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ABSTRACT. Some roles in the global dynamics of so called stable and unstable sets will 
be given for semilinear heat equations and semilinear wave equations with dissipative 
terms. 

1. Introduction 

Let Dc RN be a bounded domain with smooth boundary aD. We are 
concerned with the following two mixed problems: 

(1.1) Ut - Au = lulp-1u, xED,t> 0, 

(1.2) u(O, x) = uo(x), xED, 

(1.3) u(t, x)laQ = ° for t ~ 0, 

and 

(1.4) Utt - Au + c5ut = lulp-1u, xED,t> 0, 

(1.5) u(O, x) = uo(x), Ut(O,x) = Ul(X), xED, 

(1.6) u(t, x)laQ = ° for t ~ 0. 

Here p > 1, c5 ~ ° and A is the Laplacian in RN. 
For these problems, many authors investigated their dynamics. In par

ticular, since Sattinger [21] has constructed so called stable set in 1968, the 
method of stable set (potential well) was used in order to construct global 
solutions (Ebihara et al. [3], Ikehata [9], Ishii [11], Lions [14], Nakao et al. 
[16], Otani [17] and Tsutsumi [22, 23] e.g.). Furthermore, with respect to the 
blowing-up properties, there is a work of Payne et al. [19]. Namely, roughly 
speaking, if initial data Uo belongs to so called unstable set, then the associated 
weak solution blows up in a finite time. Of related interest is the works of 
Ikehata et al. [10], Ishii [11] and Otani [17, 18]. 
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Now the first purpose of this paper is to characterize those stable and 
unstable sets by the asymptotic behaviour of solutions to the problems (1.1)
(1.3), adopting the arguments of Dynamical System (see Henry [7]). Our 
method may be topological in this sense. The second purpose of this paper is 
to consider the same problems for (1.4)-(1.6). In particular, we can charac
terize stable set of the equation (1.4) by the asymptotic behaviour of solutions 
as t --+ 00 and give sufficient conditions of initial data in order to blow up in 
finite time by the energy method. Although the method is different from that 
for heat equation (1.1), we will be able to say that the wave equation (1.4) with 
b > 0 has a similar property to (1.1). However, unfortunately we can not 
characterize unstable set right now because of lack of 'smoothing effect' in 
(1.4). 

The contents of this paper are as follows. In section 2 we prepare several 
facts on the local existence of solutions to (1.1)-(1.3) or (1.4)-(1.6) and basic 
results of stable and unstable sets. In section 3 we state the main results 
(Theorem 3.1) to the problem (1.1)-(1.3). In section 4 we assert the main 
theorems to the problem (1.4)-(1.6) (Theorems 4.1 and 4.2). Section 5 is 
devoted to the proof of Theorem 4.1 and in section 6 we prove Theorem 4.2. 

After our work has been completed, we are noticed that Kawanago [12] 
studied the dynamics of the Cauchy problem of (1.1) in RN with lulp-1u replaced 
by up. This is closely related to our study, as he investigated the set K, 
introduced by Lions [15], of initial values for the existence of global solution, 
in detail. In addition, the use of an argument of Giga [4] is in the same way 
as ours. 

2. Preliminaries 

Throughout this paper the functions considered are all real valued and 
the notations for their norms are adopted as usual ones (e.g., Lions [14]). 
Furthermore, Q c RN is a bounded domain with smooth boundary aQ. 

We shall describe some lemmas. 

LEMMA 2.1 (SOBOLEV-POINCARE). If 2 :::;; q:::;; N2~ 2' then 

Ilullq :::;; C(Q, q)IIVuI12 

for u E HJ(Q), where Ilullq means the usual U(Q)-norm. 

The next two local existence theorems are given by Hoshino et al. [8] 
and Haraux [6], respectively. In particular, Theorem 2.3 is easily proved by 
using Banach's fixed point theorem. 

N+2 
THEOREM 2.2 (HEAT EQUATION). Assume either 1 < p < N _ 2 (N;;:: 3) or 
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1 < p < +00 (N = 1,2). Then for any Uo E HJ(Q), there exists a real number 
Tm > 0 such that the problem (1.1)-(1.3) has a unique local solution u E C([O, Tm); 
HJ(Q)) n C1«0, Tm); L2(Q)). Furthermore, u becomes a classical solution of 
(1.1)-(1.3) for t > 0 and if Tm < +00, then 

lim IIVu(t, ')112 = +00 
ttTm 

and lim Ilu(t, ')1100 = +00. 
ttTm 

THEOREM 2.3 (WAVE EQUATION). Let () ~ 0 and suppose either 1 < p ~ 
N 

N _ 2 (N ~ 3) or 1 < p < +00 (N = 1,2). Then for any Uo E HJ(Q) and 

Ul E L2(Q), there exists a real number Tm > 0 such that the problem (1.4)-(1.6) 
admits a unique local weak solution u (t,xj which belongs to the class: 

and if Tm < +00, then 

Now we define some functionals as follows: 

(2.1) 1 2 1 p+l 1 
J(u) =:: '2IIVuIl2 - P + 11lullp+l for u E Ho(Q), 

(2.2) J(u)=:: IIVull~ -lIull;1~ for u E HJ(Q). 

And also we define so called 'Nehari manifold' and 'potential depth', respec
tively as follows (see Payne et al. [19]): 

(2.3) 

.K == {u E HJ(Q); J(u) = 0, u #- O}, 

d =:: inf{ sup J(AU); u E HJ(Q), u #- o}. 
).;;::0 

Then with the aid of Lemma 2.1, we have (see Ikehata et al. [10] and Payne et 
al. [19]) 

(2.4) 0< d = inf J(u). 
UE% 

Furthermore, if we set: 

E =:: {u E HJ(Q); -Au = lulp-1u, ulo.Q = O}, 

E* =:: {uEE;J(u) =d}, 

then we have (see Payne et al. [19]) 

E* = {u E.K;J(U) = d} #- ¢>. 
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Now let us define so called stable set w· and unstable set V· (see Sattinger 
[21], Payne et al. [19]): 

(2.5) W· == {u E HJ(Q); J(u) < d,I(u) > O} U {O}, 

(2.6) V· == {u E HJ(Q);J(u) < d,I(u) < O}. 

Then we have 

LEMMA 2.4. 
(1) W· is a bounded neighbourhood of 0 in HJ(Q), 
(2) 0 rt V·, 
(3) W· n V· = E·, 
(4) E· c .K. 

Here U means the closure of U in HJ(Q). 

PROOF. For (1), see Lions [14, p. 31]. Let us show (2). Suppose 0 E V·. 
Then there exists a sequence {vn } C V· such that Vn ---+ 0 as n ---+ 00 in HJ(Q). 
(1) means that if n is sufficiently large, then Vn E W·. These contradict to the 
fact w· n v· = rjJ. Since (4) is trivial, we finally prove (3). Indeed, if v E W· n 
V·, then I(u) = 0 and J(u) ::;; d. Further, (2) implies v =P O. Therefore, we get 
v E.JV, J(v) ::;; d. Noting (2.4), we obtain v E E·. Conversely, if v E E·, then 
we have J(u) = d and I(u) = 0 with v =P O. This implies v E W· n V·. • 

Finally, we shall prepare energy identities associated with the problems 
(1.1)-(1.3) and (1.4)-(1.6), respectively: 

LEMMA 2.5 (HEAT EQUATION). Let u(t, x) be a local solution to (1.1)-(1.3) 

on [0, Tm) with initial data Uo E HJ (Q). Then 

J(u(t, .)) + I IIUt(s, ')II~ ds = J(uo) 

LEMMA 2.6 (WAVE EQUATION). Let J ~ 0 and let u(t, x) be a local solution 
to (1.4)-(1.6) on [0, Tm) with initial data Uo E HJ(Q) and Ul E L2(Q). Then 

E(u(t, .), Ut(t, .)) + J J: Ilut(s,') II~ ds = E(uo, ut} on [0, Tm), 

where E(u, v) == ! Ilvll~ + J(u) is a Liapnov functional corresponding to the 
equation (1.4). 

3. Heat equation and stable-unstable set 

Throughout this section, we shall concentrate our interest on an analysis 
of the problem (1.1)-(1.3). Of course, we assume the unique local existence 
Theorem 2.2. Then our results read as follows: 
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THEOREM 3.1. Let u(t, x) be a local solution to the problem (1.1)-(1.3) on 
[0, Tm) with initial data Uo E HJ(Q). Then there exists a real number to E 

[0, Tm) such that u(to,·) E W* if and only if Tm = +00 and limHOO IIVu(t, ·)112 = 0. 

THEOREM 3.2. Suppose that either uo;:::: ° or Q is a convex set. Let 
u(t,x) be a local solution to the problem (1.1)-(1.3) on [0, Tm) with initial data 
Uo E HJ(Q). Then there is a real number to E [0, Tm) such that u(to,·) E V* if 
and only if Tm < +00. 

REMARK 3.3. It has been known that if Uo E W*, then Tm = +00 and 
u(t,·) - ° in HJ(Q) as t - 00 or if Uo E V*, then Tm < +00 (see Ishii [11], 
Otani [17], Payne et al. [19] and Tsutsumi [22]). However, all of their results 
depend on the energy method differently from ours. 

To prove Theorems 3.1-3.2, we need some lemmas. 
When Tm = +00, we can define so called w-limit set w(uo) associated with 

(1.1)-(1.3) as follows: Let u(t, x) be a global solution to (1.1)-(1.3) with Tm = 
+00 in Theorem 2.2. Then 

w(uo) == {u E HJ(Q);there is a sequence {tn} with tn - 00 as n - 00 

such that U(tn,·) - u in HJ(Q)}. 

The following proposition will be given by Henry [7]: 

PROPOSITION 3.4. Suppose Tm = +00 in Theorem 2.2. Then 
(1) w(uo) =F fjJ is compact in HJ(Q), 
(2) w(uo) is connected in HJ(Q), 
(3) w(uo) c E, 
(4) dist(u(t, .), w(uo)) - ° as t - +00. 

Here dist(u, w(uo)) means the distance from u to w(uo). 

Next we can prove the following lemma in the same way as in Tsutsumi 
[22]. 

LEMMA 3.5. Let u(t,·) be a local solution to (1.1)-(1.3) on [0, Tm) and let 
S(t) be a 'dynamical system' corresponding to the problem (1.1)-(1.3), i.e., S(t) is 
a mapping Uo 1-+ u(t, .). Then 

S(t)W* c W' and S(t)V' c V* on [0, Tm). 

Now we are in a position to prove Theorems 3.1-3.2. 

PROOF OF THEOREM 3.1. First we shall prove Theorem 3.1. Suppose 

that there is a real number to E [0, Tm) such that u(to,·) E W*. Then Lemma 
3.5 means u(t,·) E W* for all t E [to, Tm). Therefore, by (1) of Lemma 2.4 there 

exists M > ° such that IIVu(t, ·)112 ~ M which implies Tm = +00 in Theorem 
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2.2. And also, it follows from Proposition 3.4 that w(uo) "# <p is connected 
and w(uo) c: E. 

To begin with, assume 0 rt w(uo). Then there are WE w(uo) with W "# 0 
and a sequence {tn} with tn -t 00 such that U(tn") -t W in HJ(Q). 
Futher, for sufficient large n we also have u(tn") E W·. So we obtain 
WE w(uo) n W*. On the other hand, since W "# 0, we get WE W(Uo) c: E\ {O} c: 

.iV. This implies wE.iVn W·. Thus, we obtain J(w) = 0 and J(w) :::;; d. It 
follows from the definition of d (see (2.4)) that 

(3.1) J(w) = d. 

Moreover, since u( to, .) E W', it follows from Lemma 2.5 that 

J(u(tn, .)) :::;; J(u(to,')) < d 

for sufficiently large n. Letting n -t 00 above, we get 

(3.2) J(w) :::;; J(u(to,')) < d, 

which contradicts to (3.1). So it must hold 0 E w(uo). 
Next let B "# <p be a subset of HJ(Q) such that w(uo) = {O} U B. Then B 

must be closed in HJ(Q). In fact, let bn E B be a sequence such that bn -t b 
in HJ(Q) for some bE HJ(Q). (1) of Proposition 3.4 means bE w(uo). Sup
pose b = O. Then we obtain from (1) of Lemma 2.4 that bn E W· for n large 
enough. On the other hand, since bn "# 0, it follows from (3) of proposition 
3.4 that bn E EO} c:.iV. So we get bn E W* n.iV = <p for n large enough. 
This is a contradiction. Thus, b"# O. This implies bE B, i.e., B is closed. 
Finally, it follows from (2) and (4) of Proposition 3.4 that B = <p, w(uo) = {O} 
and u(t,·) -t 0 in HJ(Q). 

Conversely, if Tm = +00 and limt--+ooIIVu(t, ')Ib = 0, then from (1) of 
Lemma 2.4 that there is a number to E [0,00) such that u(to,') E W*. • 

PROOF OF THEOREM 3.2. Second we shall prove Theorem 3.2. Since the 
proof of 'if' part of Theorem 3.2 is almost the same as that of Theorem 3.1, we 
will state only the outline of proof. 

Assume that there exists a real number to E [0, Tm) such that u(to,') E V'. 
Then we have from Lemma 3.5 that u(t,·) E V' for all t E [to, Tm). In the 
following, we suppose Tm = +00 (see Otani [17]). By using V* instead of W· 
in the proof of Theorem 3.1, first of all we get w(uo) = {O} and u(t,.) -t 0 in 
HJ(Q). From (1) of Lemma 2.4 we obtain that u(t,·) E W· for t large enough. 
Therefore, we get u(t,·) E W* n v· for sufficiently large t> to which contradicts· 
to W· n V* = <p. So we get Tm < +00. 

Conversely, suppose Tm < +00. It follows from Lemma 2.5 that 

(p + 1)J(uo) ~ (p + 1)J(u(t,·)) = p; 11IVu(t, ')II~ + J(u(t, .)). 
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Since limqTml!Vu(t, ·)112 = +00, the above inequality gives 

(3.3) lim I(u(t, .)) = -00. 
qTm 

Furthermore, since we also get limttTm Ilu(t, ·)1100 = +00, when the initial data 
satisfies Uo ~ 0, it follows from the results of Giga [4] that 

(3.4) lim l(u(t,·)) = -00. 
qTm 

(3.3) and (3.4) imply that there is a number to E [0, Tm) such that u(to,·) E V". 
Next, we shall rely on the results of Giga-Kohn [5] in order to prove 

(3.4) when Q is convex. Indeed, if Tm < +00, then there exists a "blowup 
point" a E Q such that 

where p :: ~I and the convergence is uniform on every compact subset of 
p-

I 
RN. If we set s::logTm_t and w(s,y)::±v(t,y), then w(s,y) satisfies 

Ws - Lfw + ~y. Vw + pw = Iwlp-1w 

on (log ;m' +00) x Qs with Qs :: exp(~) (Q + {-a}). Here, it is known that 

w(s,y) -+ ±pP as s -+ +00 so that Vw -+ 0 and Ws -+ 0 as s -+ +00, where the 
convergence is uniform on every compact subset of RN. Under the above 
preliminaries, we can calculate as follows: 

= JIOg(l/Tm-
t
) exp {(2P + 1 - ~)s} dsJ Ipw + Ws + ~y. vwl2 dy, 

log (l/Tm-tt) D, 

where rx :: 2P + 1 - ~ > 0 by the conditions of p. So there is a real number 
R > 0 such that 

J

IOg(l/Tm-t) J 1 1 12 
K(t) ~ exp (rxs)ds pw + Ws +"2 y. Vw dy. 

log (l/Tm-tt) IYI<R 

On the other hand, by letting s -+ oo(t i Tm ), it follows that for any e> 0 there 
is a number So > 0 such that if So ~ s, then 
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where IBRI is a volume of the set {y E RNj Iyl < R}. Thus, there exist a 
constant Co > 0 and an another number So > 0 such that if So :::; s, then 

f I pw+~y.vw+wsI2dY~Co. IYI<R 

Let to == Tm - exp( -so). Then for all t E [to, Tm) we get from Lemma 2.5 that 

J(u(t)) = J(u(to)) - Jt J IUtl2dxdt 
to a 

f
log (l/T .. -t) 

:::; J(u(to)) - Co exp (rxs)ds 
log (l/T .. -to) 

Co 1 Co 1 
= J(u(to)) + ~ (Tm _ to)'" - ~ (Tm _ t)"'· 

Letting t i Tm, we get 

lim J(u(t)) = -00. 
tlT .. 

Taking (3.3) into consideration, we obtain the converse statement of Theorem 
3.2 .• 

COROLLARY 3.6. Suppose that either Uo ~ 0 or Q is a convex set. Let 
u(t, x) be as in Theorems 3.1-3.2. Then the followings are equivalent each 
other: 

(1) Tm = +00 and 0 ¢ w(uo), 
(2) J(u(t, .)) ~ d for all t E [0, Tm), 
(3) u(t,.) ¢ W· U V· for all t E [0, Tm). 

PROOF. First it is easy to show that (2) is equivalent to (3). Next let us 
prove the equivalence of (1) with (2). 

Suppose (1). If there is a number to E [0,+(0) such that J(u(to,·)) < d, 
then one of the following three cases hold: 

(i) I(u(to, .)) > 0, (ii) I(u(to, .)) < 0, (iii) I(u(to, .)) = o. 
If (i) is true, since u(to, .)) E W·, it follows from Theorem 3.1 that 0 E w(uo). 
This contradicts to the hypothesis. If (ii) is right, then we get u(to,·) E V· 
which implies Tm < +00 by Theorem 3.2. This is also a contradiction. 
Finally assume (iii). If u(to,·) ;6 0, then u(to,·) E.¥ and J(u(to,·)) < d. This 
contradicts to (2.4). So we get u(to,·) = 0 and therefore J(u(to, .)) = O. From 
the mono tonicity of the mapping t 1--+ J(u(t, .)) (see Lemma 2.5) we have 0 ~ 
J(u(t, .)) for all t ~ to. On the other hand, we can easily see that if Tm = +00, 
then J(u(t,·))~O for all tE[O,+OO). Thus, we obtain J(u(t,·)) =0 for all 
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t E [to, +00). Because of Lemma 2.5 with 0 replaced by to we have Ilut(t, ·)112 = 
o for all t E [to, +00). Since u(to,·) = 0, this implies u(t,·) = 0 for all 
t E [to, +00). This also contradicts to the hypothesis 01= w(uo). 

Conversely, suppose Tm < +00 even if J(u(t, .)) ~ d for all t E [0, Tm). 
Since it follows from Theorem 3.2 that u(to,·) E V', this contradicts to hy
pothesis. So we have Tm = +00. Finally if 0 E w(uo), then from (2) of Prop
osition 3.4 we can prove w(uo) = {O}. This implies limt-+oo J(u(t, .)) = 0 which 
contradicts to the assumptions. • 

REMARK 3.7. Owing to the 'smoothing effect' of the equation (1.1), we can 
apply the theory of Giga [4] in order to prove 'only if' part of Theorem 
3.2. Therefore, it may be difficult to apply the argument directly to the problem 
(1.4)-(1.6). The fact that the global solutions have their values J bounded is 
first proved by Otani [17]. 

4. Wave equation and stable-unstable set 

In this section we treat the problem (1.4)-(1.6). To begin with, we shall 
introduce "modified" unstable set depending on () ~ 0 as follows (see (2.6)): 
Suppose 

(4.1) o ~ () < min {p + 3, (p - 1)C(.o, 2)-2}. 

Then we define 

(4.2) Vo' == {u E HJ(.o);J(u) < do,I(u) < O}, 

where do = d (1 -()C;~' ~)2). Note that Vo" = V'. Then we obtain the fol

lowing two main Theorems by using Theorem 2.3 with regard to the existence 
of local solutions. 

THEOREM 4.1. Let () > 0 and let u(t, x) be a local solution to the problem 
(1.4)-(1.6) on [0, Tm) with initial data Uo E HJ(.o) and Ul E L2(.o). Then there 
exists a real number to E [0, Tm) such that u(to,·) E W' and E(u(to, .), Ut (to , .)) < d 
if and only if Tm = +00 and limt-+oo IIVu(t, ·)112 = limt-+oo Ilut(t, ·)112 = O. 

THEOREM 4.2 (BLOWING-UP). Let () satisfy (4.1) and suppose that u(t, x) be 
a local solution to (1.4)-(1.6) on [0, Tm) with initial data Uo E HJ(.o) and 
Ul E L2(.o). If there is a real number to E [0, Tm) such that u(to,·) E V; and 
E(u(to, .), Ut(to,·)) < do, then Tm < +00. 

REMARK 4.3. In proving Theorem 4.1, we shall get the decay estimates of 
IIVu(t, ·)112 or Ilut(t, ·)112 as t --+ 00 simultaneously. This part is closely related 
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to the recent work by Nakao et al. [16]. Next, concerning the "only if" part 
in Theorem 4.2, it is still open. 

REMARK 4.4. In Theorem 4.1, we can not take /j = 0. This means that 
the presence of a dissipative term plays an essential role to obtain a decay 
property of total energy to (1.4)-(1.6). And also, the equation (1.4) has similar 
properties to heat equation (1.1) in this case of /j > 0. On the other hand, 

taking into consideration to the effect of "damping", it will be natural to restrict 
a value of coefficient /j in Theorem 4.2 in order to get the blowing-up properties. 

5. Proof of Theorem 4.1 

In this section we shall prove Theorem 4.1. To this end, we prepare 
several lemmas. Throughout this section, we always assume the local 
existence Theorem 2.3. 

LEMMA 5.1. Let /j > ° and let u(t, x) be a local solution to (1.4)-(1.6) on 
[0, Tm). If there is a number to E [0, Tm) such that E(u(to, .), Ut(to, .)) < d and 
I(u(to, .)) > 0, then u(t,·) E W· and E(u(t, .), Ut(t,·)) < d for all t E [to, Tm). 

PROOF. Since the proof is almost the same as that of Tsutsumi [22], we 
shall omit it. • 

The next lemma plays an important role to derive the decay estimate of 
the total energy E(u(t, .), Ut(t,·)) as t -+ 00. Although the proof is almost the 
same as that of Ishii [11], we will describe it for the sake of completeness. 

LEMMA 5.2. Let u(t, x) be a local solution to (1.4)-(1.6) on [0, Tm). If 
there exists a number to E [0, Tm) such that u(to,·) E W· and E(u(to, .), Ut(to,·)) < 
d, then 

Ilu(t, ·)II;~: ::; (1 - y)IIVu(t, ·)II~ 

( 
+ 1)(P-l)/2 

where y == 1- C(Q,p + l)p+l 2; _ 1 E(u(to, .), Ut(to, .))(p-l)/2 > 0. 

PROOF. In general, if u E HJ(Q) satisfies I(u) > 0, then 

So we have 

(p + I)J(u) = p; IIIVull~ + I(u) ~ p; IIIVull~. 

IIVull~ ::; 2 p + 11 J(u). 
p-
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Therefore, it follows from Lemma 2.1 with q = p + 1 that 

(5.1) Ilull;!: :$ C(Q,p + 1)P+l(IIVull~)(p-l)/21IVull~ 

( 
+ 1)(P-l)/2 

:$ C(Q,p + l)p+l 2~ _ 1 IIVull~J(u)(p-l)/2 

for u E HJ(Q) with I(u) > o. Since J(u) :$ E(u, v), from (5.1), Lemma 2.6 and 
Lemma 5.1 we get 

( 
+ 1)(P-l)/2 

Ilu(t,·)II;!::$ C(Q,p+ l)p+l 2~_1 IIVu(t,·)II~E(u(to,·),Ut(to,·))(p-l)/2. 

( 
+ 1)(P-l)/2 

Taking y=1-C(Q,p+1)p+l 2~_1 E(u(to,·),Ut(to,·))(P-l)/2, we ob-

tain the desired inequality. • 

LEMMA 5.3. Under the same assumptions as in Lemma 5.2, it holds that 
there exists a constant M > 0 such that 

PROOF. The first inequality is a direct consequence of Lemma 2.1, (1) of 
Lemma 2.4 and Lemma 5.1. Next noting that u E W' implies J(u) ~ 0, from 
Lemma 2.6 with 0 replaced by to we get the desired inequality. • 

LEMMA 5.4. Under the same assumptions as in Lemma 5.2, it holds that 
there is a real number M > 0 such that 

Jt I(u(s, ·))ds:$ M, 
to Jt IIVu(s, ·)II~ ds :$ M 

to 
on [to, 00). 

PROOF. Note that under the hypothesis we get Tm = +00 by Theorem 
2.3 and Lemma 5.3. Since we obtain 

d bd 
dt (u' (t), u(t)) - Ilu' (t) II~ + I(u(t)) + 2 dt Ilu(t) II~ = 0, 

by integrating the above equality on [to, t] and using the Schwarz inequality it 
follows that 

on [to, 00). 
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Here u(t) == u(t,·) and u'(t) == Ut(t, .). Therefore, from Lemmas 2.1 and 5.3 we 
have 

J
t b d 

(5.2) I(u(s))ds ~ 2:llu(to)ll~ + ~ + Ilu'(to)1121Iu(to)112 
to 

+ QQ,2)llu'(t)1121IVu(t)112· 

Since Lemma 5.2 implies 

YIIVu(t)ll~ ~ I(u(t)), 

it follows from (5.2) and Lemma 5.3 that 

yJt IIVu(s)ll~ds ~ Jt I(u(s))ds ~ M 
to to 

with a constant M > o. • 
LEMMA 5.5. Under the same assumptions as in Lemma 5.2, it holds that 

M 
E(u(t, .), Ut(t,·)) ~ -1 -

+t 
(t ~ to) 

with a constant M > o. 
PROOF. First note that the following identity holds: 

d 
dt {(1 + t)E(u(t), u'(t))} + b(1 + t)llu'(t)ll~ = E(u(t), u'(t)). 

By integrating this equality on [to, t] we have 

(1 + t)E(u(t), u'(t)) ~ (1 + to)E(u(to), u'(to)) 

1 Jt Jt + 2: Ilu'(s)ll~ ds + J(u(s))ds. 
to to 

Since (p + 1)J(u(t)) = p; 11IVu(t)ll~ + I(u(t)), the above inequality gives: 

1 Jt (1 + t)E(u(t), u' (t)) ~ (1 + to)E(u(to), u' (to)) + 2: Ilu' (s) II~ ds 
to 

p - 1 Jt 2 1 Jt 
+2( 1) IIVu(s)112 ds +-1 I(u(s))ds. 

p+ to p+ to 

Finally, by using Lemmas 5.3 and 5.4 we obtain the desired inequality. • 

PROOF OF THEOREM 4.1. First suppose that there exists a real number 
to E [0, Tm) such that u(to,·) E W· and E(u(to, .), Ut (to , .)) < d. Then it follows 
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from Theorem 2.3 and Lemma 5.3 that Tm = +00. In addition, Lemma 5.5 
implies 

lim E(u(t, .), Ut(t, .)) = o. 
t-+co 

So we get 

and J(u(t, .)) ~ 0 as t ~ 00. 

Since u E W* implies J(u) ~ 0 and I(u) > 0, the following inequality: 

(p + 1)J(u(t,·)) ~ p; 1 1IVu(t, ·)II~ 

means lim/-+co IIVu(t, ·)II~ = o. 
Conversely, if IIVu(t, ·)112 ~ 0, IIUt(t, ·)112 ~ 0 as t ~ 00, it follows from 

Lemma 2.1 that lim/-+co lIu(t, ·)lIp+l = 0 which implies 

lim E(u(t, .), ut(t,·)) = o. 
t-+co 

Therefore, from (1) of Lemma 2.4 and the above mentioned results we get: 
u( to, .) E W* and E( u( to, .), Ut(to, .)) < d for some to E [0, 00 ). • 

6. Prooof of Theorem 4.2 

Throughout this section, we always assume (4.1). First we shall prepare 
two lemmas: 

LEMMA 6.1. Let u(t, x) be a local solution to (1.4)-(1.6) with initial data 
Uo E HJ(Q) and Ul E L2(Q). If there exists a number to E [0, Tm) such that 
u(to,·) E V,,* and E(u(to, .), Ut(to, .)) < dli, then u(t,·) E V; and E(u(t, .), Ut(t,·)) < 
d" for all t E [to, Tm). 

(6.1) 

PROOF. Proof is almost the same as that of Tsutsumi [22]. • 

LEMMA 6.2. If u E HJ(Q) satisfies I(u) < 0, then 

IIVull~ ~ 2d p + 11 . 
p-

PROOF. From the definition of d, we know that 
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Therefore, 

Since IIVull~ < lIull;:; by assumption, we obtain the desired inequality. • 
Now we are just in a position to prove Theorem 4.2. The proof will be 

done by the modifications of Ikehata [9]. 

PROOF OF THEOREM 4.2. Suppose that Tm = +00. Then the proof is 
based on the identity: 

(6.2) 

where (, )x*x means the usual duality of X· and X with X == HJ(Q). Next 
multiplying (1.4) by u(t,x) in the duality (,)x*x we get 

(6.3) (Utt(t, .), u(t, ·)x*x =lIu(t, ·)11;:: -IIVu(t, ·)II~ 

- b(ut(t, .), u(t, .)), 

where (,) means the usual L2(Q)-inner product. Furthermore, it follows from 
Lemma 2.6 that 

(6.4) 
p+1 2 p-1 2 
-2-lIut(t, ·)112 + J(u(t,·)) + -2-IIVu(t, ·)Ib 

+(P+1)bJ
t 
lIut(s,·)II~ds=(p+1)Eo on [0,00), 

to 

where Eo == E(u(to, .), Ut(to, .)). From (6.2)-(6.4) we can estimate as follows: 

1 d2 
2 2 2 dt2I1u(t, ·)112 = Ilut(t, ·)Ib - J(u(t,.)) - b(Ut(t, .), u(t,.)) 

2 p+1 2 p-1 2 
= lIut(t, ·)112 + -2-lIut(t, ·)Ib + -2-IIVu(t, ·)112 

+ (p + 1)<5 Jt lIut(s, ·)II~ ds - (p + 1)Eo - b(ut(t, .), u(t,·)) 
to 

p+3 2 p-1 2 
;;::: -2-lIut(t, ·)112 + -2-IIVu(t, ·)112 - (p + 1)Eo 

- b(Ut(t, .), u(t, .)). 
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Here, from the Schwarz inequality and Lemma 2.1 we have 

2(ut(t, .), u(t,·)) ~ 21Iut(t, ·)1121Iu(t, ·)112 ~ IIUt(t, ·)II~ + Ilu(t, ·)II~ 

~ IIUt(t, ·)II~ + C(Q, 2)21IVu(t, ·)II~· 

Therefore, we obtain 

1 d2 2 P + 3 2 P - 1 2 
"2 dt21Iu(t, ·)112 ~ -2- IIUt(t, ·)112 + -2-IIVu(t, ·)112 

() 2 C(Q,2)2{) 2 
-(p+1)EO-"2 I1Ut (t,·)112- 2 IIVu(t,·)1I2 

121 
= "2{(p + 3) - ()}IIUt(t, ·)112 + "2{(p - 1) 

- C(Q,2)2{)}IIVu(t,·)II~ - (p+ l)Eo. 

Here we know from Lemmas 6.1 and 6.2: 

IIVu(t, ·)II~ ~ 2d p + 11 for all t E [to, (0). 
p-

So we have 

(6.5) 
d2 

2 2 
dt21Iu(t, ·)112 ~ {(p + 3) - {)}llut(t, ·)Ib - 2(p + l)Eo 

2( l)d 
_ 2(p + l)C(Q, 2)2{)d 

+ p+ . 1 . p-

489 

{ 
C(Q,2)2{)d } 

Let Kl == (p + 3) - () > 0 (see (4.1)) and K2 == 2(p + 1) d - p _ 1 - Eo . 

Then we have K2 > 0 since Eo < d (1 -()C(~, ~)2) by assumption. Thus, it 
follows from (6.5) that p 

d2 
2 2 

(6.6) dt21Iu(t, ·)112 ~ Klll ut(t, ·)112 + K2 on [to, (0). 

Integrating (6.6) on [to, t] (to < t < (0), we get 

d 2 
dt Ilu(t, ·)112 ~ 2(u(to, .), Ut(to, .)) + K2(t - to) on [to, !Xl). 

This implies that there is tl > to such that 

d 2 
dt11u(t,·)112 >0 on (tl,oo). 
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Consequently, P(t) = Ilu(t, ,)11; never vanish on (tt, (0). On the other hand, it 
follows from (6.6) that 

P(t)P"(t) - ~l [p'(t)f ~ Klllu(t, ')II;lIut(t, ,)11; + K21Iu(t, ,)11; 

- Kd(u(t, .), Ut(t, '))1 2 

on (tl, (0); 

in the last step we have used the Schwarz inequality. According to the 
standard "concavity argument" (see Levine [13]) we can find To > 0 such that 

lim Ilu(t, ')112 = +00, 
/fTo 

which contradicts to Tm = +00. _ 
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