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Stable and Entropy Satisfying Approximations
for Transonic Flow Calculations

By Bjorn Engquist* and Stanley Osher**

Abstract.   Finite difference approximations for the small disturbance equation of tran-

sonic flow are developed and analyzed.   New schemes of the Cole-Murman type are

presented for which nonlinear stability is proved.   The Cole-Murman scheme may have

entropy violating expansion shocks as solutions.   In the new schemes the switch be-

tween the subsonic and supersonic domains is designed such that these nonphysical

shocks are guaranteed not to occur.   Results from numerical calculations are given

which illustrate these conclusions.

1.  Introduction.  The small disturbance equation of transonic flow is a common
model for describing subsonic and supersonic flow close to the local speed of sound
(see [2]).  The flow is assumed to be that of an inviscid perfect gas. The small dis-
turbance equation is derived via an asymptotic expansion around constant flow (see
e.g. [2]).  The differential equations for the steady state case and for the low fre-
quency time-dependent case can be written, respectively,

(1.1) (K*x-%iy + ï)*î)x+<S>yy = 0,

(1.2) (K% - V4(7 + 1)&X)X + *yy - 2*tx = 0,

where <£>(x, y, t) is the velocity potential, K and y are positive constants.
During the last few years many numerical calculations using these equations have

been presented (see [1], [2], [6], [8], [12] and the bibliographies in these papers).
The equations are used as models for more complex systems since they contain many
important phenomena such as shock formation.   Moreover, the steady state part is of

mixed hyperbolic and elliptic type. The equations are also of direct practical importance
and typical applications are:   Flow around an airplane flying close to Mach number 1,
flows in nozzles and over turbine blades and propellers.

In the numerical calculations the differential equations are replaced by difference
approximations.  The most common schemes are type dependent. That is, different
formulas are used in the subsonic and the supersonic domains.   In this way it has
been possible to avoid most nonphysical shocks and to keep the shock front sharper
than in the case of uniform schemes.  Variants of the Cole-Murman difference scheme
[12] have been the basis for many successful calculations (see [1], [6], [8]). However,
in [6] it is pointed out that the Cole-Murman scheme does admit entropy violating
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46 BJÖRN ENGQUIST AND STANLEY OSHER

shocks as solutions, and furthermore in [1] and [8] instabilities are reported even if the
schemes should be stable according to linear stability analysis.  It is the purpose of this
paper to give simple modifications of the Cole-Murman scheme which do not admit
entropy violating shocks as solutions and to present rigorous stability analysis for the
full nonlinear problem.

This type of analysis increases the understanding of the nonlinear numerical
phenomena and is useful in the design of new schemes for the small disturbance equa-
tion or similar problems.  Two new schemes of fractional step type in conservation
form are presented.

For both of them the x-step is explicit and the _y-step is implicit.  In the implicit
step a sequence of linear tridiagonal systems is solved.  The nonlinear x-step is type
dependent and upwind differencing is used away from the interface between supersonic
and subsonic domains.

This step also keeps the shock profile sharp.  A shock is spread over at most two
grid points.   In the first scheme the x-step is monotone and hence, as a separate algo-
rithm, this difference approximation is convergent for Courant numbers up to one (see [3] ).

Our version of the Cole-Murman scheme is as easy to program as the original and
can be written in a particularly simple form.  The j>-differencing is unchanged and the
x-differencing is changed only at sonic points or at supersonic-subsonic shock points.
The fractional step algorithm presented below, although useful, is secondary in importance
to the new ^-differencing.  Our time independent scheme is outlined in (2.8) below while
that of Cole-Murman is described in (2.11) below.

In the following section the first difference scheme for the steady state equation
(1.1) is presented.  The algorithm is proved not to have entropy violating solutions.

A piecewise smooth entropy violating solution to (1.1) has an expansion shock.
This is a jump discontinuity across which <$x, the velocity in the jc-direction increases,
i.e., the inequality

(1.3) op^oo

is violated.
It is easy to show (see e.g. [11]), that in this piecewise smooth case, inequality

(1.3) is equivalent to the following:

frT)2 dp2 dp3 \
2    * 2     " 3 /    3/      y>     '

which we tak« to be the entropy inequality, in view of its generality.
The entropy inequality for the time-dependent case (1.2) is taken to be

dt   x     dx\ 2 2      "       '   3/    dy{-xy)
See [11] for a discussion of the equivalence of various entropy conditions.
Section 3 deals with the time-dependent case (1.2).  The algorithm can be used

for time-dependent problems or as an iteration scheme for steady state problems.  Each
fractional step in the ADI-scheme is proved to be stable in L2 with constant 1.  Thus
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TRANSONIC FLOW CALCULATIONS 47

the full nonlinear scheme is L2-stable.  Furthermore, the time-dependent entropy con-
dition is satisfied by the limit solution.  The analysis is based on energy estimates.

In Section 4 the second new version of the Cole-Murman scheme is presented
together with the corresponding crucial estimates which were needed in the proofs of
Sections 2 and 3.

The one-dimensional (^-independent) model is studied in Section 5. Existence
and uniqueness for the steady state difference approximation is proved. A numerical
test with several time-dependent difference schemes is given. Among other observa-
tions we show that the original Cole-Murman scheme may converge in a stable way to
entropy violating shocks and the Lax-Friedrichs scheme may have time oscillatory
nonconverging solutions. The monotone scheme given in this paper converges rapidly
to the exact analytic solution for all grid points but one on each side of the shock.

The last section contains numerical calculations of the two-dimensional problem.
Results displaying the shock profile are presented together with a list of computational
comments.

2. The Entropy Inequality for the Time-Independent Scheme. In this section
we shall analyze a difference approximation to the steady two-dimensional small dis-
turbance equation (1.1)

(2.1) (K% - Hi +  Wl)x  +<t>yy = 0
for K, y positive constants.

We shall first consider only local solutions of (2.1).  Boundaries, or inversion of
the system, and a time-dependent model, will be dealt with in the following section.

We let u and u be the velocities in the x and y direction, respectively, and

(2.2) % = a,      % = v.

We define the convex function

(2-3) fiu) = -Ku+iy+l)£.

The equation (2.1) can be rewritten

(2.4) -(/(")), +«V = 0.
This equation is hyperbolic if u > u and elliptic if u < u, for u the sonic speed

(2-5) " = -TT-
7+1

We shall solve a difference approximation for a discrete potential function i/5-fc
approximating <p(/A;c, kAy). Here we have defined a grid (Xj,yK) = (j'Ax, kAy)
for/, k = 0, ±1, ±2, . . . .

We also define discrete velocities

(2.6) D*qk = u¡K,     Dl*fK = vflr

Here and in what follows for any grid function f)k
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48 BJÖRN ENGQUIST AND STANLEY OSHER

(2.7) Kfj* = +
fjk      Jj±l,k

Ax D?fjk = *(fik-fj±1,k)-

Dy and A? are defined analogously.
We may now define our modification of the Cole-Murman difference approxi-

mation to (2.1).

(2.8) ~DX_ f(max(ujk, Ü)) - D* f(min(ujk, Ü)) + D^ = 0.

We may define the functions:

/,(")=/(«)       if tt>S,

fx(u) = f(ü)      if U<M,

/2(u) = /(«)        if U < Ü,

/» = /(S)       if u > «.

(2.9)

(a)

(b)

Thus,/j,/2 are C1 and piecewise smooth functions with/,(w) + /2(u) =/(«)
+ /(u); and we may rewrite (2.8)

(2.10)

It is easy to see that this scheme is consistent with (2.1), in conservation form,
first order accurate in the hyperbolic (supersonic) region, and second order accurate
in the elliptic (subsonic) region.  Moreover, if u_x k, «fc, and u+x k all he in the
supersonic region the scheme  agrees with that of Cole-Murman [12] and the difference
stencil as described in Figure 2.1   is implicit hyperbolic.  If these three values all lie
in the subsonic region the scheme is again the same as the Cole-Murman scheme and
the difference stencil is of standard elliptic type, again see Figure 2.1.

The significant differences between the two schemes occur at parabolic and shock
points.

/

Q    Q   <P
4-   B

Figure 2.1
Part of the computational grid for <p with a subsonic (A)

and a supersonic (B) difference stencil.   The dashes represent the sonic line.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSONIC FLOW CALCULATIONS 49

Recall, the Cole-Murman scheme in conservation form may be written

(2.11) -Dx+fiuß) + A* BjkDxJiujk) + Dlvjk = 0,

where

ejk = I  if-j-> "' >k = °      -2-<u

We call (w/fc + u)+x>fc)/2 = uJ+x/2 k in what follows.
The following table gives us the x-differencing at shock and sonic points for our

scheme E-O, and for the Cole-Murman scheme.

Values of u C-M Differencing E-O Differencing

if"/+l/2,fe< ":    -2D0f(»jk>
<»>   "j-l,k'ujk>">"j+l,k _ x -DX_f(ujk)-D+f2(U¡k)

ifuj+l¡2,k> "■    -°-/("/k)

^_^ if"j-U2,k<"--    -Dï/(",fc)
(2) Uj_xk > U>Ujk,Uj+xk -0-/l(«/fc) - D+n-flc)

if"H/W>u:   -2DoH«jk>

iiuj+H2,k<"-    -D+f(ujk>
(3) "/+!,* >u>ujk- uj-l,k _ -D+f2("j0

iiuj + l/2,k> u:   °

if Uj_x,2 < ¡7:   0
<4>   «/+1,*> «/* > " > "/-l,fc -DX_fx(ujk).

if "/-1/2 > Ü:    -Dx_f(ujk)

Cases (3) and (4) correspond to expansion shocks.
The E-O differencing will be shown to rule out such solutions in the limit as

Ax, Ay -* 0.
This is the content of the main theorem of this section.

Theorem 2.1.   Suppose ^k is determined by (2.8) and suppose ip-fc, Dxipjk, and
Dy_yik converge boundedly a.e. as Ax, Ay —► 0 to *, <&x, and dp    respectively.
Then <J> is a weak solution o/(2.1) which satisfies the entropy inequality:  for any
p E C* with p>0

(2.12) // \Pxn*x, *y) + PyG(% , *y) dx dy] > 0.

Here
<$2 <j>2 <j>3

F(%, a> ) m-j. - K -f + (7 + l)-f2 2      v'       '3

fwf G(*x, «^ - - *x*r

The fact that 4> is a weak solution of (2.1) follows from a result of Lax and
Wendroff [9].  We shall prove the entropy inequality from the following two lemmas.

Lemma 2.1. Let p(x) E C* with p > 0 and let f"(u) > 0 with /'(« ) = 0.  Then
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50 BJÖRN ENGQUIST AND STANLEY OSHER

£ p(jAx)uj[A+f(mm(uj, «)) + A./Ymaxfy, «))]

(2.13)

where

= -Z(A_p(jAx))(U'sf'(s)ds
j Jo

- £ (píjAx)) f"/+1 [s - «/ - (A+«;)X(S)] /'(s)&
/ "/

+ £(A+p(/A*))u/+1 (U'+1x(s)f'(s)ds,
i Ju>

X(s) =lifs>u, xfs) = 0   if s < U.

Lemma 2.2.   Let p(x, y) E C¿ with p>0.  Then if Dlu = Dx_v it follows that

£ P(/Ax, kAy)uikiAlvjk)
i,k

(2.14) = " £ (A- PUA*' *A>0)"/k tf/*

+ 2 A^ E(^P(/^(t-W'f.1,t/.*

- 2 Ale £ P(>'A*> (* - DAjOCA^J».A*
We shall prove these lemmas below.
Proof of Theorem 2.1. We may now prove the entropy inequality.  Let (¿>-fc solve

(2.8).  Multiply (2.8) by p(/Ax, fcA>")«.kAxAj> and sum.  The two previous lemmas
give us

, p(/Ax, kAy)\ \       ufk     (7 + 1)4 I
-—ä;—)[~K~+—r~+2vi-i>K"\AxAy

oio /aMtAxJ^o \. 1A  A
i2-15) + zy—33;—J [-«/*»/*] AjcA>'

= £ p(/Ax, *A y) K -i- -/'(s) AAx

^+H-ât<
1  v(A^p(/Ax,fcA7)) «/*
+ L-Äx^-"/* j X(s)/ (s) ds Ax Ay

uj-l,k

=  [H  + [H].
By the Lebesgue dominated convergence theorem it is clear that

(2.16) A   üAm       ["] = 0.
Ax, Ay-*0
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TRANSONIC FLOW CALCULATIONS 51

The theorem will follow if we can show that

(2.17) 1™       [I] > 0.Ax, A }>->0

It thus remains only to show that

(2.18) f /+1'fe [uk - s + A+u.kxis)]f'(s)ds>0,
uj,k

which is true if for each s in the interval («fc, u- k+x)

(2.19) (I A+ ujk |x(s) - I s - ujk\)f(s) > 0

or

(2.20) (Is - ui+xk\xis) + \s- ujk\ix(s) - !))/($) > 0.

This follows immediately from the definition of x(s)-
Proof of Lemma 2.1.  We have

Epi/AxtylA+rtminty, «)) + A_f(max(Uj, «))]

= Z p(/Ax)M/[A+/(U/) - A_ A+/(max(U/, «))]

= X [p(/A*)a/A+/(«/) + (A+ pUax)u,)a+f(naxiu,, «))]

= 2 p(/Ax)[U/A+/(U/) + (A+u/)A+/(max(M/, a"))]

(2.21) + £ (A+P(/A*))a/+,A+ /(maxia,, a))

= Z P(/Ax)f /+1(U/ + (A+M/)x(s))/'(s) *
"/

+ Z(A+P(M*))"/+i (U' + 1 x(s)f'(s) ds.
Juf

Each step is justified as follows:  We use the equality f(u¡) = /(min (a-, u )) +
/(max(«., «))-/(«) in line 2, summation by parts for line 3, the equality A+(a-u-) =
(A+a.-)u- + (A+u-)a.-+, for line 4, and the fact that if/" > 0 then

/(max(ay> «)) -f(u) =f_' f'(s)x(s)ds

to justify the last line.
Next we add to the above equality

0=-Za+(pO'Ax)Jo V(s)rfs

(2.22)
= - £ P(/Ax)f      ' s/'(s) ds - Z (A+ p(/Ax))fU>+ ' »/*(*) A"V- "'O

- - £ P(/Ax) f "/+ ' S/'(S) ds - V(A_p(/Ax)) f V(s) ds.
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52 BJÖRN ENGQUIST AND STANLEY OSHER

The result is now immediate.
Proof of Lemma 2.2. We have

£p(/Ax, kAy)ujkAy+vjk = - £(A>p(/Ax, kAy)ujk)vjk

(2.23) = " £ (A-P('A*> kAy)ujk>jk - Z PO'**, (k - l)Ay)(Ay_ujk)vjk

= - Z(A?P(/Ax, kAy))uikvjk - ^ £p(/Ax, (* - l)Ay)iA*_vik)v¡k.

We add to this

0 = 2A7 £ A-P(''A*' (* - OA^U^

(2-24) A
= 2¿^P(/AX'(^1)A>,)A-^

+ 2Ax" ̂  (A" P(/AX' ik ' 1)^'»«?-i.*-
Using the fact that

(2.25) -(^u/k)u/k + KAiifc = - ^(Aiu/fc)2,

we arrive at

^p(jAx,kAy)uikAyVjk

(2.26) = " £ (A-P(>A*' *A*»"/*»/* - \ ii Z P(/Ax, (* - 1) A^)(Aiu/fc)2

+ 2^-Z(Axp(/Ax, (* - l)A^_1)k.

3.  Stability and the Entropy Inequality for the Time-Dependent Scheme.   In this
section we shall consider an initial-boundary value problem for the time-dependent
partial differential equation (1.2)

(3.1) *„ = (K% - fc(7 + l)*î)x + *yy -

(For simplicity we normalize and remove the factor of 2 appearing in (1.2).)
We shall solve this for t > 0, and for convenience only, in the square in R2

£2= [x,y\ 0<x<l,0<.y<l}
we prescribe the following initial and boundary conditions

(a) *(x,.y,O) = *o(x,;>0,

(b) *(o,j/, t)=g(y,t),

*x(0,y,f) = Piy,f),

(3-2) 1>xil,y,t) = hiy,t),

<byix, 0, t) = G(x, f),

&yix,l,t) = H(x,t).
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It is by no means certain that this problem is well posed.  An analysis of the
simplified ^-independent problem follows.

In one space dimension we have

(a) ut = -(fiu))x,      0<x<l,

(b) a(x, 0) = u0(x),

(3-3)                              (c)    a(0, 0 = pit),

u(l,t) = hit).

For smooth initial data the problem is well posed for small time if and only if p(t) >
u > hit), i.e. supersonic in inflow, subsonic outflow.

Moreover, if the solution to this equation converges as t —► °° to a time-indepen-
dent solution of (3.3), (assuming p and h are time-independent), we have

0 = À J' " dx = 'S' W«»* dx = -/("(i)) +/("(0))
(3.4) dtJo Jo

= -f(h)+f(p).
Thus, we must choose h and p so that

<3-5) p>u>h,      f(p) = f(h).
The situation is much more complicated in two space dimensions.  Nevertheless,

we shall establish rigorous a priori estimates to a difference approximation to (3.1),
(3.2) based on the method of fractional steps and our version of the Cole-Murman dif-
ferencing in the space variables.

We set up a lattice
n-l

x. = /Ax,   yk = kAy,   tn = £   Ai,,
o

/ = -1,0, . . . ,N; k= -1,0, . . . ,M+ 1,
with TVAx = 1 = M Ay.

We are seeking a discrete potential function ¡p"k which is supposed to approximate

<D(/Ax, kAy, tn).
Using backwards differencing, we again define

(3.6) u?k=Dx_rfk,   v?k=Dy_vJ£\      j = 0,l,...,N,k=0,l,...,M+l.
We prescribe discrete initial data tfk = $0(/Ax, kAy) and the difference scheme which
we set up is the following:

We first advance one half step via the difference scheme

(3.7) u^M = H;k - X«A*+/(min(M;fc, Ü)) - X«Al/(max(U;fc, «)),

where X(„x) = Af„/Ax, / = 1, 2.N - 1 ; * = 0, 1.M
The boundary conditions are

(3.8) unok^IV = pikAy, tn+x),      U«+0/2> = h(kAy, f„+1).
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Next, we recover
/

(3.9)       ^+(1/2) =g(kAy, tn + x)-AxpikAy,tn + x) + Z "^+(1/2) Ax
r=0

isoDi^1'2^^^1'^).
Then we advance to time tn via the linear Crank-Nicolson type of y differencing

u"k+1 = ""fc+(1/2) + ^Ay)Ay+(v"kl + ""fc+(1/2)) where XJ>> = Ai„/Aj;,

(3'10) /= 1,2,...,JV-1;*«0,1,...,Ä

The boundary conditions are

u"0^=pikAy, tn+1),

tâl =g(kAy,tn+x), k = 0,l,...,M,

(3.11) unV =hikAy,tn + x),

v?x+1=GiJAx,tn + x),

v?iM\x=H(jAx,tn+x),

The iteration is then repeated.
We shall prove that this procedure generates an L2 stable scheme under the

Courant condition

(3.12) maxXW|/'(a£)l = e0<l/3.

We shall show that this implicit linear system is uniquely invertible for $k l.
Moreover, the inversion of the implicit linear system (3.10) for y"k+1 is particularly
simple and is described midway through the proof of Lemma 3.2 below.

In order to invert the time-independent discrete system of equations (2.8) in the
square, we can iterate (3.7), (3.10) and let n —> °°.  Presumably this procedure con-
verges to a steady solution.  The numerical evidence of Section 5 verifies this conjecture.

It is easy to see that (3.7) and (3.10) are first order accurate as operators on y"k.
However, if there is convergence to a time-independent solution, then (3.7), (3.10) has
the same spatial accuracy as (2.8), i.e. second order in subsonic and first order in super-
sonic regions.

We define the following discrete L2 norms

N      M N

H""' = Z   Z  < AxA^, ||< x = £ «/ Ax,
(3.13) i=o k=o j=o

M
il «»i y = Z "l*y-

k=0

We may now state the main theorems of this section.

Theorem 3.1.  Let tfk, u"k, v"k be defined as in (3.6)—(3.11) with the Courant
condition (3.11).  Then we have the following L2 stability result
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n
\\un\\2 - \\u°\\2 <  2 Z   Ax(||p(- , tß)\\2Ay + \\h(- , rM)||iy)

M=l

+ Z  Ai ̂ BDÎX-.f^

n    (Ar„_!)2
(3.14) + 4 Z —-A-d|G(" > V«'!« + »^ • • ̂ )»¿x)

m=i       Ay
\\2       X ill//.     ,  Mi2

n-i m     v (y + 11 \
+2 z ArM z f a2(/^. y -V-*3^' 'm> a^

m=o        ;'=o \ /

n-i tn     I r   _|_ n \

"2Z M   fp'í/Ay.g-V^-w^
ju=0 /=0    \ /

Moreover, if we know that for each n

(3.15) u%k,uN_xk<ü<u"ok,unk,

ie. supersonic inflow, subsonic outflow, the first two terms on the right in (3.14) may
be replaced by a telescoping series in p, summing to

2Ax(||p(- , r„)||2 - ||p(- , 0)||2 + (¡AC- , t„)\\2 - \\h(- , 0)||2).

We also prove that the time-dependent entropy condition is satisfied by limit
solutions (3.6)—(3.11) under the Courant condition (3.12).

Theorem 3.2.  Let <p?k be defined as above and suppose $k, ufk, v% converge
boundedly a.e. as Ax, Ay, Atn —► 0 to <ï>, u, and v. Then <p is a weak solution of (3.1)
which satisfies the entropy inequality:  For any p £ C¿, p > 0.    p = 0 near the space
boundary and near t = 0

f   $2 "I
(3.16) jfj flt _JL + PxF(<i>x, *y) + pyG(<Px, <Dy)J dx dy dt > 0,

where F and G are defined in (2.12).

We shall prove these theorems with the help of two technical lemmas.

Lemma 3.1.   For f(u) = - Ku + (y + l)u2/2, u = K¡(y + 1), solutions of the
difference scheme

„»+(1/2) = un _ x A+/(min(U"  a")) - X„A_/(max(U"  a)),
(3.17) ' ' '

i= 1,...,N-1,

under the Courant condition (3.13) with boundary conditions

(3.18) "r(1/2)=P(in + 1),      u»0=p(tn),

<{lt2) = h(tn + l),      uN = KtH),
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56 BJÖRN ENGQUIST AND STANLEY OSHER

satisfy the L   estimate

2Ar
(3.19)

|a" + (1/2)ILL-||a"HL      ,     a h2itn + x) h\tn)
-<inh\tn + l)+K—T--(y+l)-^-

1  -,2U      ,    K    ,, .,P('n)
+ f-P (tn+i)-J Pi(tn)+(y + l)-T

and ifu£,u%i_x < ü < ug, a?, we may subtract (/i2(r„) + P2(tn))l\ from the
right side above.  Moreover, if p(x, t) > 0, p = 0 near x = 0 and x = 1, we have the
inequality

(M«+(i/2))2_(u»)2

\p(jAx,tn) —Z Ax
/ 2Ai„

(3.20)

(A*pjjAx,tny\(       (";")2 W3Y{        Ax     ")[-«— +<>+»—I

<- ZAx (A*piJAx,tn))  n r«;+,
Ax di

X„(AÍ/(max(a;, Û)))

Lemma 3.2.   The difference scheme

(3.21) ,.n + l _     « + (1/2)   i   ^(^A^i)"ujk Ujk ^ An    a+ vjk

to be solved on the lattice / = 1, . . . , N - 1, k - 0,1.M, with boundary condi-
tions (3.11) at both time levels n + 1 and n + (&) satisfies the L2 inequality

(3.22)

1||2 _||U« + (1/2)||2

2Ar
Ar„

<\\\Dy_gi- , i„+1)llL + 2 -sß (||G(- , tn + l)\\lx + WHi-, tn+1)\\2Ax).

Here and in what follows v" = ^(u" + 1 + v" + (V2)) etc.
Moreover, if p(x, y, t) > 0, p = 0 near the boundaries x = 0,x= 1,7 = 0 and

y = 1, we We ffce equality

r(<l)a-(«#K1/2>)2l
Z P(/Ax, £A;y, t„)
A* 2Ar ■    AxAj>

(3.23)
+ Z(A^ P(/A*. ¿A* '„))«« A*

/.*

-§ Z(A^P(/Ax, (* - l)Ay, tn))iv?_ltk)2ay
i.k

= - 5 Z P(/Ax, (* - 1)A>>, r„)(Aiu;fc )2A^.
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Remark 1.  The difference scheme (3.21) is unconditionally stable, i.e. x£*\
X^ can be chosen arbitrarily.   For convenience we take Atn at this half step to be
the same as for the first half step.

Remark 2.  Some of the boundary conditions of (3.11) are not needed for the
second half step.   In particular, the values of <pjk at / = -1  are never used.  However,
we need them for the first half step if the inflow is supersonic.

We shall prove these technical lemmas below.  We may now use them for the
following.

Proof of Theorem 3.1.  For ujl solving (3.17), we multiply (3.19) by 2AyAtn
and sum k = 0, . . . , M.   Next multiply (3.22) by 2Ar„ and add to (3.22). We then
sum from p= 0 to p = n, the result is immediate.

Proof of Theorem 3.2. We add (3.20) for the ^-dependent case to (3.23), then
sum over n. The result is immediate from the Lebesgue dominated convergence theo-
rem.

We must now merely prove Lemmas 3.1 and 3.2.
Proof of Lemma 3.1.  Let u"+(-v^ = w¡, u" = u¡, \n = X. We have, after multi-

plying by (wj + u.-)/2X and adding

XA+/(min(a,, «))    XA_/(max(a,, a))
2      _ m,,||2      ^|   ..-T_-1-1-IMßx - IMIa* -{*,-j—'-2

(3.24)
- XA+/(min(a;-, a)) - XA_/(max(«., u))

I Ax
or

IMlLc - IlKllLc *-i
-2Al-= " Z   "/(A+/(min("/. «)) + A_/(max(M/, a)))

(3'25) +2    Z  (A+/(min(W/., ä")) + A_(max(a/; ä)))2
/-i

+ ¿d^l2-|%|2)+^(|w0|2-|Wo|2).2Xvi"jvi       >"N>>^2\{

It is a simple matter to go through the proof of Lemma 2.1 for p = 1 and take
boundary terms into account to arrive at

N-l
-  Z   «/(A+Arninty, a)) + A_/(max(U/, ä")))

7=1

JV-lr«/+i
= Z J (s " "/ ~ (A+"/)x(«))/(*)* + %A+/(maxK-i. "))

(3-26) /=0    "j

- I       sf (s)ds + a0 A+/(min(M0, a)),
"o

Recall x(s) was defined in the statement of Lemma 2.1.
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It follows from Schwarz' inequality that

Ä £ (Arminia,, a)) + A_/(max(a/f a)))2
/=i

(3-27) < X  ¿' (A+/(rnin(a,., a")))2 + X  £ (A+Zimaxfy, a")))2
/=o /-o

-X(A+/(min(a0, ä)))2 - X(A+/(max(«iV_1, S)))2.

Adding (3.26) to (3.27) gives us

IMli, - IMlL    N-     ,  .< V   I I (s - a.. - A^;y(s))/'(s) (is2Ar
N-iT r«/+1£    J (s-a7- - A+«/X(s))/(s)
/=o L "/'

+ X(A+/(min(a;, a)))2 + XfA+Zimaxty, a)))2

+ aArA+/(max(aJV_1, ä)) - \(A+fimaxiuN_x, ä)))2

(3.28) r"iv
-f" sf'(s) ds+± (p2(tn + x) - p2(tn))

+ anA+/(min(a0, ä)) - X(A+/(min(a0, ä)))2

+f"° sf'(s) ds + ¿(¿2(r„ + 1) - h2(tn)).
o

We wish to estimate the term under the 2 sign

■ "/+1
Ajj+X = f~'+1(s - «/ - iA+uf)x(s))f'is)ds + X(A+/(min(a/, a)))2

(3.29) "/
+ XiA+Amaxta^a)))2.

If a+,, Uj > a, a straightforward calculation gives us
\2

\Utj_ ,     —   U;
A

(3.30)

(
yV+(7+l)

if e0 < 1/3.

Similarly, if a/+,, a;- < u

*/,/+1 2

(3.31)

if e0 < 1/3.

f (a,+ 1 +a,)"|2\+ 2X\-K + (y+l)    /+12      ;j J <0,
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Next, suppose a/+ , >u>u-,

59

(3.32)

,/+1=(a/.-ä)2[(^(a/.-ä) + X^-(7+l)(^)) J

+ ("/+! - ")2 [(^j (" - "/+>} + X^ (7 + 1)("V-)) J
r/-Jr + (7+l)«/\          (K - (7 + l)«y VI

«/ - " >2 [(-6-j + Xl-2-/ J■ («/ -

+0
",+i-")2[(/ *-(7 + l)«/+1\ /tf-(7 + l)«/+1

+ x
']

<o.

if e0 < 1/3; and finally, if a/+ x < a < My,

¿M+,   =£(»;+, -«,)2'-JA: + 3<T+1>«/+l+ 3s -3(7+1)«,)

+ \(a; - a)2 I K - (7

+ X(a/+1 -ïï)2|jf-(7 + l)

a • + a

a/+1 + a'

<

(3.33)

i(a/+1-S)2[-|/: + (7+l)(|a/+1+iW/.+ 1-Iü)]

ä-a/.)2^-(7+l)(|a/+1+ia/-iä)j

M/-ä)2L:-(7 + l)(^^y-jj

"/+i-»)2[*-(7+l)("/+2        j]

+ic

+ X(i

< i(a/+, - a)2 [-Ä- + (7 + l)a/+, ] + \(u - Uj)2 [K - (7 + 1)U/]

+ X(a/-a)2L (7 + 01
'ay + a

+ X(a/+1-a)2^-(7+l)^-~2-j]    <0,
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if e0 < Vi. Thus, we have the "interior" dissipative estimate

(3-34) £  Ajj+X <0
/=o

with equality holding if and only if a- is constant. Applying Schwarz' inequality gives us

uNA+firmxiuN_x, Ù)) - X(A+/(max(a^_1, «)))2 <¿- a2 ,
(3.35) 2X

a0 A+ /(minia,,, 5)) - X(A+ /(min(a0, a")))2 < ^ a2 .

We may now add up all the boundary contributions, arriving at

/=0
(3.36)

+ {h2itn + x)+K-f^-(y+l)-Y-,
thus proving estimate (3.19).

In order to prove the discrete entropy inequality, we again follow the proof of
Lemma 2.1, after multiplying by p(/Ax, tn) (a" + ] - u")\2Atn.  It is a straightforward
calculation to show

z
I

|"p(/Ax, r„)[(a;" + 1)2 -(a/)2]!

L 2Ar J

(Alp(/Ax, AiB))   -K(u?)2 (ap3\
-^-[—f- + (y + D-T-/Ax

(3.37)

- Z ¿ P(/Ax, tn)Am, Ax Z (AX+PZX' tn)) "/+ f+ ' J*)/'» * A*
/ / "/

A* p(/Ax, r)
+ X Z-^--(A+/(max(M/, a)))2Ax.

/
The inequality follows from the fact that A¡ J + x < 0 and p(x, t)>0.

Proof of Lemma 3.2.  We multiply (3.21) by u"k AxAy and sum over / = 1, . . . ,
N - 1, k = 0, 1, .... M.   We arrive at

||Mn+l||2 _ ||un + (l/2)||2 M    N-\     „      „

(3-38) -¿A7-=  Z    Z   "/* Kk +1 - 41 Ax
/c=0   /=!

Following the proof of Lemma 2.2 for p = 1, and taking boundaries into account,
gives us
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M   N-l    ~
Z Z «AK*+i-ü/*lAx

fc=0   /=!

(3.39)

,    JV    M+l       ~ ~ ,  M+l      ~ ,  M+l    ~4Z  Z  W-«v"-i*laAy-J £(i#*)2a> + ¿ £(1^)^
;=i  ä=i fc=l fc=i

+ Z ü/V+i"/V+1A* _ Z 4 "/oA*
,=1 /=1

M+l     ~
+ Z <fcKk-^-i,fc)A^

fe=i

Suppose first that v"M+x = v"0 = 0 = G" = //".  Applying Schwarz' inequality gives
us

,    N    M+l      „ ^ M+l

-¿Z Z [^-""-i,,]2^-^ s «fc)2A^
/= 1   fe= 1 k= 1

(3.40) +  Z   vN,k«k-vN-i,k)&y
k=l

x N-l M+l
<4Z    Z   Kk-vf_x^k]2Ay.

/=1   k=l

The estimate (3.22) follows in this special case.
In general, we write

(3.41) */*  = ¥#0) + <$(2),       /n = « + (1/2), n + 1.

Here $■%(!) satisfies the boundary conditions (3.11) except that GJ" and //.?"
are replaced by zero. Thus, ^(2) satisfies (3.21) with the first three inhomogeneous
functions taken to be identically zero.

We take
^+U/2)(1) = ^« + (1/2)    foro<*<M

Thus, tfk+l(l), a"fc+1(l). «"fc+1(l) satisfy estimate (3.22) with G and H taken to be
identically zero.

It follows that ip"fc+1(2) = \p"k+ ' satisfies the following system of linear equations

(3.42) ̂ + ' - y wti 1 - 2^+ ■ + nt-1i - *;-Y,* + A^a.
/= 1,. . .,#- l;tf =0, 1, ...,M,

where
^sO,    if 0 < k < m - 1,

/>;0 = -hp„g;,   p?M = xpnH?,

withy„ = AxAr„/(A^)2.
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Let

(3.43)

Then*?"1"1 solves

4.1     M"yn + l _

(3.44)   i 2

\j/" + i =i

*/o+1

•1      1       o     o ••• o\
1-2 1       0  • • •   0

/m^M
^n + l  _ ,t,« +*"_1   + Aj

0    1-1/ \-PnGfj
or (dropping the superscripts)

(3.45) r*; = *y_, + AjF/;      / = 1.N - 1,       *0 = 0.

T is a symmetric matrix which satisfies

(3.46) (<ü,T*)Ay = ||*|& y + ^ \\Alnly.

Thus,r>/, 7/"1 </.  We have

/
Z(3.47) */- Z   T-U-r+1)AyFr

or

(3.48) Ax ~, Ax    r Ax   i

(3.49)    =

Now, via a unitary change of variables, we have

u*T-u-f)(T-i _I^U

0 («Af-l)/_r(«M-l   -1)       0

o

o

\ 0 0       (aoy-r(a0 - 1) I

with 1 > a;- > 0.   It is thus easy to show that

(3.50) */-*/-!
Ax <2

A>> ©2 h l^+siipX   ||Fr||2   «¿-'(1
r= 1

-«*)J-
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Hence,

N-lz \J/. - \Ir.

Ax Ay

I1/2        ,-Ay  N~l        ,        '
A*      <V2rf  ZII^IIa,ax

1/2

/•=!

(3.51)

Thus,

(3.52)

(Ay)3/2      /N-i
<V2^-'  ^Ax

AT-l      » \!/2
Pn[ Z (^")2ax+ Z(g;)2ax     .

,n + li|2
"(2)  'I       Ar   ¡N-i      ~ N-l     -.        \
-¿r-<Ä7   Z(^)2a-+Z(g;)2ax

/= 1
n + 1,Add (3.52) to (3.22) for a" + '(1) with G = H = 0. The result now follows from

Schwarz' inequality.
The second part of this lemma follows easily from Lemma 2.2 after we multiply

(3.21) by p(/Ax, kAy, t^uj^AxAy and sum over/, k.

4.  Stability and the Entropy Inequality for the Second Modification of the
Cole-Murman Scheme.   In this section we analyze Cole-Murman type schemes (2.11) in
some generality and point out how to modify the switch 9 -k such that limit solutions
of the difference equation must satisfy the entropy inequality (2.12). We begin with
the following lemma which is presented without proof.  The proof is similar to that of
Lemma 2.1.

Lemma 4.1. Let p(x) E Cl with p > 0, and let /"(a) > 0 with /'(a) > 0.  Then

£ p(/Ax)a;. [A+/(ap - A_0;A+ f(Uj)]

■ uj+i

(4.1) = -£p(/Ax)f [s-Uj-iA+u^dJfXs) ds

- £ (A+ pijAx))f '     sf'(s) ds+Y, (A+ P(/Ax))a/+,B¡A+ /(a,.).

Next we choose 0 ■ such that the inequality

(4.2)
•"/+!

/ '      [is- u¡) - (A+a,)0,.] /'(*) ds < 0

is valid.
In the special case

/(«) = -Ku +
(7 + l)a2

we have

(4.3)

(A+"y)2
2 |/'("/+i) + |/'(«/) - dj[\f'(uj) + \f'(uj+i) <0,or

2ft       ,,lrt»i    a //'(";)+/>/+i)
3-/(a/+1) + 3/(«/)- 0/ <0.
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Thus, if a,, a+ j < a, we let 0;- = 0; and if a;-, uj+ x > u with at least one of uf,
u-+1 strictly greater than a, we let 6¡ = 1.

So far this switch agrees with that of Cole-Murman. The difficulty occurs when
Up u+x are on opposite sides of a.  The C-M switch equals 1 (or 0) if f'iuj) +
/'("/+1) > 0 (or < 0).  As an example of the difficulties with this switch we might
take

/'("/) +/'(»/+1) /n/2rt       v . 1 ,v„ ï-'-—-—'■-< 0 < j / (a/+,) + 3 / (uj)

or

)D

/'(a/+1)>-i/'(a/)> + i/'(a/+1)>0

so a+1 > a > Uj in which case solutions with the C-M switch violate the inequality
(4.3).  This explains why C-M admits expansion shocks.  In order to prevent these non-
physical solutions we let

(4.4, ̂ /VJ+zH»)). 2/Hti) + im + a(l/.(„()l + lrtU/+i

for some a > 0, when a lies in the open interval connecting a;- and a-+,.  Since

//'(a.) +/'(a/+1)
Ö/A+A«,) = (A+M/)f3^-       2

-the resulting scheme (2.11) is well defined and first order accurate, although the coef-
ficients are not continuous.

We can now easily prove the direct analog of Theorems 2.1, 3.1 and 3.2 for the
C-M scheme with a switch of this sort.

Theorem 4.1.   Suppose <pk is determined by (2.11), (4.4), and suppose i^fc,
D* $jk, D^_ <pk converge boundedly a.e. as Ax, Ay —► 0 to 4>, «D^, and 4>  , re-
spectively. Then, 4> is a weak solution of (2.1) which satisfies the entropy inequality (2.12).

The proof of the following lemma is now analogous to that of Lemma 3.1 using
the previous analysis.

Lemma 4.1.   For /(a) = - Ku + (y + 1) a2/2, u = K¡(y + 1), solutions of the
difference scheme

M;+1 = »;- x„A+/(H;) + x„a_(í>;)a+ /(«;),
(4 5)v ' ' j - 1, . . . ,N - 1, with boundary conditions (3.8)

for 0 " defined in (4.4), and

(4.6) a = J_I
4e0     6'

satisfying the Courant condition
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(4-7) maxiX„/'(M;)| = e0<l/3,
/.«

satisfy the L2 estimates (3.19).
Moreover, if p(x, t) > 0, p = 0 near x = 0 a/id x = 1, we ftave ffte inequality

ÇaxL
,n + 1^2_ /„n^

2>x|p(/Ax, tn)i 2At

(4.8) /Alp(/Ax,f„)W-/C(a;)2     (7 + DC
Ax

((A\p(jAx, tn)

K2l)l+
<-Z a4v"+"a7" "^K+1e;A+/(a;)-xn(A+(i -ep/i«;))2).

We now have analogues of Theorem 3.2 and 3.3.

Theorem 4.2.   77ie solution to (3.6)—(3.12) with (4.4), (4.6) replacing (3.7)
satisfies the L2 stability estimates of Theorem 3.1.

Theorem 4.3.  Suppose $k is determined in the same way as in the previous
theorem and <p?k, u^k and v?k converge boundedly, a.e. as Ax, Ay, Atn —► 0 to <ï>,
a and v.   Then <i> is weak solution o/(3.1) which satisfies the entropy inequality of
Theorem 3.2.

5.  A One-Dimensional Model Problem.  Most of the important phenomena in
the small disturbance equation, and its approximations occur in the x-direction. The
nonlinearity and the switch in the difference formulas depend only on the x-derivative.
Thus, it is of interest to study the ^-independent problem.

t5-1) *xt = (K*x - K(y + O*2 )x

or with « = $x

(5-2) ut = (Ku-K(y + \)u2)x,

where a is a function of x and t, and the corresponding difference approximations.
Consider also

(5-3) af = -f(u)x,

where / is convex and /'(a ) = 0 and

(5-4) 2wt = - iw2)x.

The equation (5.4) is derived from (5.1) after the transformations

x 7 + 1

Normalize the independent variables such that 0<x<l,r>0. The difference scheme
corresponding to (5.3) and the x-step in the splitting scheme (3.7) is
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(5.5) „» + 1 = uf - X„A+/(min(a; , a)) - X„A_/(max(a;, ä)),

where X„ = AtjAx.   The linear stability condition is max- n |X„/'(a^| = e0 < 1.
With the boundary condition

(5.6) u0 = uL,      uN = u*

for f(uL) = /(a^) we can show that there exists a unique steady state solution for (5.5).

Theorem 5.1.   A solution of (5.5) satisfying the boundary conditions is a steady
solution, if and only if it is of the form

uf = uL,      0 </</„,

«Í.4-1   =*.

(5.7) %+i

"/0 + 2  = b>

Uj^u*,     j> y0 + 3 for some j0,
where a and b satisfy

(5.8) a* <b<ü<a<uL

and

f(uL) + f(u) = f(uR) + f(u) = f(a) + f(b).

The solution is made unique by requiring that

N
(5.9) Z  "/Ax = 44

/=!

foruR <A <uL.

Proof.   The function a " = a;- is a steady solution of (5.5) if and only if

(5.10) (U'+lf'(s)x(s)ds = (U!     f'(s)(x(s) - l)ds,    ;=1,...,/V-1,
"/' "/-i

with

a0 = aL,    uN = uR,   uL>u>uR,   f(uL)=f(uR).

(Recall x(s) was defined in Lemma 2.1.) We can construct such solutions as
follows.   Let ttj = uL,j </0, with 0 </0 < A' - 1.  Then Eq. (5.10) is valid for/ <
/0 - 2, while for / = jQ we have

"/ +1

(511> / x(s)f'(s) ds = 0.

This is valid if and only if a• +, < u.   For / = ;0 + 1 we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSONIC FLOW CALCULATIONS 67

% + »
J f'(s)x(s)ds=j f'(s)(x(s)-l)ds

(5.12) %+l
= /(aL)-/(a/o + 1)=^0.

Thus, a,   .-, = ä and we have
)0 + 2

(5.13) f(uJo+2) -/(a) - /(aL) -/(a/o + 1).

For / = /0 + 2 we have

J /'(s)x(s) ds = J /'(s)(x(s) - 1)*
%+2 %+l

= /(a, +1)-/(ä)
(5.14)

= /(aL)-/(a/o+2)   (by (5.13))

= /(a*)-/(a/o+2).

Thus, one solution of (5.14) is a;- +3 = uR.  By the geometry of/(a) any other

solution would have to be u¡   , , > a so we would have

/(")-/("/0 + 2)=/("Ä)-/("/0 + 2)-

But/(aÄ) >/(ä), and hence a/Q + 3 = uR.

It is easy to see that if two consecutive points on a steady solution of (5.5)
satisfy uf   < u, u^ + x < a, then u¡ su¡1 + i for / >/, + 1 ;

Thus, it follows that all steady solutions of this type are as described in (5.7),

(5.8).
It remains to construct solutions for /0 = 0.  We then have

/ "2 f'(s)x(s)ds = /   V(s)(x(s) - 1) ds
'o

f(uL)-f(ux)    úux>u,

fluL) -/(a)      if ux <u.

In either case, the right side is =£ 0 which means, if ax > a", that a2 < ä; and we
now have

(5.16) /(a2)-/(ä)=/(aL)-/(aj).

Then, as in the previous case for which 0 </0 < N - 1 we must have

(5.17) u0 = uL,   ux = a,    u2=b,    a3 = ai?,etc.

The last possibility is aj < a, and we must have
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(5.18) (U2f'(s)x(s) ds = f(uL)-f(u) > 0.
J"i

This means that a2 < a,, and they are chosen so that

(5.19) f(u2)-f(ux) = f(uL)-f(u).

The next equation tells us that a3 = a2 = uR, which means that ux = u, which
is a contradiction.

Next we wish to choose /0, a, and b so that the sum takes on a fixed value

(5.20) a* <Z UjAx = A <uL.

Define x0 to be the value of x at which the limit function is discontinuous

(5.21) uLx0+uR(l-x0) = A,       (uL-uR)x0=A -a*,

so
x0 = (A - a*)/(aL - a*).

We wish to find /"„, a, and b so that

aL/0 Ax + (a + b)Ax + uRiN - /0 - 2) Ax
(5.22)

= A = uLx0 +uR(l -x0).

When (a + b) takes on its maximum (minimum) possible value subject to (5.33),
we choose/0 so that the left side of (5.21) is greater than (less than) or equal to the
right side of (5.22)

(5.23) (a + ¿Omax = "L  + ">        (« + è)min =«*+«,

(5.24) «'i/o + 1) + ü + uR(N-j0-2)>UL %>x + u*(n-^

> uLj0 + u + uR(N - /0 - 1),

°r - R v - R

uL - uR      ^x uL - UR

Thus, we can take /0 to be the smallest integer such that

xo u - uR

70>A*-1"a^'
Let us go back to the time-dependent case with the scheme (5.5) approximating

(5.3).  In Theorem 5.2 we present some properties of the scheme.

Theorem 5.2.   The scheme (5.5) for f convex is first order accurate, monotone,
and in conservation form.  Moreover, if we write
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(5.25)     u«+i = G(a;+1, a,", ««) = a," - XBA(a/+I, a,") + \nh(u», «»_,),

ffcen G is a C1 and piecewise smooth function of its arguments.

Proof.   We again define

X(a) = 0    if/'(a)>0,
(5.26)

X(a) = l    if/'(a)<0.
Then (5.25) may be rewritten

« .."
rui+i i

«" + ' = «" - \, J   „     /'Wx(s) ds - X„/ b     /'(s) (1 - X(s)) ds
(5.27) "' "/-i

G(uf+X,uf, uf_x)
with

— A/'(«/+ i)X(«/+i).3a/+1

(5.28) ^=l+X/'(a/)(2x(a/.)-l),

^-xA«,-,)(i-x^-¡)).
Thus the scheme is monotone, and G is C1 and piecewise smooth.
Letting /'(s)x(s) = f'(s) +/'(s)(X(s) - 1) in (5.27) gives us

n

(5.29) u«+1 = u? - X„A + f(uf) + X„A_ f /+ * /'(S)(l - x(s)) ds.
7 Juf

We may take

(5.30) h(uj+,, a,) = /(a/+,) -/     "' /'(s) (1 - x(s)) ds,
";

and conservation form is immediate.
Let

g(u)=(" f(s)(l-x(s))ds.
J u

We may rewrite (5.29) as

(5.31) u? + 1=u?- X„A+ /(a/) + X„A_A+ g(uf).

Since g'(x) is Lipschitz continuous, it follows that if a is Lipschitz continuous in a
neighborhood of a" then

(5-32) A+A_giu?) = Oih2).

First order accuracy is now immediate.
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Important consequences of monotonicity are:
(A)  Monotone schemes form an L1 contraction [5], i.e., if

a;+1 = G(«;+fc,...,uf_k),   u;+1 = G(Vp+k,...,«,;_*),

either on an infinite region - °° < j < °°, or a compact region with periodic boundary
conditions, then

(3.33) Zl""+1 - »" + 1IAx< £\|a; - v?\Ax.
i i

This estimate has been used [3] to prove:
(B) Solutions to monotone difference schemes converge as max(Arn, Ax) —►

0 to weak solutions of (5.3).
(C) Bounded a.e. limits as max(Ain, Ax) —► 0 of solutions of (5.5) satisfy the

entropy inequality

(5.34) JL«d+J_F(l0<fJ.

Here

F(a) = ^2-+(7+31)"3    for/(a) = -*a+(7 + l)-^.

(D)  Solutions of (5.5) satisfy the ordering principle:

if u;" < »»,    then a/" + 1 < »»+»'.

We may use property (D) to show

Proposition 5.1. If u" satisfies (5.5) for / = 1, . . . , N - 1, with boundary
conditions Uq = uL, uN = uR,n> 0/or/(aL) = f(uR), uL > uR, and initial con-
ditions uR < a? < uL, then u" satisfies (5.5) on the infinite interval - °° </ < °° with

uf=uL,      /<0,
ttp&uR,     j>N.

Using a modified version of the proofs in [7], James Ralston has shown for our
scheme

Theorem (5.3) (Ralston).  Let u" solve (5.5) for - °°<j <°° with limj_i_aoUj
= uL, \mij_tnUj = uR and

(5.35) Z    \Uj-uL\<°°,      Z  \Uj-uR\<°°-
i= - - /= i

Then there exists a steady solution a" of the type (5.7) with

(5.36) lim up = up.
n-*"

Corollary (5.1).  Solutions of the discrete initial boundary value problem con-
verge as n —> °° to the unique steady solution a-°° which has the property
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(5.37)
N N

z «,- = Z «f
/=0     ' /=0

We have calculated approximate solutions of the model problem (5.4) using several
different schemes. For one set of experiments the initial values were chosen to contain
an entropy violating shock

(5.38) w(x, 0) =
1,       0<Jt<%, H<jc<34,

-1,      %<x<% %<x<l.

We compared the following difference schemes:
(a) Engquist-Osher Scheme (5.5).
(b) Entropy condition satisfying Cole-Murman scheme (2.11), (4.4).
(c) Cole-Murman scheme (2.11).
(d) Lax-Friedrichs scheme

(5.39) w,n + l _ I n\2-i (*;+,+*£,)-*!>*(*«)

(e) Lax-Wendroff scheme with nonlinear dissipation; see [10].   The following
numerical boundary conditions were used;

(5.40) <=1,
N-l

N ~ Z'N
j=0

W '

With increasing n the solution of (a), (b) and (e) converged to a steady state, which
essentially agreed with the analytic solution  w(x) for t large enough. See Table 5.1 for
details

(5.41) w(x) =
1,

-1,
0 < x < %

H<x<l.

The Cole-Murman scheme (c) has the entropy violating initial values (5.38) as steady
state solutions and the Lax-Friedrichs scheme (d) oscillates between two states in the
limit n —► °°. One of the states is given in Table 5.1.

Table 5.1

77ie discrete shock profiles, as functions o/x-,
for the analytic solution and the approximation (a), (b), (d) and (e) as n —*■ °°.

Ai/Ax = 0.5, Ax = 1/21.

(a)

(b)

(d)

(e)

1.00

1.00
1.00

0.92

1.00

1.00

1.00
1.00

0.99

1.01

1.00

1.00

1.00

0.48

0.98

1.00

1.00

1.00

1.00

0.71

0.78

0.90     -0.42

1.05       0.87

-1.00 -1.00

-0.71 -1.00

-0.78    -1.00

-1.00

-1.00
-1.00

-1.00 -1.00

-1.00 -1.00
-1.00    -1.00

0.42    -0.90    -0.48    -0.99    -0.92
-0.87    -1.05    -0.98    -1.01     -1.00
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Note here that the nonswitching schemes Lax-Wendroff and Lax-Friedrichs spread
the shock over a larger domain. Furthermore, the shock profile for those schemes is no
longer monotone.

Remark 1. The qualitative information in the table is valid for other values of
At and Ax.  It is also valid if the initial data is perturbed.  For example, if random
noise of amplitude 0.1 is added to the initial values the solutions of (a), (b) and (e)
still converge to the profiles in the table.  The scheme (c), will converge to a steady
state close to (5.38) containing an entropy violating shock.  However, if the initial
values are drastically changed, for example to

w(x, 0) = 1 - 2x,

even the Cole-Murman scheme will converge to the right solution with the error only
spread over at most two grid points in space.

The rate of convergence is given in Table 5.2.

Table 5.2
The lx-norm of the error w" - w(x), (w(x) is the steady state solution)

At/Ax= 0.5, Ax = 1/21.
n= 20 40 60 80

(a) 0.500 0.036 0.029 0.029
(b) 0.460 0.025 0.023 0.023
(d) 0.365 0.225 0.215 0.215
(e) 0.667 0.189 0.024 0.023

The scheme (b) gives a better result than scheme (a) in this case.  In general, this
might be somewhat misleading because it is possible to take longer time steps with (a).
The computational stability limits for (a), (c), (d) and (e) are At/Ax < 1, but for (b) it
is At I Ax < 0.75.

Remark 2.  In [7] Jennings showed that a strictly monotone scheme converges
to a steady state as « —*■ °°.  The Lax-Friedrichs scheme (d) is monotone but oscillates
in the limit n —* °°.  There is no contradiction since (d) is not strictly monotone.  If
the scheme (5.39) is written in the form

wp + i=G(wp+x,wp,wp_x),

we have bG/bw" = 0, not > 0.  The scheme does not couple grid points where n + j
is odd with points where n + / is even.   As pointed out by James Ralston, regarded as
an algorithm of the form

up + 2=G(up+2,up,u?_2),

the Lax-Friedrichs scheme is strictly monotone and the convergence results of [7] are
valid.
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6.  A Numerical Example and Some Computational Comments.  We have applied
the ADI-scheme of Section 3 with the original Cole-Murman switch (2.11), and the
modified switch (2.8) to the simple test problem of transonic flow around a symmetric
airfoil.  The computational domain 0 < x < 5c, 0 <y < 2c, where c is the chord, is
covered by a regular grid.  The airfoil is located at 2c < x < 3c, y = 0. The initial
values and boundary conditions are

(6.1) $>ix, y,0) = 0,      0<x<5c, 0 <y <2c,

(6.2) 4(0,^,f) = 0, 0<j><2c, r>0,
Qxi5c,y,t) = 0, 0<y<2c,t>0,
t>y(x, 2c, i) = 0,     0 < x < 5c, t > 0,

*y(*. 0, 0 = 0, 0 < x < 2c, 3c < x < 5c, t > 0,

h(x),     2c<x<3c,   r>o.

The -shape of the airfoil is given by the function h(x), and it is chosen as part of a
sine function.  The ^-derivative of $ is discontinuous at y = 0, x = 2c, 3c.   The deriva-
tives in the boundary conditions were replaced by one-sided differences.  Several
computations were performed with both types of switches.  Different far field Mach
numbers and different grid sizes were used. The calculations were continued until
steady state was reached. (No change in the 4th decimals of \p during 10 consecutive
iterations.)

The main conclusion from these calculations is that both types of switches give
approximations to <i> which are very close to each other. When the initial values are such
that the Cole-Murman scheme does not produce an expansion shock the convergence
characteristics for the solutions corresponding to both switches are similar.  For both
methods the shock profile was sharp as is well known for approximations using the Cole-
Murman scheme. With the modified switch slightly longer timesteps could be used with-
out causing instabilities.

In Table 6.1 we give the velocity <i>x at the airfoil as a function of x.  The re-
sult is typical for a coarse grid calculation. We used a 60 x 24 grid in this example,
and ipx is presented for timestep 200 where the solution is close to the steady state.
The Mach number was 0.85 and the CFL number was 0.7.

Table 6.1
The velocity Dx<p2000 as a function of x¡, 2c < x¡ < 3c.

C-M:   The scheme (2.11), (3.3)-(3.11), E-O:   The scheme (3.7)-(3.11)

C-M
-0.47 0.09      0.69 1.45 1.86      2.32 2.72

3.06 3.21 3.43 3.16    -0.57     -1.23

E-O
-0.47 0.10       0.69 1.45 1.85       2.31 2.72

3.06 3.20 3.43 3.01     -0.48    -1.23

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 BJÖRN ENGQUIST AND STANLEY OSHER

Computational Comments.   The algorithms which we have analyzed in this paper
can, and of course should, be modified in applications to suit different engineering
needs.   For example, the limitation on the timestep is naturally costly if the scheme
is used only for steady state calculations. What follows is some remarks on how the
new entropy guaranteeing switch can be used where the theory does not apply directly.

1. The computational grid does not need to be uniform. A nonuniform grid
with smaller step sizes close to the airfoil and especially close to the ends of the
airfoil can increase the accuracy (see [1], [8]).  Most of the difference formulas are
still valid after minor modifications, for example,

nVn9 _2 f*k + i ~*k    Vk-*k-i\ .
W* -+Ayk+Ayk+X [—^T " ~^T) ^ ="*+1 '>*

2. In order to speed up convergence when steady state solutions are being
calculated, the longer timesteps of implicit schemes are needed.  It is easy to change
the x-differencing to be serni-implicit; see [1]. The new switch can of course still be
used.  It is furthermore not necessary to have a fixed Ar.  The timestep may vary be-
tween the iterations and also between different grid points.  In this case the algorithm
need not be consistent with the time-dependent problem.

3. For time-dependent problems artificial reflections from the outer computa-
tional boundaries can cause a lot of trouble. These reflections can be reduced by using
radiating boundary conditions; see [4].  For example, \p   = 0 at the outer boundary
y = 2c in our test problem can be replaced by <p   + ayx = 0, where a is a constant or
a function of ipx.

4. There are several ways of changing the algorithm in order to obtain second
order accuracy.  For the .y-sweep the following approximation is second order and
stable as a separate Cauchy problem

(6.3) Dl fjtf ! - *pk) = f DlDlWt > + *p_\\k + *pk + f_, ifc).
The x-sweep can easily be changed to be second order; see [1].  It is also possible to
use a standard method such as Lax-Wendroff for the x-differencing.

We shall present a rigorous analysis of certain second order methods in a
succeeding paper.
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