‘nuisance’ terms are given a series of fixed smoothing parameters, while

the ‘interesting’ terms are left with free smoothing parameters: in this way the ‘interesting’ covariates

can be forced to do as much of the explanatory work as possible.

This paper aims to address the above issues, by proposing an improved multiple smoothing parameter

estimation method which can deal with fixed penalties (such as a ridge penalty, or the penalty resulting

from fixing some smoothing parameters), which offers the maximum possible numerical stability and which

can deal with rank deficiency even when the numerical rank depends on the smoothing parameters. At

the same time the method is only slightly more computationally costly than the method of Wood (2000),
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and offers the benefit of only requiring standard numerical linear algebra methods readily available in

public domain libraries (specifically LINPACK and LAPACK).

An alternative approach to GAM estimation treats the model as a generalized linear mixed model,

and the smoothing parameters as the (reciprocals of) variance components. The appendix provides more

details. This mixed model approach is compared to the method developed in this paper in simulation

comparisons, which also compare the new method to the methods of Wood (2000) and Gu and Wahba

(1991).

1 A method for multiple smoothing parameter estimation

As discussed in the introduction, GAM fitting is usually based on penalized iteratively re-weighted least

squares (P-IRLS), and to fit a GAM and estimate its smoothing parameters requires the solution of, and

smoothing parameter estimation for, a sequence of weighted penalized least squares problems (see, e.g.

Wahba, 1990; Wood, 2000; Gu 2002, for a fuller discussion, or the appendix for a different approach).

Usually some identifiability constraints are applied to the fitting problem, but for clarity of presentation

I will neglect weights and constraints for the moment, and return to them at the end of this section.

The basic GAM fitting problem (typically nested within a P-IRLS loop in weighted, constrained form)

is therefore:

minimize ‖y −Xβ‖2 + βTHβ +

m
∑

i=1

θiβ
TSiβ w.r.t. β. (2)

X is an n × q model matrix; β is a parameter vector; y is a response vector; Si is the ith (positive

semi-definite) penalty matrix with unknown smoothing parameter θi; H is a fixed positive semi-definite

penalty matrix: it allows several enhancements to existing GAM methods, for example, the imposition of

ridge penalties, the imposition of lower bounds on smoothing parameters and the employment of mixtures

of pre-specified and estimated smoothing parameters.

Given the smoothing parameters this problem is easily solved, but the smoothing parameters have to

be estimated. Two possible methods are Generalized Cross Validation (GCV) or minimisation of an Un-
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Biased Risk Estimator (UBRE) (see Craven and Wahba, 1979. UBRE can be viewed as an approximation

to AIC for many GAMs.), where the parameters are chosen to minimize:

Vg =
n‖y −Ay‖2
[tr(I− γA)]2

or

Vu =
1

n
‖y −Ay‖2 − 2

n
σ2tr(I− γA) + σ2

respectively. A is the influence matrix or hat matrix of the fitting problem, and depends on the smoothing

parameters, while γ ≥ 1 is a parameter sometimes used to enforce smoother models than would otherwise

occur (see e.g. Chambers and Hastie, 1993, discussion of smooth.spline), σ2 is the variance of the yi,

or in a P-IRLS context, the scale parameter.

Neither criteria is easy to minimize with respect to multiple smoothing parameters, since direct

evaluation of the tr(A) term involves at least nq2/2 operations plus O(q3) operations for each new set of

smoothing parameter values: hence smoothing parameter estimation by direct search of the smoothing

parameter space is often too computationally demanding for routine use (and prohibitive in the full SS-

ANOVA case for which q = n). One pragmatic, but ad hoc, approach is to simply estimate the smoothing

parameters using GCV applied to each of the single smoothing parameter problems that arises at each

step of a backfitting algorithm (as in SAS PROC GAM, Xiang, 2001), but the theoretical properties

of this method are unclear: some problems might be expected with correlated covariates. Hastie and

Tibshirani (1990, section 9.4.3) took a different approach in the context of backfit GAMs, suggesting

that a computationally efficient approximation to the GCV score for the whole model could be employed.

However, a useful efficient approach based on the exact GCV score for the whole model was pioneered

by Gu and Wahba (1991) who alternated efficient direct searches for an ‘overall smoothing parameter’

with Newton updates of ηi = log(θi). Their method used the special structure of the general spline

smoothing problem in which they were primarily interested (and in which X depends on the smoothing

parameters and there is no H). Wood (2000) adapted their approach to problems with the structure

considered here, but without the fixed penalty. The Wood (2000) method provided an effective means
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of selecting the degree of smoothness for terms in GAM models, but has two drawbacks (in part shared

with the Gu and Wahba, 1991, method). Firstly, because of the way the direct search for the overall

smoothing parameter works, the method does not allow users to fix some smoothing parameters and

estimate others, bound smoothing parameters from below or regularize the fit with a ridge penalty (i.e.

no H term is possible). Secondly the method is not optimally stable numerically, and this can cause

problems in practical application of the method in the GAM context.

Here an alternative to the Wood (2000) method is developed, which allows the fixed penalty term,

is particularly robust numerically, and can deal elegantly with rank deficiency in the model, whether it

occurs over all or only part of the smoothing parameter space. The difference in numerical robustness

is similar to (actually slightly greater than) the difference between using pivoted QR or SVD methods

in ordinary least squares, as opposed to solving the normal equations via a Choleski decomposition (see

Golub and van Loan, 1996, for example), while the ability to impose ridge penalties is of practical use in

GAM contexts where the models would otherwise be practically un-identifiable.

1.1 Stable and efficient score minimization

The basic approach is to perform Newton, or failing that steepest descent, updates of the log smoothing

parameters. Hence stable and computationally efficient formation of the derivatives of the scores with

respect to the log smoothing parameters is of primary concern. Working with log smoothing parameters

has the advantage of ensuring that the smoothing parameter estimates are positive, and is also justified

heuristically by the fact that plots of GCV and UBRE functions for one dimensional smooths appear

more susceptible to quadratic approximation than do equivalent plots on the original scale.

Consider the influence matrix of the problem, since this is the term in the GCV or UBRE scores

which is expensive to obtain:

A = X

(

XTX+H+

m
∑

i=1

θiSi

)−1

XT.
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The first step is to form the QR decomposition of X,

X = QR,

where Q is made up of columns of an orthogonal matrix and R is upper triangular. For maximum

stability a pivoted decomposition should actually be used here (Golub and van Loan, 1996; LAPACK

provides a suitable routine), which has the consequence that the parameter vector and Si matrices have

to be re-ordered before proceeding, and the parameter vector and covariance matrix put back into the

original ordering at the end of the estimation procedure.

Defining S = H +
∑m

i=1 θiSi and B as any matrix square root of S such that BTB = S, a singular

value decomposition (Golub and van Loan 1996, LAPACK version used) can be formed:









R

B









= UDVT.

B can be obtained efficiently by pivoted Choleski decomposition (available in LINPACK, for example)

or by eigen-decomposition of the symmetric matrix S (see e.g. Golub and van Loan, 1996). The columns

of U are columns of an orthogonal matrix and V is an orthogonal matrix. D is the diagonal matrix of

singular values, and examination of these is the most reliable way of detecting numerical rank deficiency

of the fitting problem (Golub and van Loan, 1996, Watkins, 1991). In particular, at this stage any

singular values that are ‘too small’ should be removed along with the corresponding columns of U and

V. This has the effect of recasting the problem into a reduced space in which the model parameters

are identifiable. ‘Too small’ is usually judged with reference to the largest singular value. In the work

reported here singular values less than the largest singular value multiplied by the square root of the

machine precision were deleted. Note that, in addition to dealing with colinearity/concurvity directly

identifiable from X, this approach also deals effectively with the difficult problem of rank deficiency that

may only occur over part of the smoothing parameter space.

Now defining the submatrix U1 of U such that R = U1DVT, we have that X = QU1DVT, while
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XTX+ S = VD2VT. Consequently

A = QU1DVTVD−2VTVDUT
1 Q

T

= QU1U
T
1 Q

T

Hence tr(A) = tr(U1U
T
1 Q

TQ) = tr(U1U
T
1 ), which is relatively cheap to evaluate for new trial values of

θ.

Turning to the derivatives, it is convenient to write the influence matrix as A = XG−1XT where

G = XTX+ S = VD2VT and hence G−1 = VD−2VT. Letting ηi = log θi we then have that

∂G−1

∂ηi
= −G−1 ∂G

∂ηi
G−1 = −θiVD−2VTSiVD−2VT

and so

∂A

∂ηi
= X

∂G−1

∂ηi
XT = −θiQU1D

−1VTSiVD−1UT
1 Q

T.

For the second derivatives we have

∂2G−1

∂ηi∂ηj
= G−1 ∂G

∂ηj
G−1 ∂G

∂ηi
G−1 −G−1 ∂2G

∂ηi∂ηj
G−1 +G−1 ∂G

∂ηi
G−1 ∂G

∂ηj
G−1

and, of course,

∂2A

∂ηi∂ηj
= X

∂2G−1

∂ηi∂ηj
XT.

This becomes

∂2A

∂ηi∂ηj
= θiθjQU1D

−1VT[SjVD−2VTSi]
‡VD−1UT

1 Q
T + δij

∂A

∂ηi

where B‡ ≡ B+BT and δij = 1 if i = j and zero otherwise.

Writing α = ‖y −Ay‖2, we are in a position to obtain the derivatives needed to find the derivatives

of the scores. Some rather tedious manipulation leads to the following.

Define: (i) y1 = UT
1 Q

Ty; (ii) Mi = D−1VTSiVD−1 and (iii) Ki = MiU
T
1 U1. Then

tr

(

∂A

∂ηi

)

= −θitr(Ki)

tr

(

∂2A

∂ηi∂ηj

)

= 2θiθjtr (MjKi)− δijθitr (Ki)
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while

∂α

∂ηi
= 2θi

[

yT
1 Miy1 − yT

1 Kiy1

]

and

∂2α

∂ηi∂ηj
= 2θiθjy

T
1 [MiKj +MjKi −MiMj −MjMi +KiMj ]y1 + δij

∂α

∂ηi

The above derivatives can be used to find the derivatives of Vg or Vu w.r.t. the ηi. First let δ =

n− γtr(A), so that

Vg =
nα

δ2
and Vu =

1

n
α− 2

n
δσ2 + σ2.

Then

∂Vg

∂ηi
=

n

δ2
∂α

∂ηi
− 2nα

δ3
∂δ

∂ηi

and

∂2Vg

∂ηi∂ηj
= −2n

δ3
∂δ

∂ηj

∂α

∂ηi
+

n

δ2
∂2α

∂ηi∂ηj
− 2n

δ3
∂α

∂ηj

∂δ

∂ηi
+

6nα

δ4
∂δ

∂ηj

∂δ

∂ηi
− 2nα

δ3
∂2δ

∂ηi∂ηj
.

Similarly

∂Vu

∂ηi
=

1

n

∂α

∂ηi
− 2

∂δ

∂ηi

σ2

n

and

∂2Vu

∂ηi∂ηj
=

1

n

∂2α

∂ηi∂ηj
− 2

∂2δ

∂ηi∂ηj

σ2

n
.

These derivatives can be obtained quite efficiently for each new θ, so that Newton’s method can be used

to find the optimum θ fairly efficiently. If the score is not locally concave (i.e. if some eigenvalues of the

Hessian of the score with respect to the smoothing parameters are not positive) then steepest descent

steps can be substituted for Newton steps, and in either case, if the direction fails to decrease the score

then repeated step length halving can be applied until either the score decreases, or the direction is

deemed not to lead to decrease. Some care is required to get good starting values for the θi. In iteratively

re-weighted least squares contexts it is usual to carry forward the previous θ estimate as the starting θ

at the next iteration: if this is done then it is important to reset to a default starting value any θi for

which ∂V·/∂ηi is of too small a magnitude, to avoid becoming stuck on flat portions of the score. In a
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similar vein, optimal ηi at ±∞ can be problematic, since false early convergence of the Newton method

is quite easily triggered in such cases: a sensible precaution is to check that a fairly large step for each

smoothing parameter (in the direction suggested by the score gradient) would not improve the score,

once an apparent optimum has been achieved.

The best fit GAM parameters are:

β̂ = VD−1y1

with corresponding estimated Bayesian parameter covariance matrix (see e.g. Wood 2000)

Vβ = VD−2Vσ̂2 where σ̂2 = α/(n− tr(A)).

1.2 The more general problem

In the previous section weights and constraints were neglected for clarity. In general the problems of

interest will in fact be of the form:

minimize ‖W(y −Xβ)‖2 + βTHβ +
m
∑

i=1

θiβ
TSiβ w.r.t. β subject to Cβ = 0

where W is typically a square root of the inverse of the covariance matrix of y (i.e. WTW = V−1
y ), or

the iterative weights in a GLM weighted least squares iteration. The linear constraints typically impose

identifiability constraints of some sort: in the GAM context usually that each smooth should sum to zero

over its covariate values.

The constraints can be found by forming the QR decomposition of CT. The final q − c columns of

the resulting orthogonal factor, Q∗, (where c is number of constraints) gives the null space of C: Z, say.

Writing β = Zβz ensures that the constraints are met. Letting ỹ = Wy, X̃ = WXZ, H̃ = ZTHZ and

S̃i = ZTSiZ the problem becomes

minimize ‖ỹ − X̃βz‖2 + βT
z H̃βz +

m
∑

i=1

θiβ
T
z S̃iβz w.r.t. βz

which is in exactly the form required for the method described in section 1.1.
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Transforming the parameters and their variances back to the original parameter space after fitting is

straightforward:

β̂ = Zβ̂z Vβ = ZVβz
ZT

while the degrees of freedom per parameter in the unconstrained space are given by the leading diagonal

of

VβX
TWTWX/σ̂2.

1.3 Convergence issues

This section discusses some “convergence” issues relating to both the smoothing parameter estimation

procedure itself and the GAM fitting methods within which it is usually embedded. Firstly consider the

convergence conditions for the smoothing parameter estimation algorithm. Writing V for the GCV or

UBRE score functions and θ̂k for the estimated smoothing parameter values at iteration k, convergence

is deemed to have occurred if

V (θ̂k−1)− V (θ̂k) ≤ ǫ0(1 + |V (θ̂k)|) and

(

1

m

∑

i

∂V

∂θi

∣

∣

∣

∣

2

θ̂k

)1/2

≤ ǫ
1/3
0 (1 + |V (θ̂k)|)

(where ǫ0 is a small constant) or (as a pragmatic ‘fail-safe’) there is no decrease in V along the steepest

descent direction after a specified number of step-halvings. The former conditions are taken from Gill et

al. (1981). The conditions do not involve the values of the smoothing parameter estimates directly, since

these may legitimately not converge if a ‘true’ value is at infinity.

When γ = 1 the asymptotic mean square error minimization properties of Vg and Vu (see e.g. Gu,

2002 for a clear exposition) mean that as the sample size tends to infinity we expect the scores to have

global minima increasingly close to what is optimal in MSE terms. However, the scores may in practice

sometimes display local minima, and it is not possible to guarantee that these will always be avoided by

the optimization method, although simple precautions, such as examining transects through the score

functions can help to identify such problems if they do occur.

In general contexts in which the penalized likelihood is maximized iteratively, convergence is not
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guaranteed theoretically. Since iteratively re-weighted least squares is not guaranteed to converge in all

circumstances then neither is a penalized version, particularly when smoothing parameters must also be

estimated. In fact the smoothing parameter estimation makes a theoretical treatment of convergence

a difficult and currently open issue, at least when the computationally efficient ‘performance iteration’

(Gu, 1992) is used, so that smoothing parameters are estimated by GCV or UBRE for each penalized

regression problem generated by the iteratively re-weighted least squares procedure. Gu (2002, section

5.2) provides a fuller discussion of the issues. However it is worth noting that this paper was motivated

by investigation of a number of practical convergence problems, which turned out to relate not to non-

existence of a stationary point in the performance iteration, but rather to the stability issues addressed

by the new method.

The final convergence issue concerns convergence of the model parameter estimators, β̂ as sample size

n → ∞. The presence of the penalty terms in (2) ensures that these will generally be biased, however

the fixed dimension of β ensures (slightly artificially) that consistency is straightforward to demonstrate.

In the Gaussian case it helps to re-parameterize a little so that (2) becomes

minimize
1

n
‖y −Xβ‖2 + βTHβ +

m
∑

i=1

θiβ
TSiβ w.r.t. β.

If H → 0 and θi → 0 as n → ∞ for all θi (except possibly those relating to penalties on subsets of β with

true values in the null space of the penalty concerned) then consistency of β̂ follows from the fact that

the fitting objective becomes entirely dominated by its least squares component as n → ∞. Similarly

in the generalized case the P-IRLS iterations maximize a penalized likelihood and again if H → 0 and

θi → 0 as n → ∞ the likelihood part dominates as sample size increases, yielding consistency of β̂ from

the consistency of maximum likelihood estimation. H → 0 is entirely in the hands of the modeller. As

n → ∞ the shapes of Vg and Vu become dominated by ‖y−Ay‖2/n which is minimized when θi → 0 (for

all θi excepting those excepted previously) as required for consistency of β̂. Of course if the dimension

of β increases with n then a much more careful argument is required.
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2 Comparison of the new and older methods

The proposed method improves in several ways on the method of Wood (2000), which was in turn

developed from the method of Gu and Wahba (1991). In this (slightly technical) section the new method

is compared with the Wood (2000) method.

To understand the differences between the methods it is helpful to consider the expression for the

influence matrix, A used in the two methods and the calculation of the key term tr(A). The Wood (2000)

method used the expression

A = ρQ

(

Iρ+
∑

i

θiR
−TSiR

−1

)−1

QT

where ρ is an extra ‘overall’ smoothing parameter included in order to allow use of existing single smooth-

ing parameter methods as part of smoothing parameter estimation (there is no H term possible for this

method). The method then forms the decomposition

∑

i

θiR
−TSiR

−1 = PTPT

where P is orthogonal and T tri-diagonal, so that

A = ρQP (Iρ+T)
−1

PTQT

There are three potential sources of numerical instability here.

1. X must be of full rank or R will be rank deficient and the terms involving R−1 will not be

identifiable. Near rank deficiency of X (for example as a result of colinearity or concurvity) will

also cause numerical difficulties through the resulting near rank deficiency (high condition number)

of R.

2. Since the Si are usually rank deficient, it is only the Iρ term which gives Iρ+T the necessary full

rank. Hence as ρ → 0 or any θi → ∞, (Iρ + T) tends to singularity (condition number tends to

infinity) and (Iρ+T)−1 becomes numerically problematic.
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3. The Wood (2000) method uses a Choleski decomposition of Iρ + T in order to solve for terms

involving (Iρ+T)−1, but the Choleski method will not be reliable if the condition number of Iρ+T

is greater than approximately 1/
√
ǫ where ǫ is the machine precision (see Golub and van Loan,

1996, section 6.3.4, page 240). There is clearly scope for this to happen either through near rank

deficiency of X/R or if smoothing parameters θi become very large.

By careful scaling of X and guarding of the range of allowed smoothing parameters (as in R package

mgcv) it is possible to avoid these issues leading to actual numerical problems for most ‘well behaved’

models, but they can not be eliminated altogether, particularly if the appropriate value for some smooth-

ing parameters → ∞, or if the model really is close to unidentifiable, at least for some values of the

smoothing parameters. (Note that pivoting the Choleski decomposition is problematic for this method if

the efficiency benefits accruing from T being tri-diagonal are to be maintained.)

The reader will notice that none of these problems occur with the new method for which the expression

for the influence matrix is A = QU1U
T
1 Q

T. Indeed it is difficult to see how this expression could

be improved on with regard to numerical stability. The only potential cause of difficulty is if rank

deficiency of X is under-estimated so that U is insufficiently truncated. In this case the fitted values are

unaffected, but the trace of the influence matrix will be over-estimated by an amount bounded above

by the underestimation of the rank of the problem. Since SVD is the most reliable way of estimating

problem rank, it is not easy to see how this minor potential problem can be avoided, and in any case the

new method is doing much better than the Wood (2000) method, which simply assumed X to be of full

rank and could fail badly if it was not.

The issues are very similar when it comes to comparison of the derivative calculations. For example,

the Wood (2000) method uses the expression

∂2A

∂ηi∂ηj
= ρθiθj

[

QP(Iρ+T)−1PTR−TSiR
−1P(Iρ+T)−1PTR−TSjR

−1P(Iρ+T)−1PTQT
]‡
+δij

∂A

∂ηi
.

Clearly the same issues apply to this expression as applied to the expression for A, only more so, given

that the potentially problematic terms now recur. In comparison the expression used in the new method
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is substantially better: systems involving D−1 do have to be solved, but D will have been truncated if

rank deficiency was detected so that its condition number will always be safely bounded above. Again it

is worth emphasizing here that the method used to detect numerical rank deficiency is the best known

(Golub and van Loan, 1996), and again it is difficult to see how this calculation could be further improved

in terms of numerical stability.

So, the new method eliminates the potential sources of poor numerical performance in the Wood

(2000) method, in addition to extending the class of problems that can be addressed via the introduction

of H and removal of the full rank condition on X. Furthermore there are no other sources of numerical

difficulty evident in the new method, and while it is always possible that more extensive experience with

will reveal unthought of problems, I am fairly confident that further major improvements in this direction

are unlikely to be possible (several alternative methods of ‘intermediate stability’ were discarded en route

to obtaining the method reported here).

The new method has two possible weaknesses relative to Wood (2000). Firstly, although the leading

order QR decomposition of X is the same for both methods, the sub leading order calculations are slightly

more costly for the new method. However this issue is complicated in poorly conditioned cases by the fact

that the more accurate calculations can lead to faster convergence. The second potential weakness is that

the new method does not include the global search for an overall smoothing parameter that was a feature

of the Wood (2000) method. In theory such a search might help the algorithm to escape local minima in

the GCV score, but in practice it seems to lead to local minima at infinite smoothing parameters as often

as it helps to escape from local minima. Hence careful choice of initial values and step length guarding

during optimization are usually more helpful at avoiding spurious local minima in practice.

3 Performance of the new method

The development of the new method arose from attempts to diagnose the cause of convergence and fitting

problems in a number of rather complex practical modelling problems. Typically such failures have more
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than one cause, while the models themselves are too complicated to serve as good illustrations of the

basic types of convergence problems. In this section I therefore illustrate the effectiveness of the new

method using synthetic data designed to simply exemplify the kinds of problem that can cause difficulty

in real modelling situations. In each case I compared the performance of Gu and Wahba’s (1991) method

as implemented in the R package gss (version 0.8-2) and Wood’s (2000) method as implemented in R

package mgcv (version 0.8-7) to the new method. All tests were carried out on a Pentium IV 1.7Ghz PC

running Windows XP and R 1.7.0 (R Core development team, 2003). For the new method the convergence

tolerance ǫ0 has set to 1× 10−6.

Another possibility for model and multiple smoothing parameter estimation is to write the model as

a mixed model and estimate using REML in the additive model case and Penalized Quasi Likelihood

(PQL) in the generalized additive model case. The appendix gives details of how this can be done in

a straightforward manner suitable for use with the R routines lme (nlme version 3.1-39) or glmmPQL

(Venables and Ripley, 2002), and comparisons were also made with this mixed model approach. For both

the mixed model and penalized regression based GAMs the number of parameters to use to represent each

term must be chosen in advance, although the actual effective degrees of freedom will be controlled by

the smoothing parameters which are estimated automatically. Provided that an overly restrictive choice

is not made, the decision should not have much effect on the final estimates, but it will have some effect

and the choice is to some extent arbitrary.

It should be stressed that several of the comparisons have been made on deliberately extreme cases

— for most models of most datasets the alternative methods are perfectly adequate, but where the

data/model combination shows some features of the examples given below the new method is expected

to perform better (and certainly to be ‘safer’). The next section provides one practical example for which

the new method gives a useful improvement on the alternatives.
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Figure 1: Comparison of reconstructions of f1 and f2 from section 3.1 using different GAM methods with

integrated smoothing parameter selection. The upper row are reconstructions of f1(x): for each plot the

horizontal axes is x and the vertical axis f̂1. The lower row are reconstructions of f2(z): the horizontal

and vertical axes are z and f̂2 respectively. The first column (left most) shows reconstructions using the

new method — these are excellent reconstructions of the original functions. The second column contains

reconstructions using the method of Wood (2000). The third column uses the method of Gu and Wahba

(1991), while the fourth column uses REML via lme. The methods have been used on exactly the same

data, which is deliberately constructed to have the potential to cause numerical difficulty. In each panel

the solid line is the estimate, and the dashed lines are at plus and minus two standard errors, except for

the final column where only point estimates are shown. The rug plots show the covariate values.
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3.1 Almost co-incident covariates

Covariate values that are very close together can cause near rank deficiency for spline based GAMs since

they can lead to almost identical basis functions occuring in the GAM. As a fairly extreme example

of the effect, covariates x and z were simulated, such that xi were i.i.d. U(0, 1) for i = 1, . . . , 25 and

xi+25 = xi + wi for i = 1, . . . , 25 where the wi are i.i.d. U(0, ǫ). The zi were generated independently in

the same way. So each set of covariates consist of 25 pairs of covariate values, each pair separated by no

more than ǫ.

Data were simulated from,

yi = f1(xi) + f2(zi) + ǫi

where the ǫi are i.i.d. N(0, σ2), f1(x) = x11[10(1−x)]6+10(10x)3(1−x)10−1.396 and f2(z) = e2z−3.75887.

The data were fit by a two term GAM, using the R SS-ANOVA package gss, the R GAM package

mgcv, the R GAM package mgcv modified by replacing the call to Wood’s (2000) method in gam.fit()

by a call to an implementation the new method and finally by REML using lme as outlined in the

appendix. For a range of σ values the estimates of f1 and f2 are in very close agreement for all the

methods, provided ǫ > 10−6, but for smaller ǫ values the Gu and Wahba (1991) and Wood (2000)

methods start to display numerical problems. As ǫ is reduced the REML approach generates increasingly

frequent numerical warnings or failures from lme and occasionally very poor or nonsensical estimates

without warning: however it also continues to produce sensible estimates for a substantial proportion

of replicates. By contrast the new method performs well all the way down to ǫ = 0. Figure 1 shows a

comparison of results when σ = 0.01 and ǫ = 10−6. All computations were performed in double precision,

with the machine precision being ≈ 2.2× 10−16. For the new method, Wood (2000) method and Gu and

Wahba (1991) methods GCV was used. In the cases using mgcv style GAMs the model terms were each

allowed a maximum of 24 degrees of freedom.

The reconstructions shown in the figures are unusually bad for ǫ = 1×10−6 for all methods except the

new one, however they are typical of what is produced for ǫ ≤ 1× 10−7 for the Wood (2000) and Gu and
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Figure 2: Comparison of model estimates and fits for the example in section 3.2. The upper row shows

estimates of the linear predictor (the smooth): the rug plot shows the covariate values, the solid curves

are the estimates of the smooth and the dashed curves (where present) give 95% ‘confidence limits’. The

figures given in the vertical axis caption are estimated degrees of freedom, when these are available. The

lower row shows corresponding predictions on the response scale: symbols are data, continuous lines are

model predictions. The left column shows the results using the new method, with a small ridge penalty

on the GAM fit. The middle column shows the equivalent using the method of Wood (2000) for which

no ridge penalty is possible. The right column shows a fit using PQL.

Wahba (1991) methods (when the methods produce results rather than failing). REML is less consistent

in that very good fits can be achieved for a substantial (albeit declining) proportion of replicates as

ǫ → 0. In no replicate tried did the new method fail to perform well. Of the other two methods Gu

and Wahba’s (1991) method tended to either fail or produce very wide confidence intervals, which at

least means that the user is unlikely to be misled. The Wood (2000) method performed worst, in that

it produced obviously poor results more often than Gu and Wahba’s (1991) method, and in such cases

invariably produced confidence intervals that were too narrow.
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3.2 A Poisson model with a log link and too many zeros

In this example the single covariate x took the values 11/20, 21/20, 31/20, . . . , 1001/20. The expectation of

the response, y, was set to 0 for all except y45 to y50 where the expectations were given by the integers

1 to 6, and y51 to y55 where the expectations were set to 6. The actual data were then simulated from

Poisson distributions of the appropriate means. The purpose of these data is to give a clear example

of the problems that can occur when using a log link and a flexible model for data with large areas of

zeroes. As before, the data were fitted using the methods of Wood (2000), Gu and Wahba (1991), the new

method and via Penalized Quasi Likelihood with the model treated as mixed model. The new method

employed a small ridge penalty in the GAM fitting process (ridge parameter 10−3, i.e. H = 10−3I). In

each case the model was:

log(µi) = f(xi)

where µi ≡ E(yi), yi ∼ Poisson and f is a smooth function. For the Wood (2000), PQL and new methods

f was represented by a rank 10 (penalized) thin plate regression spline (Wood, 2003). UBRE was used

for smoothing parameter estimation in all cases except PQL, of course. Using the Wood (2000) method

the GAM fitting iterations failed to converge, although an estimate was produced. The Gu and Wahba

(1991) method failed altogether on this example. By contrast the new method with a small ridge penalty

produced a quite reasonable fit on the response scale and PQL produced a good fit without difficulty.

This example illustrates the point that although the model is not formally identifiable, regularization

using a ridge penalty does offer a pragmatic way of dealing with indeterminacy, if interest lies primarily

in prediction on the response scale.

3.3 Logistic Regression

This example is another case in which indeterminacy of the model causes problems. In this case 500

covariates xi, zi were simulated on the unit square. A response variable was created which was zero for

all except those points for which xi > 0.9 and zi > 0.9, for which the response was set to 1. These
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Figure 3: Logistic regression fit to example in section 3.3 using the Wood (2000) method. The top left

panel is the model fit on the scale of the linear predictor, and top right panel is the fitted model on the

response scale. The lower two panels show the estimates of the model terms.

‘data’ were modelled using a logistic regression (binomial errors and logit link.) The linear predictor was

given by the sum of two univariate smooth functions of xi and zi respectively. The smooth terms were

represented by rank 20 thin plate regression splines (Wood, 2003) in the Wood (2000), new method and

PQL examples.

Gu and Wahba’s (1991) method failed on this example, while Wood’s (2000) method ‘converged’ to

obvious nonsense (see figure 3). PQL failed to converge. Again using a small ridge penalty with the new

method gave a satisfactory fit on the response scale (figure 4). In all cases GCV was used as the fitting

criteria (although UBRE was also tried with Gu and Wahba’s method in an attempt to get results for

comparison).

Again the purpose of this example is not to encourage the fitting of GAMs to inappropriate data, but

rather to illustrate how difficult data can cause problems if methods are not carefully stabilized. While
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Figure 4: Logistic regression fit to example in section 3.3 using the new method and a ridge parameter

of 10−9 (i.e. H = 10−9I). The top left panel is the model fit on the scale of the linear predictor, and

top right panel is the fitted model on the response scale. The lower two panels show the estimates of the

model terms.
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it is to be hoped that users of GAMs would not apply them to data as extreme as this example, the type

of indeterminacy illustrated has the potential to cause problems in less extreme situations, if there are

other contributing problems.

3.4 Comparisons on a ‘well behaved’ example

In the interests of consistency checking of the method, some comparisons were also performed on a

simulated example taken from Wahba (1990) which does not have obvious numerical difficulties. 300

independent values for each of covariates x1 to x4 were simulated from U(0, 1). Response data yi were

simulated from the model:

yi = f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i) + ǫi

where the ǫi are i.i.d. N(0, 22). f1(x) = 2 sin(πx), f2(x) = e2x − 3.75887, f3(x) = x11[10(1 − x)]6 +

10(10x)3(1− x)10 − 1.396 and f4(x) = 0. 500 replicate data sets were produced, with new covariates and

responses simulated for each replicate. The model was estimated using the GAM approach implemented

in mgcv in which each smooth is represented by a rank 10 thin plate regression spline (Wood, 2003),

using the Wood (2000) method and the new method. The model was also estimated using the SS-

ANOVA approach and Gu and Wahba’s (1991) method as implemented in gss. GCV was used in these

three cases. As a final comparison the model estimated by mgcv and the new method was also estimated

as a mixed model by REML using lme (see appendix for technical details).

The root mean square error in reconstructing the true simulated E(yi) was assessed for each method,

and for the comparison of the Wood (2000) method and the new method, the mean absolute difference in

fitted values between the fitted values was also assessed. In 75 of the 500 replicates the new method and

Wood’s (2000) method differed in mean absolute fitted value by more than 10−3. Five of these 75 replicates

were investigated in detail and in each case it appears that the GCV score is quite uninformative, in the

sense of being almost flat with respect to some smoothing parameters in the vicinity of its minimum.

However, in only 12 of the 75 cases in which the two methods differed was the Wood (2000) fit closer
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to the truth than the new method, and in addition the Wood (2000) method only improved on the new

method by small amounts relative to the improvements of the new method on the Wood (2000) method.

In the substantial majority of replicates the fits were essentially indistinguishable.

The SS-ANOVA approach is faced with a much more difficult task than the penalized regression

spline based methods, simply because it relies entirely on GCV to decide how smooth the model terms

should be, whilst the penalized regression spline method has effectively restricted the amount of flexibility

allowed by using a low rank representation of the model. Hence improvements by the new method over

the SS-ANOVA approach are not based on an entirely fair comparison. The results of this comparison

are included only because the new method being worse than the SS-ANOVA approach for this example

would clearly indicate a serious deficiency in the new method.

The REML method failed reporting numerical difficulties in 18 of the 500 replicates. Further investi-

gation showed that this problem increased in frequency if the sample size was increased and reduced in

frequency at smaller sample sizes. In the successful replicates REML achieved a modest but consistent

improvement on the GCV used by the new method. The difference between REML and GCV can be

reduced but not altogether eliminated by increasing γ in the GCV score to around 1.2, suggesting that

part of the performance difference may result from undersmoothing by GCV.

Figure 5 shows the results of the comparisons, indicating that the new method tends to perform better

than the older GCV methods. If the differences in fit are mostly caused by flatness of the GCV score,

then it might be expected that the greater reliability of the derivatives of the new more stable method,

would result in improved results in comparison to the less stable methods. However, although likely, it

would be very difficult to prove that this explanation is correct.

Figures 6 and 7 illustrate the ability of the GAMs estimated by the new method to recapture the true

functions used in the simulations. Figure 6 shows 5 estimates around the median of the mean square

error distribution, while figure 7 shows 5 worse estimates, around the 90th percentile of the mean square

error distribution.

Timing comparisons between the new method, the Wood (2000) method and the REML method
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Figure 5: Differences in root mean square reconstruction error between competing methods and the new

method for the example in section 3.4. Positive values indicate that the new method achieved a better

reconstruction than the competing method. The mean RMS error for the new method was approximately

0.50.(a) shows the distribution of differences between the new method and the Wood (2000) method for

the 75 cases in which the difference in fit was substantial. (b) is the equivalent box plot for all replicates,

showing that in a substantial majority of cases the difference in fit was very small. (c) Shows the difference

between the SS-ANOVA method and the new method: the apparently poorer performance here is the

result of a tendancy to over-fit, brought about by the fact that the SS-ANOVA method is relying entirely

on GCV for smoothing parameter selection, while the other approaches restrict model complexity a priori.

(d) Shows the difference between the new method and REML estimation using lme, excluding the 18

cases in which this method failed altogether.
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Figure 6: The estimated component functions of the 5 fits surrounding the median of the RMS recon-

struction error distribution for the example from section 3.4 estimated by the new method. Heavy lines

are the truth, dashed lines the reconstructions.
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Figure 7: The estimated component functions of the 5 fits surrounding the 90th percentile of the RMS

reconstruction error distribution for the example from section 3.4, estimated by the new method. Heavy

lines are the truth, dashed lines the reconstructions.
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Figure 8: Stage I-III sardine eggs surveyed off the Iberian peninsula in 1997. The circle areas are

proportional to the number of eggs found.

were also produced from this simulation study (using the computational setup described at the start of

section 4). The per replicate timings were 0.11 seconds for the Wood (2000) method, 0.15 seconds for the

new method and 2.24 seconds for the REML method. These timings exclude 0.27 seconds per replicate

for setting up the model using thin plate regression splines. The SS-ANOVA based models required on

average 7.43 seconds per replicate to set up and estimate (these models being much more parameter rich

than the others).

4 A practical example: Sardine eggs off the Iberian peninsula

Fish stock management is a pressing problem worldwide and particularly so in the heavily overexploited

coastal waters of Europe. Management is complicated by the difficulty of obtaining reliable estimates

of abundance: data gathered from commercial fisheries operations are subject to a number of difficult

biasing factors, while attempting to survey adult fish directly by fishing for them is subject to the obvious

difficulty in converting catches to abundance estimates when fish are avoiding the fishing gear. One way

of circumventing the problems with direct estimation of adult abundance is to count fish eggs instead,

and then to convert from the abundance of eggs to the abundance (or more likely mass) of adults required

to produce this egg abundance. The advantage of this approach is that eggs are comparatively easy to
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sample — they do not actively avoid the sampling gear.

However, egg data can be difficult to model. Typically the geographical distribution of eggs is not

well known in advance in any given year, and this tends to mean that a well designed survey will yield

a very high proportion of zero egg counts, at least in some years. The difficulties are reasonably well

exemplified by Sardine egg survey data from the Iberian peninsula in 1997. Here I consider the total egg

count in the first 3 identifiable egg stages at each of 888 survey stations. Egg counts were obtained by

drawing a fine meshed net through the water column, from a pre-determined depth below the surface.

For the analysis here, I use temperature, Ti, depth, di, longitude oi and latitude, ai, as covariates, and

treat the egg counts, yi, as Poisson distributed with mean µi. One model of interest is then:

log(µi) = f1(ai, oi) + f2(di) + f3(Ti)

where the fj are smooth functions. The data are shown in figure 6. Note that in this survey there are only

91 stations with a non-zero egg count. In addition, the arrangement of covariates is not easy, with many

depth measurements very close together, despite a wide depth range, and a fairly unhelpful configuration

of points in the longitude — latitude plane.

Attempts were made to estimate the model, including smoothing parameter estimation by the new

method, the Wood (2000) method and penalized Quasi- Likelihood, in each case representing the smooth

functions using a rank 50 thin plate regression spline for f1 and rank 10 thin plate regression splines for

f2 and f3. I also attempted to estimate the model using the method of Gu and Wahba (1991). UBRE

was the estimation criterion for all methods except PQL.

The Wood (2000) method failed to converge. In this case, the failure appears to result from a loss

of numerical stability in the solution of the underlying penalized least squares problem, as the weights

and pseudodata of the P-IRLS become progressively more extreme. Similarly the Gu and Wahba (1991)

method failed with an error message relating to a loss of numerical rank in the underlying spline fitting

method. The mixed model/ PQL method fared no better, also failing with an error message relating to

singularity. In this case simply substituting the new algorithm in place of the Wood (2000) algorithm
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Figure 9: The sardine egg model term estimates and residual plot with the fit performed by the new

method (without the need for a ridge penalty, in this case). The methods of Wood (2000), Gu and Wahba

(1991) and penalized Quasi Likelihood all failed on this example. The top left plot shows the estimated

smooth of longitude and latitude (only in the immediate vicinity of data). The top right panel and lower

left panels are the estimated smooths of depth and temperature, respectively. The lower right panel is a

residual plot, indicating some over-dispersion, relative to Poisson.
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leads to convergence, without the need for extra regularization, although it is to be expected that in

many similar cases some regularization would also be required.

Figure 7 shows the estimated effects and a residual plot for the fit obtained by the new method.

Clearly in this case there is evidence for over-dispersion, requiring further modelling work to resolve, but

since the purpose of this paper is not the analysis of these data, this will not be reported here.

Although not strictly comparable, since the smoothing parameters are not estimated, I also tried

fitting the model using Hastie and Tibshirani’s (1990) method as implemented in gam() in S-PLUS. In

this case a loess smooth was employed to estimate the multi-dimensional smooth f1, and splines for the

other terms. Span (0.08) and degrees of freedom (9) were selected to give broadly similar flexibility to

the models fitted by the other methods. With convergence tolerances set to be similar to those used

for the other methods, convergence did not occur, unless the span of the loess smooth was increased

so that the model was substantially less flexible than the models fitted by the alternative approaches.

‘Convergence’ did occur if the convergence tolerances were increased substantially (although whether this

really constitutes ‘convergence’ is open to debate).

5 Discussion

The methodology developed in this paper offers some substantial advantages over existing GAM methods.

The first is enhanced numerical stability of the basic penalized least squares method. By making use

entirely of orthogonal matrix factorizations the method offers optimal numerical stability, while also

allowing rank deficiency of the fitting problem to be reliably identified and effectively dealt with. In this

respect the difference between the new method and the previous GCV methods is similar to the difference

between solving ordinary least squares problems by pivoted QR or singular value decomposition methods

and solving such problems by Choleski factorization based solution of the normal equations (see e.g.

Golub and Van Loan, 1996). Note also that the structure of the method allows rank deficiency to be

dealt with effectively even when it occurs only over a portion of the smoothing parameter space, or when
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the degree of numerical rank deficiency depends on the values of the smoothing parameters. On the basis

of of the examples in sections 3 and 4 the new method appears to be somewhat more robust and faster

than the mixed model approach using standard mixed modelling software, but section 3.4 also suggests

that REML consistently does a slightly better job at estimating the models than GCV based methods.

The second advantage of the new method lies in the extensions to existing GAM methodology facili-

tated by the ability to incorporate a fixed penalty in the model. The fixed penalty allows ridge regression

type regularization of other wise un-identifiable GAMs, an appealing solution in situations where in some

sense the model is perfectly identifiable on the response scale. Further, the ability to set lower bounds

on smoothing parameters and to fix some penalties while estimating others is also of considerable use in

applications, both for basic model checking, and in situations where there are a priori reasons to believe

that some functions should be smoother than others, and it is useful to explore the consequences of

forcing them to be so (for example when a spatial term has been included simply to account for otherwise

un-modelled trend).

I believe that these benefits are important if GAM methods are to achieve their full potential. GAMs

offer the modeller great flexibility, but such flexibility inevitably expands the scope for difficulties with

identifiability and numerical stability. If models are fit using methods designed for maximum stability,

able to cope with rank deficiency and as a last resort allowing direct regularization, then such problems

can at least be minimized, and GAM methods can nearer approach the reliability of GLMs or linear

models.

A third advantage of the method suggested here is the fact that it is relatively simple and uses only

matrix factorizations available in public domain linear algebra libraries such as LAPACK and LINPACK.

Indeed the method could be implemented in a quite straightforward manner entirely within a high level

language such as R or Matlab which give direct access to the required linear algebra routines.

One possible criticism of the use of the type of methods developed in this paper is that well specified

models that are really appropriate for a set of data do not usually cause numerical difficulty in fitting, so

that the slight extra computational cost of using orthogonal matrix factorizations is unjustified. Although
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there is some truth in the assertion that convergence problems are often caused by poor models, it is

equally true that it is much more satisfactory to be rejecting flawed models on the basis of their poor fit

to the data, rather than on the basis that it was not computationally possible to fit them.

If computational speed is really critical, then the method developed here could be made more com-

putationally efficient by using a second pivoted QR decomposition in place of the Singular Value De-

composition. The broad outline of the approach is unchanged by doing this, although the detail is of

course different. The pivoted QR decomposition is substantially cheaper to obtain than the full SVD,

but rank estimation with the pivoted QR is not as straightforward or reliable as it is with the SVD (see

Golub and Van Loan, 1996), and some extra work is required if a minimum norm solution is required in

rank deficient cases. However, given that the first QR decomposition is actually the leading order step

in terms of cost (O(nq2) operations), the replacement of the SVD step (O(q3) operations) is unlikely to

offer great computational savings.

Another interesting issue relates to whether smoothing parameter estimation is inner or outer to the

P-IRLS loop. For maximal computational efficiency the “performance-iteration” method of Gu (e.g. Gu

2002) is appealing: smoothing parameter selection is performed on the weighted penalized least squares

problem produced at each iteration of the P-IRLS algorithm. This method is very fast and a perfectly

legitimate way to estimate smoothing parameters, but it is usually possible to find smoothing parameters

yielding slightly lower GCV or UBRE scores than the smoothing parameters estimated using the power

iteration. The reason for this is that the dependence of the iterative weights on the smoothing parameters

is effectively neglected in the performance iteration method. Hence it may sometimes be desirable to

use the approach originally suggested by O’Sullivan et al. (1986) of only evaluating the GCV/UBRE

score at convergence of the P-IRLS method, and therefore making the minimisation of the GCV/UBRE

score ‘outer’ to the P-IRLS loop. This can easily be done by using a quasi-Newton method with finite

differencing of the GCV/UBRE score evaluated at P-IRLS convergence (the default for the R general

purpose minimizer routine nlm), but of course such an approach is much slower than the performance

iteration and still requires the performance iteration in order to find starting values. In the cases that I
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have looked at, such an approach leads to only small reductions in score and small changes in fit relative

to the performance iteration, and hence its statistical benefits are questionable.

A final interesting question is whether an approach like the one developed here could be used in the

case of low rank approximations to SS-ANOVA models in which the smoothing parameters occur in both

the overall penalty matrix and the model matrix. In this case the expressions for the derivatives will be

more complicated, but if the model matrix can be written in the form X =
∑

j θjXj then an efficient

method could be developed on the basis of first forming a QR factorization of the matrix [X1,X2, . . .].

The method reported in this paper is available in the free open source R package mgcv (versions 0.9

and above, see cran.r-project.org).
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Appendix: GAMs via mixed models

GAMs admit a straightforward mixed model representation in which components of the smooths in the

null space of the penalties and any strictly parametric model terms are treated as fixed effects, while the

“wiggly” components are treated as random effects. This allows smoothing parameters to be estimated

via REML (see e.g. Wahba, 1985; Wang, 1998; Lin and Zhang, 1999).

The approach is most easily explained with reference to a single smooth of Gaussian data, but subject

to the sort of centering condition required of components of a GAM to ensure identifiability (e.g. that

the smooth should sum to zero over the covariate values). Note that in order to keep it straightforward,

the notation in this appendix does not always correspond to that used in the main body of the paper.

Consider a smooth term with parameter vector β, model matrix X, penalty matrix S and constraint

matrix C, which could be estimated by minimization of the penalized regression objective

s(β) = ‖y −Xβ‖2 + λβTSβ subject to Cβ = 0

with respect to β. The constraint can easily be absorbed by forming the QR decomposition QR = CT,

setting Z to be Q less its first nc columns, where nc is the number of rows of C, and writing β = Zβz so

the fitting objective becomes

s = ‖y −XZβz‖2 + λβT
z Z

TSZβz.

Forming the eigen-decomposition ZTSZ = UDUT where U is orthonormal and D is diagonal (with

eigen-values arranged in order of decreasing magnitude down the leading diagonal), we can write

s = ‖y −XZUβu‖2 + λβT
uDβu

where βu = UTβz.

Now S is generally rank deficient so that the last few elements on the leading diagonal of D will be

zero. Let D+ be the sub matrix of D with non-zero elements on the leading diagonal and partition βu

so that βT
u = [bT

u ,β
T
F ] and βT

uDβu = bT
uD

+bu. Partitioning the columns of XZU into [Xu,XF ] in a

corresponding manner to the partitioning of βu, while letting b =
√
D+bu and XR = Xu(

√
D+)−1 the
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objective becomes

s = ‖y −XFβF −XRb‖2 + λbTb.

Now it is easy to show that, given λ, the estimates of b and βF that result from minimizing s correspond

to the expected values of b and the estimates of βF given y under the mixed model

y = XFβF +XRb+ ǫ, ǫ ∼ N(0, Iσ2), b ∼ N(0, Iτ)

where λ = 1/τ (by a simple generalization of Silverman’s, 1985, Bayesian model for cubic smoothing

splines). This immediately suggests estimating 1/λ by REML, which is straightforward using standard

software such as lme in S.

In the additive model context, one produces an XF and XR for each smooth term in the model. The

columns of the XF ’s are combined into one fixed effects model matrix, XΣ (usually with an additional

column for the model intercept and possibly some extra columns for the strictly parametric part of the

model), so that the model becomes something like

y = XΣβΣ +XR1b1 +XR2b2 + . . .+ ǫ, ǫ ∼ N(0, Iσ2), b1 ∼ N(0, Iτ1) b2 ∼ N(0, Iτ2), . . .

Simultaneous estimation of the variance components/ smoothing parameters is as straightforward in this

case as in the single term case.

In the work reported in the body of the paper the model terms were represented as thin plate regression

splines (Wood, 2003) and estimation was performed using lme (Pinheiro and Bates, 2000) in R. For the

generalized case the setup is identical except that the error model for y|βΣ,b1,b2, . . . is different and

estimation can be performed by Penalized Quasi Likelihood (Breslow and Clayton, 1993). The R routine

glmmPQL (Venables and Ripley 2002, Section 10.4) was used in the work reported here.
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